HW5

Use the notes entitled Čech complexes, tensor product of complexes, $\operatorname{Hom}^{\bullet}(A^{\bullet}, B^{\bullet})$, and the Koszul complex.

Definitions and Notations. Let A be a ring.¹ A non-zero divisor of M is an element $a \in A$ such that for $m \in M$ am = 0 only if m = 0. In other words a is a non-zero divisor of M (abbreviated to "NZD of M") if an only if the map $M \xrightarrow{a} M$ is injective. For any ideal I of A, we write IM for the submodule of M generated by elements of the form xm with $x \in I$ and $m \in M$. If $\mathbf{t} = (t_1, \ldots, t_d)$ is a sequence of elements in A we sometimes write $\mathbf{t}M$ or $(t_1, \ldots, t_d)M$ for IM where I is the ideal of A generated by the t_i , $i = 1, \ldots, d$.

(1) Let A be a ring, $\mathbf{t} = (t_1, \dots, t_d)$ a sequence of elements in A. For each $p = 0, \dots, d$ let $K_p^{\mathbf{e}}(\mathbf{t})$ be the free A-module of rank $\binom{d}{p}$ on the free generators $\{e_{i_1\cdots i_p} \mid 1 \leq i_1 < \cdots < i_p \leq d\}$, i.e.,

$$K_p^{\boldsymbol{e}}(\boldsymbol{t}) := \bigoplus_{1 \le i_1 < \dots < i_p \le d} Ae_{i_1 \cdots i_p}$$

with the e's forming a basis. Define a differential $d: K_p^e(t) \to K_{p-1}^e(t)$ by setting

$$d(e_{i_1\cdots i_p}) := \sum_{r=1}^p (-1)^{r-1} t_{i_r} e_{i_1\cdots \widehat{i_r}\cdots i_p}$$

Show that the Koszul complex $K_{\bullet}(t, A)$ is canonically isomorphic to the complex $K_{\bullet}^{e}(t)$. (In fact the isomorphism is so canonical that for the rest of the course we identify the two.)

- (2) Let A be a ring, $\mathbf{t} = (t_1, \ldots, t_d)$ and $\mathbf{f} = (f_1, \ldots, f_d)$ sequences of elements in A, with $f_i = a_i t_i$ for every *i*, for some elements $a_i \in A$. Show that we have a natural map of complexes $K_{\bullet}(\mathbf{t}, M) \to K_{\bullet}(\mathbf{f}, M)$ which on $e_{i_1 \cdots i_p}$ is given by multiplication by a suitable minor of the diagonal matrix $T = \text{diag}(a_1, \ldots, a_d)$.²
- (3) Let A be a commutative ring, $\mathbf{t} = (t_1, \dots, t_d)$ a sequence of elements in A, and M an A-module. Suppose t_1 is NZD of M and t_i is a NZD of $M/(t_1, \dots, t_{i-1})M$ for $i = 2, \dots, d$. Show that

$$H_i(K_{\bullet}(\boldsymbol{t}, M)) = 0 \qquad (i = 1, \dots, d)$$

and

$$H_0(K_{\bullet}(t, M) = M/tM.$$

¹Commutative of course.

²There is a more general statement that can be made for \boldsymbol{f} of the form $f_i = \sum_{i=1}^d a_{ij}t_j$. We leave that for another day.

[Hint: Use induction, and use the dual of problem 5(b) of HW 3, with trivial modifications. Check that

$$K_{\bullet}((t_1,\ldots,t_i,M)=K_{\bullet}(t_1,\ldots,t_{i-1},M)\otimes_A K_{\bullet}(t_i,A)$$

and note that the right side is the total complex of a third quadrant cochain double complex (i.e. third quadrant cohomology complex), if we "raise indices" and convert our chain complexes into cochain complexes.]

Definition. Sequences t with the property vis-a-vis M as in Problem 3 are called M-sequences, and A-sequences are called *regular sequences*. (Such sequences have an important role to play in algebraic geometry and commutative algebra. Problem 3 shows that if t is an M-sequence, then $K_{\bullet}(t, M) \to M/tM$ is a resolution of M/tM.)

(4) Let $t \in A$, with A a ring. Consider the direct system $(M_n, \mu_{m,n})$ where $M_n = A$ for every n, and $\mu_{m,n}$ is the map $a \mapsto t^{n-m}a$ $(m \leq n)$. Show that

$$\lim M_n = A_t$$

where, as usual, A_t is the localization of A at the multiplicative system $\{1, t, t^2, ...\}$.

Tensor products and direct limits. If A is a ring and $(N_{\lambda})_{\lambda \in \Lambda}$ is a direct system of A-modules then it is well-known and easy to prove (using the universal property of tensor products and the universal property of direct limits) that for every A-module A, there is a functorial isomorphism

$$\lim_{\overrightarrow{\lambda}} (M \otimes_A N_{\lambda}) \xrightarrow{\sim} M \otimes_A \left(\lim_{\overrightarrow{\lambda}} N \right).$$

Feel free to use this in what follows. Supply a proof for yourself if you haven't seen this before but don't submit such a proof to me. We will treat such canonical functorial isomorphisms as identities. The other important thing to remember is this. According to one of the HW problems you did, $\lim_{\lambda \to \infty}$ is an exact functor. An easy consequence is:

$$\varinjlim \, \mathrm{H}^n(C^{\bullet}_{\lambda}) \xrightarrow{\sim} \mathrm{H}^n(\varinjlim \, C^{\bullet}_{\lambda}) \qquad (n \in \mathbb{Z})$$

for a direct sequence of complexes of A=modules $(C^{\bullet}_{\lambda})_{\lambda \in \Lambda}$. Feel free to use this in what follows, and again, if you haven't seen such things before, provide for yourself the easy proof.

Stable Koszul complex. Let A be a ring, $\mathbf{t} = (t_1, \ldots, t_d)$ a sequence of elements in A, and M an A-module. The stable Koszul complex of M with respect to \mathbf{t} is

$$K^{\bullet}_{\infty}(\boldsymbol{t},\,M) := \lim_{\boldsymbol{n}} K^{\bullet}(\boldsymbol{t}^{\boldsymbol{n}},\,M).$$

Here the index $\mathbf{n} = (n_1, \ldots, n_d)$ varies in the set of *d*-tuples of non-negative integers, and $\mathbf{n} \leq \mathbf{m}$ if $n_i \leq m_i$ for $i = 1, \ldots, d$. The maps of the direct system of complexes are given by Problem 2. In more explicit terms, if $(n_1, \ldots, n_d) \leq (m_1, \ldots, m_d)$, then set $a_i = t_i^{m_i - n_i}$ and note that $t_i^{m_i} = a_i t_i^{n_i}$. By Problem 2 we therefore have a chain map

$$\varphi_{\bullet}(\boldsymbol{n},\,\boldsymbol{m}) \colon K_{\bullet}(\boldsymbol{t^n},\,A) \to K_{\bullet}(\boldsymbol{t^m},\,A),$$

and these maps give us the required direct system.

Other ad-hoc conventions. For a complex C^{\bullet} and an integer n, let $C^{\bullet}\{n\}$ denote the complex C^{\bullet} shifted to the "left" by n-units³, without the intervention of signs for the coboundary maps.⁴ For m an integer, $C^{\bullet}_{\geq m}$ is the brutally truncated complex which is zero in degrees less than m and equals C^p for $p \geq m$, with the coboundaries being the ones in C^{\bullet} for $p \geq m$.

(5) Let A be a ring, t = (t₁,...,t_d) a sequence of elements in A and M an A module. Let I = tA, the ideal of A generated by the t. Let X = Spec A, Z = V(I) the closed subset of X consisting of prime ideals containing I, and U_i = D(t_i), i = 1,...,d, the basic open sets in Spec A associated to t_i in the standard basis for the topology on Spec A. In other words for a fixed i, U_i is the set of prime ideals which do not contain t_i. Let U be the complement of Z in X.

$$U := X \setminus Z.$$

Note that $\mathfrak{U} = (U_i)_{i=1}^d$ is an open cover of U. Let $\mathscr{F} = \widetilde{M}$ be the sheaf on X corresponding to the A-module M. Show that

$$[K^{\bullet}_{\infty}(\boldsymbol{t}, M)]_{>1}\{1\} = C^{\bullet}(\mathfrak{U}, \mathscr{F}|_{U})$$

where the complex on the right is the Čech complex of $\mathscr{F}|_U$ with respect to the covering \mathfrak{U} .⁵

- (6) Let S = R[X₁,...,X_n] be the polynomial ring in n-variables over a ring R. Let U be the punctured spectrum of S punctured at the zero locus of the X's. In other words, U = Spec S \ V(X₁,...,X_n). (If R is a field, then U is obtained by puncturing the affine n-space Aⁿ_R at the origin.) Let U_i = D(X_i) and let 𝔄 = (U_i) be the resulting open cover of U. Show that the Čech cohomologies of 𝒞_U with respect to 𝔄 are zero for i ∉ {0, n - 1}.
- (7) In the above situation with $n \geq 2$ and with $W = \operatorname{Spec} S$, show that the restriction map $\Gamma(W, \mathcal{O}_W) \to \Gamma(U, \mathcal{O}_U)$ is an isomorphism. This means that every global function on U can be extended past the puncture in a unque way to give a global function on W. (Think about what goes wrong for n = 1).
- (8) With $n \geq 2$ as above, show that $\mathrm{H}^{n-1}(\mathfrak{U}, \mathcal{O}_U)$ is canonically isomorphic to the S-module E of inverse polynomials

$$\sum_{\mu_1 \ge 1, \dots, \mu_n \ge 1} a_{\mu_1, \dots, \mu_n} X_1^{-\mu_1} \cdots X_n^{-\mu_r}$$

³Which means that if n is negative, we shift to the right by -n units.

⁴Thus $C^{\bullet}\{n\}$ is not equal to $C^{\bullet}[n]$ unless n is even, but is isomorphic to it. This isomorphism, when n is odd is given by $C^p \xrightarrow{(-1)^p} C^p$.

 $^{^5 {\}rm \check{C}ech}$ complex in the sense of the notes I posted to go with this HW, i.e., the Hartshorne ${\rm \check{C}ech}$ complex.

with $a_{\mu} \in R$. These are formal expression. The *S*-module structure is given by (with μ 's positive integers and ν 's non-negative integers)

$$(X_1^{\nu_1} \cdots X_n^{\nu_n}) \cdot X_1^{-\mu_1} \cdots X_n^{-\mu_n} = \begin{cases} X_1^{-\mu_1 + \nu_1} \cdots X_n^{-\mu_n + \nu_n} & \text{if } \nu_i < \mu_i \ \forall \ i \\ 0 & \text{otherwise.} \end{cases}$$