HW5

Use the notes entitled \check{C} ech complexes, tensor product of complexes, $\operatorname{Hom}^{\bullet}\left(A^{\bullet}, B^{\bullet}\right)$, and the Koszul complex.

Definitions and Notations. Let A be a ring. ${ }^{1}$ A non-zero divisor of M is an element $a \in A$ such that for $m \in M a m=0$ only if $m=0$. In other words a is a non-zero divisor of M (abbreviated to "NZD of M ") if an only if the map $M \xrightarrow{a} M$ is injective. For any ideal I of A, we write $I M$ for the submodule of M generated by elements of the form $x m$ with $x \in I$ and $m \in M$. If $\boldsymbol{t}=\left(t_{1}, \ldots, t_{d}\right)$ is a sequence of elements in A we sometimes write $\boldsymbol{t} M$ or $\left(t_{1}, \ldots, t_{d}\right) M$ for $I M$ where I is the ideal of A generated by the $t_{i}, i=1, \ldots, d$.
(1) Let A be a ring, $\boldsymbol{t}=\left(t_{1}, \ldots, t_{d}\right)$ a sequence of elements in A. For each $p=$ $0, \ldots, d$ let $K_{p}^{e}(\boldsymbol{t})$ be the free A-module of $\operatorname{rank}\binom{d}{p}$ on the free generators $\left\{e_{i_{1} \cdots i_{p}} \mid 1 \leq i_{1}<\cdots<i_{p} \leq d\right\}$, i.e.,

$$
K_{p}^{\boldsymbol{e}}(\boldsymbol{t}):=\bigoplus_{1 \leq i_{1}<\cdots<i_{p} \leq d} A e_{i_{1} \cdots i_{p}}
$$

with the e 's forming a basis. Define a differential $d: K_{p}^{\boldsymbol{e}}(\boldsymbol{t}) \rightarrow K_{p-1}^{\boldsymbol{e}}(\boldsymbol{t})$ by setting

$$
d\left(e_{i_{1} \cdots i_{p}}\right):=\sum_{r=1}^{p}(-1)^{r-1} t_{i_{r}} e_{i_{1} \cdots i_{r} \cdots i_{p}} .
$$

Show that the Koszul complex $K_{\bullet}(\boldsymbol{t}, A)$ is canonically isomorphic to the complex $K_{\bullet}^{\boldsymbol{e}}(\boldsymbol{t})$. (In fact the isomorphism is so canonical that for the rest of the course we identify the two.)
(2) Let A be a ring, $\boldsymbol{t}=\left(t_{1}, \ldots, t_{d}\right)$ and $\boldsymbol{f}=\left(f_{1}, \ldots, f_{d}\right)$ sequences of elements in A, with $f_{i}=a_{i} t_{i}$ for every i, for some elements $a_{i} \in A$. Show that we have a natural map of complexes $K_{\bullet}(\boldsymbol{t}, M) \rightarrow K_{\bullet}(\boldsymbol{f}, M)$ which on $e_{i_{1} \cdots i_{p}}$ is given by multiplication by a suitable minor of the diagonal matrix $T=\operatorname{diag}\left(a_{1}, \ldots, a_{d}\right) .{ }^{2}$
(3) Let A be a commutative ring, $\boldsymbol{t}=\left(t_{1}, \ldots, t_{d}\right)$ a sequence of elements in A, and M an A-module. Suppose t_{1} is NZD of M and t_{i} is a NZD of $M /\left(t_{1}, \ldots, t_{i-1}\right) M$ for $i=2, \ldots, d$. Show that

$$
\mathrm{H}_{i}\left(K_{\bullet}(\boldsymbol{t}, M)\right)=0 \quad(i=1, \ldots, d)
$$

and

$$
\mathrm{H}_{0}\left(K_{\bullet}(\boldsymbol{t}, M)=M / \boldsymbol{t} M\right.
$$

[^0][Hint: Use induction, and use the dual of problem 5 (b) of HW 3, with trivial modifications. Check that
$$
K_{\bullet}\left(\left(t_{1}, \ldots, t_{i}, M\right)=K_{\bullet}\left(t_{1}, \ldots, t_{i-1}, M\right) \otimes_{A} K_{\bullet}\left(t_{i}, A\right)\right.
$$
and note that the right side is the total complex of a third quadrant cochain double complex (i.e. third quadrant cohomology complex), if we "raise indices" and convert our chain complexes into cochain complexes.]

Definition. Sequences \boldsymbol{t} with the property vis-a-vis M as in Problem 3 are called M-sequences, and A-sequences are called regular sequences. (Such sequences have an important role to play in algebraic geometry and commutative algebra. Problem 3 shows that if \boldsymbol{t} is an M-sequence, then $K_{\bullet}(\boldsymbol{t}, M) \rightarrow M / \boldsymbol{t} M$ is a resolution of M/tM.)
(4) Let $t \in A$, with A a ring. Consider the direct system $\left(M_{n}, \mu_{m, n}\right)$ where $M_{n}=A$ for every n, and $\mu_{m, n}$ is the map $a \mapsto t^{n-m} a(m \leq n)$. Show that

$$
\underset{n}{\lim } M_{n}=A_{t}
$$

where, as usual, A_{t} is the localization of A at the multiplicative system $\left\{1, t, t^{2}, \ldots\right\}$.

Tensor products and direct limits. If A is a ring and $\left(N_{\lambda}\right)_{\lambda \in \Lambda}$ is a direct system of A-modules then it is well-known and easy to prove (using the universal property of tensor products and the universal property of direct limits) that for every A-module A, there is a functorial isomorphism

$$
\underset{\lambda}{\lim }\left(M \otimes_{A} N_{\lambda}\right) \xrightarrow{\sim} M \otimes_{A}(\underset{\lambda}{\lim } N) .
$$

Feel free to use this in what follows. Supply a proof for yourself if you haven't seen this before but don't submit such a proof to me. We will treat such canonical functorial isomorphisms as identities. The other important thing to remember is this. According to one of the HW problems you did, $\underset{\rightarrow}{\lim }$ is an exact functor. An easy consequence is:

$$
{\underset{\lambda}{\lim }} \mathrm{H}^{n}\left(C_{\dot{\lambda}}^{\bullet}\right) \xrightarrow{\sim} \mathrm{H}^{n}\left(\underset{\lambda}{\left(\lim _{\lambda}\right.} C_{\dot{\bullet}}\right) \quad(n \in \mathbb{Z})
$$

for a direct sequence of complexes of $A=\operatorname{modules}\left(C_{\dot{\lambda}}\right)_{\lambda \in \Lambda}$. Feel free to use this in what follows, and again, if you haven't seen such things before, provide for yourself the easy proof.

Stable Koszul complex. Let A be a ring, $\boldsymbol{t}=\left(t_{1}, \ldots, t_{d}\right)$ a sequence of elements in A, and M an A-module. The stable Koszul complex of M with respect to \boldsymbol{t} is

$$
K_{\infty}^{\bullet}(t, M):=\underset{n}{\lim } K^{\bullet}\left(\boldsymbol{t}^{n}, M\right) .
$$

Here the index $\boldsymbol{n}=\left(n_{1}, \ldots, n_{d}\right)$ varies in the set of d-tuples of non-negative integers, and $\boldsymbol{n} \leq \boldsymbol{m}$ if $n_{i} \leq m_{i}$ for $i=1, \ldots, d$. The maps of the direct system of complexes are given by Problem 2. In more explicit terms, if $\left(n_{1}, \ldots, n_{d}\right) \leq\left(m_{1}, \ldots, m_{d}\right)$, then set $a_{i}=t_{i}^{m_{i}-n_{i}}$ and note that $t_{i}^{m_{i}}=a_{i} t_{i}^{n_{i}}$. By Problem 2 we therefore have a chain map

$$
\varphi_{\bullet}(\boldsymbol{n}, \boldsymbol{m}): K_{\bullet}\left(\boldsymbol{t}_{2}^{\boldsymbol{n}}, A\right) \rightarrow K_{\bullet}\left(\boldsymbol{t}^{\boldsymbol{m}}, A\right)
$$

and these maps give us the required direct system.
Other ad-hoc conventions. For a complex C^{\bullet} and an integer n, let $C^{\bullet}\{n\}$ denote the complex C^{\bullet} shifted to the "left" by n-units ${ }^{3}$, without the intervention of signs for the coboundary maps. ${ }^{4}$ For m an integer, $C_{\geq m}^{\bullet}$ is the brutally truncated complex which is zero in degrees less than m and equals C^{p} for $p \geq m$, with the coboundaries being the ones in C^{\bullet} for $p \geq m$.
(5) Let A be a ring, $\boldsymbol{t}=\left(t_{1}, \ldots, t_{d}\right)$ a sequence of elements in A and M an A module. Let $I=\boldsymbol{t} A$, the ideal of A generated by the \boldsymbol{t}. Let $X=\operatorname{Spec} A$, $Z=V(I)$ the closed subset of X consisting of prime ideals containing I, and $U_{i}=D\left(t_{i}\right), i=1, \ldots, d$, the basic open sets in $\operatorname{Spec} A$ associated to t_{i} in the standard basis for the topology on $\operatorname{Spec} A$. In other words for a fixed i, U_{i} is the set of prime ideals which do not contain t_{i}. Let U be the complement of Z in X.

$$
U:=X \backslash Z
$$

Note that $\mathfrak{U}=\left(U_{i}\right)_{i=1}^{d}$ is an open cover of U. Let $\mathscr{F}=\widetilde{M}$ be the sheaf on X corresponding to the A-module M. Show that

$$
\left[K_{\infty}^{\bullet}(\boldsymbol{t}, M)\right]_{\geq 1}\{1\}=C^{\bullet}\left(\mathfrak{U},\left.\mathscr{F}\right|_{U}\right)
$$

where the complex on the right is the Čech complex of $\left.\mathscr{F}\right|_{U}$ with respect to the covering \mathfrak{U}. ${ }^{5}$
(6) Let $S=R\left[X_{1}, \ldots, X_{n}\right]$ be the polynomial ring in n-variables over a ring R. Let U be the punctured spectrum of S punctured at the zero locus of the X 's. In other words, $U=\operatorname{Spec} S \backslash V\left(X_{1}, \ldots, X_{n}\right)$. (If R is a field, then U is obtained by puncturing the affine n-space \mathbb{A}_{R}^{n} at the origin.) Let $U_{i}=D\left(X_{i}\right)$ and let $\mathfrak{U}=\left(U_{i}\right)$ be the resulting open cover of U. Show that the Čech cohomologies of \mathscr{O}_{U} with respect to \mathfrak{U} are zero for $i \notin\{0, n-1\}$.
(7) In the above situation with $n \geq 2$ and with $W=\operatorname{Spec} S$, show that the restriction map $\Gamma\left(W, \mathscr{O}_{W}\right) \rightarrow \Gamma\left(U, \mathscr{O}_{U}\right)$ is an isomorphism. This means that every global function on U can be extended past the puncture in a unque way to give a global function on W. (Think about what goes wrong for $n=1$).
(8) With $n \geq 2$ as above, show that $\mathrm{H}^{n-1}\left(\mathfrak{U}, \mathscr{O}_{U}\right)$ is canonically isomorphic to the S-module E of inverse polynomials

$$
\sum_{\mu_{1} \geq 1, \ldots, \mu_{n} \geq 1} a_{\mu_{1}, \ldots, \mu_{n}} X_{1}^{-\mu_{1}} \cdots X_{n}^{-\mu_{n}}
$$

[^1]with $a_{\mu} \in R$. These are formal expression. The S-module structure is given by (with μ 's positive integers and ν 's non-negative integers)

$\left(X_{1}^{\nu_{1}} \cdots X_{n}^{\nu_{n}}\right) \cdot X_{1}^{-\mu_{1}} \cdots X_{n}^{-\mu_{n}}= \begin{cases}X_{1}^{-\mu_{1}+\nu_{1}} \cdots X_{n}^{-\mu_{n}+\nu_{n}} & \text { if } \nu_{i}<\mu_{i} \forall i \\ 0 & \text { otherwise } .\end{cases}$

[^0]: ${ }^{1}$ Commutative of course.
 ${ }^{2}$ There is a more general statement that can be made for \boldsymbol{f} of the form $f_{i}=\sum_{i=1}^{d} a_{i j} t_{j}$. We leave that for another day.

[^1]: ${ }^{3}$ Which means that if n is negative, we shift to the right by $-n$ units.
 ${ }^{4}$ Thus $C^{\bullet}\{n\}$ is not equal to $C^{\bullet}[n]$ unless n is even, but is isomorphic to it. This isomorphism, when n is odd is given by $C^{p} \xrightarrow{(-1)^{p}} C^{p}$.
 ${ }^{5}$ Čech complex in the sense of the notes I posted to go with this HW, i.e., the Hartshorne Čech complex.

