HW-II

(1) Show that if

$$0 \to (M'_{\lambda}) \to (M_{\lambda}) \to (M''_{\lambda}) \to 0$$

is an exact sequence direct systems, i.e. if at each level λ the corresponding sequence of abelian groups is exact, then the induced sequence

$$0 \to \varinjlim_{\lambda} M'_{\lambda} \to \varinjlim_{\lambda} M_{\lambda} \to \varinjlim_{\lambda} M''_{\lambda} \to 0$$

is an exact sequence of abelian groups. In other words, show that $\lim_{\xrightarrow{\lambda}}$ is an exact functor.

(2) Let X be a topological space, \mathscr{F} a sheaf on X, U an open subset of X, and $\mathfrak{U} = \{U_{\alpha}\}$ an open cover of U. For every α and β set $U_{\alpha\beta} := U_{\alpha} \cap U_{\beta}$. Show that the sequence of abelian groups

$$0 \to \mathscr{F}(U) \xrightarrow{\epsilon} \prod_{\alpha} \mathscr{F}(U_{\alpha}) \xrightarrow{d^0} \prod_{\alpha,\beta} \mathscr{F}(U_{\alpha\beta})$$

is exact, where ϵ is the "diagonal" map $s \mapsto (s|_{U_{\alpha}})_{\alpha}$ and the map d^0 is defined by $d^0((s_{\alpha})_{\alpha}) = (\sigma_{\alpha\beta})_{\alpha,\beta}$ where $\sigma_{\alpha\beta} = s_{\alpha}|_{U_{\alpha\beta}} - s_{\beta}|_{U_{\alpha\beta}}$.

For the remaining problems consider the following. Let X be a topological space, \mathscr{B} a basis for the topology on X with the extra condition that if B_1 and B_2 are in \mathscr{B} then so is $B_1 \cap B_2$ (e.g. the standard basis for the topology on Spec(A), where A is a commutative ring). Let F be a \mathscr{B} -sheaf (defined in class). For U an open set of X set

$$\mathscr{F}(U) := \ker \left[\prod_{\alpha} F(U_{\alpha}) \xrightarrow{d^{0}} \prod_{\alpha,\beta} F(U_{\alpha\beta}) \right]$$
(*)

where (U_{α}) is an open cover of U with $U_{\alpha} \in \mathscr{B}$ for every α and d^{0} is as in (2).

- (3) Show that $\mathscr{F}(U)$ does not depend on the open cover (U_{α}) of U, i.e. any two covers by members of \mathscr{B} give rise to isomorphic kernels as in (*).
- (4) Show that the assignment $U \mapsto \mathscr{F}(U)$ gives us a sheaf, which we will denote \mathscr{F} .
- (5) Show that we have an isomorphism of \mathscr{B} -sheaves $\mathscr{F}|_{\mathscr{B}} \xrightarrow{\sim} F$.
- (6) If G is a \mathscr{B} -sheaf and $\varphi \colon F \to G$ a map of \mathscr{B} -sheaves and if \mathscr{G} is the sheaf on X arising from G via the process outlined in (4) then show that there

is a map $\tilde{\varphi}\colon \mathscr{F}\to \mathscr{G}$ such that the diagram

$$\begin{array}{c|c} \mathscr{F}|_{\mathscr{B}} \xrightarrow{\sim} F \\ & \tilde{\varphi} \\ & & & & \\ \mathscr{G}|_{\mathscr{B}} \xrightarrow{\sim} G \end{array}$$

commutes, where the horizontal isomorphisms are as in (5).

(7) Show that

$$\mathscr{F}(U) \xrightarrow{\sim} \varprojlim F(B)$$

where the inverse limit is taken over B such that $B \in \mathscr{B}$ and $B \subset U$.