The Snake Lemma
Some easy farts (check yourself).

1. If $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ are two maps s.t. $\beta \alpha: A \rightarrow C$ is a monomorplism, then $\alpha: A \rightarrow B$ is a monomorphism. If $B \alpha$ is an epimorphism, $B: B \rightarrow C$ is ep.
2. If S is a subgroup of a gre $A, \alpha: A \rightarrow A^{\prime}$ a gap homomorphism, and kn α is a subgroup of s, then $\operatorname{ken} \alpha=\operatorname{ker}(\alpha / s)$. The generalization of this to exact categories is: Suppose $i: S \rightarrow A$ is a monomorphism, $\alpha: A \rightarrow A^{\prime}$ a map, and suppose ken $\alpha=(k \xrightarrow{j} A)$ factors as a composite $k \xrightarrow{\varphi} S \xrightarrow{i} A$. Then $\operatorname{ker}(k \varphi(S)=\operatorname{ken}(S \xrightarrow{\alpha i} A)$.
3. T_{0} say

$$
A \rightarrow[\operatorname{kn}(B \rightarrow C)] \rightarrow 0
$$

is exact is to say.

$$
A \rightarrow B \rightarrow C
$$

is exact. (The two exactness statements are equivalent.)
4. : If

is an exact commutative diagram then $\operatorname{coth} \beta \rightarrow \operatorname{coth} r \rightarrow$ coke δ and gamma instead of beta, gamma and delta.
is exalt.
Pf: This is the dual of Problem 6 of HW 2

Theorem (The Snake Levin): Suppose we have a commutative diagram with exact rows and columns (ie. an exact commutative diag.)

Then we have a six term exact sequence :

$$
k n \beta \rightarrow k n \gamma \rightarrow k n \delta \partial \operatorname{cothen} \beta \rightarrow \operatorname{coten} r \rightarrow \text { coten } \delta
$$

where the "connecting homomophisus": ∂ is characterized thus:
(1) Put $k=\operatorname{kn}\left(C \rightarrow D^{\prime}\right)$ Then $k \rightarrow$ ken δ is an epimorphism;
(2) Put $K^{\prime}=\operatorname{coken}\left(B \rightarrow C^{\prime}\right)$. Then $\operatorname{coken} \beta \rightarrow K^{\prime}$ is a monomorphisui;
(3) The two composites:
and

$$
\begin{aligned}
& k \rightarrow c \xrightarrow{r} c^{\prime} \rightarrow k^{\prime} \\
& k \xrightarrow{Q} \operatorname{kn\delta } \xrightarrow{\partial} \operatorname{coten} \beta \xrightarrow{(2)} k^{\prime}
\end{aligned}
$$

are the same.
Remarks

1. (1), (2) and (3) indeed chanantenize the connecting map ∂ fer at most one map can fill the dotted arrow to make the diagram belovo commute:

Here \rightarrow denotes epïmopphinm $\stackrel{\sim}{*} \rightarrow$ denotes momomorplism.

$$
\left[i \partial \pi=i \partial^{\prime} \pi, \text { m mono, } \pi \text { epi } \Rightarrow \partial=\partial^{\prime}\right]
$$

2. Suppose all objects tevere groups and maps group homonorphisus; move precisely suppose tue were working with an exact subcategory of the a category of abclian groups. Then the convecting map has the following description:

Let $d \in \operatorname{ker} \delta$. Then d maps to O under $D \rightarrow E$! Now $D \rightarrow E^{\prime}$ factors as $D \rightarrow E \in E^{\prime}$, and spice ϵ is a monomouphism, $d \in \operatorname{ker}(D \rightarrow E)$. Therefore $\exists s \in C$ s.t. C maps to d under $C \rightarrow D$. Let $c^{\prime}=\gamma_{c}$. Cleanly c^{\prime} maps to 0 $\frac{+3}{3} \xi$ under $C^{\prime} \rightarrow D^{\prime}$ (being the C^{\prime} neaps ts the linage of d under δ, I $\left\{\right.$ and $d \in$ ken δ). This means there exists $b^{\prime} \in B^{\prime}$ which maps to c^{\prime} under $B^{\prime} \rightarrow c^{\prime}$. Let $\left[b^{\prime}\right] \in \operatorname{cok} n \beta$ denote the image of b^{\prime} under $B^{\prime} \rightarrow$ when β. Then one checks readily that $\left[b^{\prime}\right]$ does not depend on choices made ie. on the choice of the preimage c of d, and of the choice of the preimage b^{\prime} of $c^{\prime}=r c$. Then

$$
\partial(d)=\left[b^{\prime}\right]
$$

In font, the element $c \in K=k u\left(c \rightarrow D^{\prime}\right)$, and the linage of γ_{c} in $k^{\prime}=$ when $\left(B \rightarrow C^{\prime}\right)$ in precisely the linage of $\left[b^{\prime}\right]$ in k^{\prime} under the natimal map coth er $\beta \rightarrow k^{\prime}$. Thus drawing tan ken $\rightarrow \operatorname{coten} \beta, d \mapsto[b]$ fills the dotted arrow in the diagram for convecting maps, This means $d \longmapsto\left[b^{\prime}\right], d \in k n \delta$ is the connecting map.

Proof: of the Snake Lemma: By problem 6 of (HW2, and its dual (see Remark 4 before statement of TIm) wee already have

$$
\operatorname{ken} \beta \rightarrow \operatorname{kn} \gamma \rightarrow \operatorname{kin} \delta \quad \text { (exact) }
$$

\& $\operatorname{coten} \beta \rightarrow \operatorname{cohen} r \rightarrow \operatorname{coth} \delta \cdots \quad$ (e xant).

Let us prove (1) and (2) in the stateminent. L Let the natural map , $C^{\prime} \longrightarrow$ ken $\left(D^{\prime} \rightarrow E^{\prime}\right)$ be denoted f... Consider the exact cammentature diagram

Apply Problem 6, HW 2 trice to get that

$$
(*) \quad B \rightarrow K \rightarrow \text { kn } \delta \rightarrow 0
$$

is exact. This proves. (1).
To prove (2) woe the exact commetalum diagraini (with of the map Bree cotter $(A \rightarrow B) \rightarrow C$)

and apply Rink 4 before the statement of, Snake Lemma (apply int trice) to get a_{n} exact sequence

$$
0 \rightarrow \operatorname{cothn} \beta \rightarrow k^{\prime} \longrightarrow D^{\prime}
$$

Thus (2) is also true.

Now the composite.

$$
B \rightarrow K \rightarrow K^{\prime}
$$

in zeno, where the second arrow is $k \hookrightarrow C \xrightarrow{r} C^{\prime} \rightarrow k^{\prime}$. Indeed the map $B \rightarrow K^{\prime}$ above is the same as the composite
$B \rightarrow C^{\prime} \rightarrow \operatorname{cokn}\left(B \rightarrow C^{\prime}\right)\left(-k^{\prime}\right) \rightarrow 0 . \quad$ By $(*) \operatorname{kn} \delta=\operatorname{cokn}(B \rightarrow k)$, whence we get a unique map.
$(t) \quad \operatorname{kn} \delta \rightarrow k^{\prime}$
sun h that the composite $k \hookrightarrow c \xrightarrow{r} c^{\prime} \rightarrow k^{\prime}$ in the same as the composite

$$
k \underset{\uparrow}{\longrightarrow} \operatorname{ken} \delta k^{\prime}
$$

Now $\quad k \rightarrow k^{\prime} \rightarrow D^{\prime}$ in zeno, therefore, shine $k \rightarrow k_{n} \delta$ is an epimouphism (see ((t)), the composite

$$
\operatorname{kn} \delta \xrightarrow{(t)} k^{\prime} \rightarrow D^{\prime}
$$

is zeno. Now according to $(* *), \cot \pi \beta=\operatorname{ken}\left(k^{\prime} \rightarrow D^{\prime}\right)$, and hence we have a unique map

$$
\partial: \operatorname{ken} \delta \rightarrow \operatorname{coten} \beta
$$

sinh that (t) is the composite $\operatorname{kn} \delta \xrightarrow{\partial} \operatorname{cokn} \beta \rightarrow k^{\prime}$.
Thus the connecting homomorphism as chanatinged by (1), (2) and (3) has been shoron to exist. It remains to show that it fits into asserted sequence. It cleanly suffices to pore the exactness of

$$
\operatorname{ken} r \rightarrow \operatorname{ken} \delta \xrightarrow{(t)} K^{\prime}
$$

For that cousides the exact commutature diagram:

Where the unlab-ded arrow (egg, $K \rightarrow C^{\prime}$) one obvious. By Problem: 6, HWI, we get an exalt sequence"

$$
\operatorname{ken}\left(k \rightarrow c^{\prime}\right) \rightarrow \operatorname{kn}(t) \rightarrow 0
$$

Using Rok 2 before statement, of $\pi \mathrm{Mm}$, we see that $\operatorname{ken}\left(k \rightarrow C^{\prime}\right)=\operatorname{ker} \gamma$. Using Rok 3 before the statement of. Them, we see that..

$$
\text { ever } r \rightarrow \operatorname{coten} \delta \xrightarrow{(t)} k^{\prime}
$$

is exact. This proves the Snake Lemma.

