DOUBLE COMPLEXES

We work throughout in an abelian category \mathscr{A} in which countable direct sums exist.

There are two related notions of a double complex. We give both versions below. The second(i.e., what we call an anti-commuting double complex below) is what you will often find in the older literature - and amongst non-algebraic-geometers. The first version (which we simple call a double complex, or sometimes a standard double complex) is the version given by Grothendieck in EGA, and is what most algebraic geometers are used to. The difference is one of convention.

Standard Double Complexes. A double complex in \mathscr{A}, or sometimes in our class, a standard double complex in \mathscr{A}, consists of data $A^{\bullet \bullet}=\left(A, \partial_{1}, \partial_{2}\right)$, where

$$
A=\left(A^{p, q}\right)_{(p, q) \in \mathbb{Z} \times \mathbb{Z}}
$$

is a family of objects in \mathscr{A}, and

$$
\partial_{1}=\left(\partial_{1}^{p, q}\right)_{(p, q) \in \mathbb{Z}} \quad \partial_{2}=\left(\partial_{2}^{p, q}\right)_{(p, q) \in \mathbb{Z}}
$$

are two families of morphisms

$$
\partial_{1}^{p, q}: A^{p, q} \rightarrow A^{p+1, q} \quad \partial_{2}^{p, q}: A^{p, q} \rightarrow A^{p, q+1}
$$

such that

$$
\partial_{1} \partial_{1}=0 \quad \partial_{2} \partial_{2}=0 \quad \partial_{1} \partial_{2}=\partial_{2} \partial_{1}
$$

We often suppress the superscripts p, q when these are either immaterial or easily deducible from the context. Thus, e.g., we write ∂_{2} for $\partial_{2}^{p, q}$. The maps ∂_{1} and ∂_{2} will be called partial coboundaries, and when we wish to be more specific, they will be called horizontal and vertical (partial) coboundaries respectively. The data fits into a commutative diagram, whose rows and columns are complexes.

Next consider the direct sum ${ }^{1}$

$$
\operatorname{Tot}^{n} A^{\bullet \bullet}:=\bigoplus_{p+q=n} A^{p, q}
$$

[^0]Define

$$
\partial^{n}: \operatorname{Tot}^{n} A^{\bullet \bullet} \rightarrow \operatorname{Tot}^{n+1} A^{\bullet \bullet}
$$

by the formula

$$
\partial^{n}=\sum_{p+q=n}\left\{\partial_{1}^{p, q}+(-1)^{p} \partial_{2}^{p, q}\right\}
$$

The map within "curly brackets" can be regarded as a map $A^{p, q} \rightarrow \operatorname{Tot}^{n+1} A \bullet$, taking values in the subobject $A^{p+1, q} \oplus A^{p, q+1}$ of $\operatorname{Tot}^{n+1} A^{\bullet \bullet}$, whence by the definition of direct sum, the map ∂^{n} makes sense.

Evidently

$$
\partial^{n+1} \circ \partial^{n}=0
$$

for every $n \in \mathbb{Z}$ by the relations given between ∂_{1} and ∂_{2}. We have therefore a complex $\left(\operatorname{Tot}^{\bullet} A^{\bullet \bullet}, \partial\right)$, called the total complex associated to the double complex $A^{\bullet \bullet}$.

A morphism of double complexes $\varphi: A^{\bullet \bullet} \rightarrow B^{\bullet \bullet}$ is (of course) a family of maps $f^{p, q}: A^{p, q} \rightarrow B^{p, q}$, one for each ordered pair of integers (p, q), which commute with vertical and horizontal coboundaries. This naturally induces a map of complexes $\operatorname{Tot} f: \operatorname{Tot}^{\bullet} A^{\bullet \bullet} \rightarrow \operatorname{Tot}^{\bullet} B^{\bullet \bullet}$

Anti-commutative double complexes. In much of the pre-Grothendieck literature, double complexes mean a variant of our standard double complexes. The only difference is that the grids in the diagram on the last page anti-commute rather than commute. In greater detail, for this course, data of the form $K^{\bullet \bullet}=\left(K, d_{1}, d_{2}\right)$ represents an anti-commuting double complex if K is a family ($K^{p, q}$) of objects in \mathscr{A} indexed by $\mathbb{Z} \times \mathbb{Z}$ and $d_{1}=\left(d_{1}^{p, q}: K^{p, q} \rightarrow K^{p+1, q}\right), d_{2}=\left(d_{2}^{p, q}: K^{p, q} \rightarrow K^{p, q+1}\right)$ are families of maps indexed by $(p, q) \in \mathbb{Z} \times \mathbb{Z}$, called the horizontal and vertical partial coboundaries respectively, such that

$$
d_{1} d_{1}=0 \quad d_{2} d_{2}=0, \quad d_{1} d_{2}=-d_{2} d_{1}
$$

We set (and please pay attention to the notation, especially the accent on the top left)

$$
{ }^{\prime} \operatorname{Tot}^{n} K^{\bullet \bullet}:=\bigoplus_{p+q=n} K^{p, q}
$$

and define

$$
d^{n}:{ }^{\prime} \operatorname{Tot}^{n} K^{\bullet \bullet} \rightarrow{ }^{\prime} \operatorname{Tot}^{n+1} K^{\bullet \bullet}
$$

by the formula

$$
d^{n}=\sum_{p+q=n}\left(d_{1}^{p, q}+d_{2}^{p, q}\right)
$$

without any sign of the form $(-1)^{p}$ intervening. It is easy to see, with $d:=\left(d^{n}\right)_{n \in \mathbb{Z}}$, that $\left({ }^{\prime} \operatorname{Tot}{ }^{\bullet} K^{\bullet \bullet}, d\right)$ is a complex. We call this complex the total complex associated with the anti-commuting double complex $K^{\bullet \bullet}$.

I will leave the task of defining maps of anti-commuting double complexes to you.

Bounded double complexes. Let $C^{\bullet \bullet}$ be a double complex (standard or anticommutative). We say it is bounded on the left if there is an integer p_{0} such that

$$
C^{p, q}=0, \quad p<p_{0}
$$

If this happens we sometimes say $C^{\bullet \bullet}$ is bounded on the left by p_{0}. Similarly $C^{\bullet \bullet}$ is bounded below (by q_{0}) if there exists an integer q_{0} such that

$$
C^{p, q}=0 \quad q<q_{0}
$$

I leave to you the fun task of defining terms like bounded on the right and bounded above.

Note that if $C^{\bullet \bullet}$ is bounded on the left and below (resp. above and to the right) it lives in a translate of the first quadrant (resp. third quadrant) and as such the direct sum

$$
\bigoplus_{p+q=n} C^{p, q}
$$

is actually a finite sum^{2} for each n. So in such instances, one can define $\operatorname{Tot}^{n} C^{\bullet \bullet}$ or ${ }^{\prime} \operatorname{Tot}^{n} C^{\bullet \bullet}$ (as the case may be) without insisting that \mathscr{A} have countable direct sums. In fact we will largely be dealing with such situations.

[^1]
[^0]: ${ }^{1}$ This is where our assumption that \mathscr{A} has countable direct sums comes into play. Alternately, one can assume that the displayed direct sum for $\operatorname{Tot}^{n} A^{\bullet \bullet}$ is finite for every $n \in \mathbb{Z}$.

[^1]: ${ }^{2}$ Draw a picture with such quadrant translates, and look at the intersection of such quadrant translates with lines having slope -1 .

