HW-I

As always, "map" is used for "morphism".

DIRECT LIMITS

Let (Λ, \prec) be a directed set. If $(M_{\lambda})_{\lambda \in \Lambda}$ and $(N_{\lambda})_{\lambda \in \Lambda}$ is a direct system of abelian groups, then $\operatorname{Hom}_{\Lambda}((M_{\lambda}), (N_{\lambda}))$ is the group of maps between direct systems, i.e. an element of the above set is a collection of maps $(\varphi_{\lambda} \colon M_{\lambda} \to N_{\lambda})$ compatible with the direct system structures on (M_{λ}) and (N_{λ}) . Every abelian group T will be regarded as a direct system, namely as the constant direct system. Thus the symbol $\operatorname{Hom}_{\Lambda}((M_{\lambda}), T)$ makes sense. In particular, by definition of a direct limit

$$\operatorname{Hom}_{\Lambda}((M_{\lambda}), T) \xrightarrow{\sim} \operatorname{Hom}(\lim_{\overline{\lambda \in \Lambda}} M_{\lambda}, T)$$

for every abelian group T, where the Hom on the right is in the category of abelian groups.

A sub-directed set $\Gamma \subset \Lambda$ is said to be *cofinal* with respect to Λ , if given $\lambda \in \Lambda$ there exists a $\gamma \in \Gamma$ with $\lambda \prec \gamma$. In what follows we fix a directed set Λ and a cofinal subset Γ of Λ .

(1) Show that if (M_{λ}) is a direct system, then there is an isomorphism

 $\operatorname{Hom}_{\Lambda}((M_{\lambda})_{\lambda \in \Lambda}, T) \xrightarrow{\sim} \operatorname{Hom}_{\Gamma}((M_{\gamma})_{\gamma \in \Gamma}, T)$

for every abelian group T.

(2) Show that

$$\lim_{\overline{\lambda \in \Lambda}} M_{\lambda} \xrightarrow{\sim} \lim_{\overline{\gamma \in \Gamma}} M_{\gamma}.$$

CATEGORY THEORY

Read the definitions of an exact, additive, and abelian categories from the notes handed out in class (downloadable from the website).

Definition 1. Let \mathscr{C} be an exact category. An exact sequence in \mathscr{C} is a sequence of maps in \mathscr{C}

$$\ldots C^{p-1} \xrightarrow{d^{p-1}} C^p \xrightarrow{d^p} C^{p+1} \xrightarrow{d^{p+1}} \ldots$$

such that $\operatorname{im} d^{p-1} = \ker d^p$, $p \in \mathbb{Z}$.

Definition 2. If \mathscr{C} is any category, its opposite category, \mathscr{C}° is the category whose objects are the objects of \mathscr{C} , and a morphism $A \to B$ in \mathscr{C}° is a morphism $B \to A$ in \mathscr{C} . A contravariant functor on \mathscr{C} is nothing but a functor on \mathscr{C}° .

(3) Suppose \mathscr{C} is an exact category. Show that \mathscr{C}° is also an exact category, where, if $\alpha \colon A \to B$ is a map in \mathscr{C}° corresponding to $\check{\alpha} \colon B \to A$ in \mathscr{C} , then ker α corresponds to coker $\check{\alpha}$, etc., etc.

(4) Let \mathscr{C} be an exact category. Consider the commutative diagram

with exact rows.

- (a) Show that ker $\alpha \to \ker \beta$ is the kernel for ker $\beta \to R$.
- (b) Show that $0 \to \ker \alpha \to \ker \beta \to \ker \gamma$ is exact.
- (c) What would be the "dual" statement to (4b)? In other words consider the statement (4b) in the exact category \mathscr{C}° and translate that statement back to \mathscr{C} , and tell me what the new statement is.
- (5) Let

be a commutative diagram in an exact category ${\mathscr C}$ such that the rows are exact, and the left column is exact.

- (a) Show that $\operatorname{coker} h \to \operatorname{coker} i$ is an isomorphism. (Use the last part of the previous problem is necessary.)
- (b) Show that $G' \to \operatorname{im} h \to \operatorname{im} i$ is exact. [Hint: Replace P, Q, R, P', Q', R' in 4 by ker $(H' \to I'), H', I', 0$, coker h, and coker i respectively, and use the result from (4b).]
- (c) Use the above to show that ker $h \to \ker i$ is surjective.
- (6) Let \mathscr{C} be an exact category. Suppose we have a commutative diagram with exact rows, with the column on the extreme left also exact:

Show that the induced sequence

 $\ker\beta\to \ker\gamma\to \ker\delta$

is also exact.

Using the above we will prove the **snake lemma** in class. This lemma says that if we have an exact commutative diagram in an exact category:

then there is an exact sequence:

$$\ker\beta\to \ker\gamma\to \ker\delta\to \operatorname{coker}\beta\to \operatorname{coker}\gamma\to \operatorname{coker}\delta$$

(7) Assume the snake lemma. Show that if we have a commutative diagram

with exact rows in an exact category such that α , β , δ , and ϵ are isomorphisms, then so is γ .

Sheaves

For a presheaf F on a topological space, we will use the notations we used in class. Thus $\mathscr{E}(F)$ is the topological space associated with $F, \pi : \mathscr{E}(F) \to X$ the natural map, F^+ the sheafification of F etc.

In what follows, X is a topological space, and F a presheaf on X.

- (8) Show that $\pi \colon \mathscr{E}(F) \to X$ is a local homeomorphism.
- (9) Show that if U is open in X and $s \in F(U)$, and for $x \in U$, s_x the germ of s at x,¹ then the map

$$\sigma_s \colon X \to \mathscr{E}(F) = \coprod_{x \in X} F_x$$

given by $x \mapsto s_x, x \in U$, is a continuous map.

Recall that the natural map $\theta(=\theta_F): F \to F^+$ is the map defined on every open set U of X by $s \mapsto \sigma_s$ with the notation as above.

(10) If F is a sheaf, show that θ_F is an isomorphism.

¹In other words, s_x is the image of $s \in F(U)$ in the stalk F_x under the natural map $F(U) \to F_x$ arising from the definition of a direct limit.

- (11) Let *E* be a topological space, $p: E \to X$ a local homeomorphism such that for every $x \in X$, $p^{-1}(x)$ is an abelian group. Define $E \times_X E$ to be the subspace of $E \times E$ consisting of pairs (e, e') with p(e) = p(e'). Suppose the two maps $E \times_X E \to E$, $(e, e') \mapsto e + e'$ and $E \to E$, $e \mapsto -e$ are continuous. Let $\mathscr{F} = \mathscr{F}_E$ be the sheaf of sections of $p: E \to X$, i.e., for an open subset *U* of *X*, $\mathscr{F}(U)$ is the abelian group of continuous maps from $\sigma: U \to E$ such that $p \circ \sigma = 1_U$. Show the following.
 - (a) For $x \in X$, there is a natural isomorphism of abelian $\psi_x \colon F_x \xrightarrow{\sim} p^{-1}(x)$.
 - (b) There is a natural isomorphism $\psi \colon \mathscr{E}(F) \xrightarrow{\sim} E$ such that $p \circ \psi = \pi$.