HW7

Throughout this HW, X is a locally compact topological space. Recall that by a sheaf of commutative rings¹ \mathscr{A} on X, it is understood that the sections over any open set is a commutative ring with 1 and that the restriction maps respect the ring structure and map 1 to 1. A sheaf of \mathscr{A} -modules on X is a sheaf \mathscr{E} such that $\Gamma(U, \mathscr{E})$ carries the structure of a unital $\Gamma(U, \mathscr{A})$ -module for each open set U, and the restriction maps r_{UV} satisfy (for V an open subset of U):

$$r_{UV}(ae) = r_{UV}(a)r_{UV}(e) \qquad (a \in \Gamma(U, \mathscr{A}), e \in \Gamma(U, \mathscr{E})).$$

- (1) Here is a Urysohn type result for soft sheaves. Let \mathscr{A} be a soft sheaf of rings on X, K a compact subset of X and L a compact neighbourhood of K (this means that $K \subset L^{\circ}$). Show that there exists $\sigma \in \Gamma(X, \mathscr{A})$ such that $\sigma = 1$ in an open neighbourhood of K and $\sigma = 0$ on the complement of L° .
- (2) Let \mathscr{A} be a soft sheaf of rings on X and \mathscr{E} a sheaf of \mathscr{A} -modules. Show that \mathscr{A} is soft.
- (3) (Local Operators) Let \mathscr{S} and \mathscr{T} be sheaves on the locally compact space X and $D: \Gamma_c(X \mathscr{S}) \to \Gamma_c(X, \mathscr{T})$ a linear map which satisfies the following condition

 $\operatorname{Supp} D(f) \subset \operatorname{Supp} (f) \quad \text{for all } f \in \Gamma_c(X, \mathscr{S}).$

If \mathscr{S} is soft then show that there exists a unique morphism of sheaves $d: \mathscr{S} \to \mathscr{T}$ which induces D on the level of global sections.

(4) Let $i: Z \hookrightarrow X$ be the inclusion of a closed subspace. Define $i^!: \operatorname{Sh}_X \to \operatorname{Sh}_Z$ by

$$i^! \mathscr{F} = i^{-1} \Gamma_Z(\mathscr{F}) \qquad (\mathscr{F} \in \operatorname{Sh}_X).$$

Show that i' is right adjoint to i_* .

(5) For $h: W \to X$ the inclusion of a *locally closed* subset W of X into X, and a sheaf \mathscr{G} on W, define $h_!(\mathscr{G}) \in \operatorname{Sh}_X$ by

$$\Gamma(U, h_!\mathscr{G}) := \{ s \in \Gamma(W \cap U) \mid \text{Supp}(s) \text{ is closed relative to } U \}.$$

The restriction maps are the ones induced from $h_*\mathscr{E}$. Note that $h_!\mathscr{E}$ is a subsheaf of $h_*\mathscr{E}$ and let

$$h_! \mathscr{E} \to h_* \mathscr{E}$$

be the canonical map

- (a) Show that h_1 is exact.
- (b) Show that if $Z \xrightarrow{j} W$ is a locally closed inclusion then $(hj)_{!} = h_{!}j_{!}$.

¹Often shortened to *sheaf of rings* in this course.

(c) Show that $h_!$ has a right adjoint $h^!$. [Hint: Note that h can be written as the composite of a closed inclusion and an open inclusion. What is $h_!$ when h is closed?]