HW4

Throughout this course, rings will be assumed to have units, modules (left or right) will be unital, i.e., $1 \cdot m = m$ or $m \cdot 1 = m$, as the case may be. Ring homomorphisms will map unity to unity. For commutative rings, we do not distinguish between left and right modules. Two complexes A^{\bullet} and B^{\bullet} are (in this course) said to have *isomorphic cohomologies* if $H^i(A^{\bullet}) \simeq H^i(B^{\bullet})$ for every $i \in \mathbb{Z}$. By a *resolution* $M \to R^{\bullet}$ (respectively $S^{\bullet} \to M$) of M we mean a quasi isomorphism with $R^n = 0$ for n < 0 (resp. $S^n = 0$ for n > 0). Note that this is the same as giving an exact sequence:

$$0 \to M \xrightarrow{\epsilon} R^0 \to R^1 \to \dots \to R^n \to \dots$$

(resp. an exact sequence

 $\cdots \to P^{-n} \to \cdots \to P^{-1} \to P^0 \xrightarrow{\epsilon} M \to 0).$

The two cases are sometimes distinguished by the phrases "right resolution" and "left resolution". A resolution $M \to R^{\bullet}$ is an injective resolution if all the R^n are injective. Similarly one can talk about flat resolutions and projective resolutions. The latter are usually left resolutions.

- (1) Let A be a commutative ring, M, N A-modules, $P^{\bullet} \to M$ a projective resolution of M and $N \to E^{\bullet}$ an injective resolution of N. Show that the complexes $\operatorname{Hom}_{A}^{\bullet}(P^{\bullet}, N)$ and $\operatorname{Hom}_{A}^{\bullet}(M, E^{\bullet})$ have isomorphic cohomologies.
- (2) Let A be as above, and suppose

$$0 \to F' \to F \to F'' \to 0$$

is an exact sequence of flat A-modules. Show that the induced sequence

$$0 \to F' \otimes_A M \to F \otimes_A M \to F'' \otimes_A M \to 0$$

is exact for every A-module M. [Hint: Take a flat resolution of $Q^{\bullet} \to M$ and consider the resulting short exact sequence of complexes

$$0 \to F' \otimes Q^{\bullet} \to F \otimes Q^{\bullet} \to F'' \otimes Q^{\bullet} \to 0.$$

(3) Let A, M, and N be as above. Suppose and $P^{\bullet} \to M$ and $Q^{\bullet} \to N$ are flat resolutions of M and N respectively. Show that the complexes $P^{\bullet} \otimes_A N$ and $M \otimes_A Q^{\bullet}$ have isomorphic cohomologies.

Let X be a topological space, and $\mathfrak{U} = \{U_{\alpha}\}$ an open cover of X. For any open set V of X, set $\mathfrak{U} \cap V := \{U_{\alpha} \cap V\}$. Fix $p \in \{0, 1, 2, ..., n, ...\}$. If $C^{\bullet}(\mathfrak{U}, \mathscr{F})$ denotes the Cech complex of a sheaf of \mathscr{F} , let $\mathscr{C}^{p}(\mathfrak{U}, \mathscr{F})$ be the presheaf given by $V \mapsto C^{p}(\mathfrak{U} \cap V, \mathscr{F}|_{V})$, V open in X. It is easy to check that $\mathscr{C}^{\bullet}(\mathfrak{U}, \mathscr{F})$ is a sheaf and that the coboundaries in the Cech complex restrict well to open subsets, and hence we have a complex, the so called *sheaf Cech complex*, $\mathscr{C}^{\bullet}(\mathfrak{U}, \mathscr{F})$ as well as a map $\mathscr{F} \to \mathscr{C}^{p}(\mathfrak{U}, \mathscr{F})$. As in Mumford's unpublished book, we also have the alternating Cech complex $C^{\bullet}_{\mathrm{alt}}(\mathfrak{U}, \mathscr{F})$, and a corresponding *alternating sheaf Cech complex* $\mathscr{C}^{\bullet}_{\mathrm{alt}}(\mathfrak{U}, \mathscr{F})$.

- (4) Show that the natural map $C^{\bullet}_{\mathrm{alt}}(\mathfrak{U}, \mathscr{F}) \to C^{\bullet}(\mathfrak{U}, \mathscr{F})$ is a quasi-isomorphism.
- (5) Show that the natural map $\mathscr{F} \to \mathscr{C}^{\bullet}_{alt}(\mathfrak{U}, \mathscr{F})$ is a quasi-isomorphism. [Hint: Find a homotopy between the zero map and the identity map on the augumented complex

$$0 \to \mathscr{F} \to \mathscr{C}^0_{\mathrm{alt}}(\mathfrak{U}, \mathscr{F}) \to \mathscr{C}^1_{\mathrm{alt}}(\mathfrak{U}, \mathscr{F}) \to \cdots \to \mathscr{C}^n_{\mathrm{alt}}(\mathfrak{U}, \mathscr{F}) \to \ldots]$$