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We present a logarithmic time approximation algorithm for minimum vertex cover in bipartite
graph in the LOCAL-model.
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1 LOCAL-model
We work in the LOCAL-model for distributed computing. We are given an undirected graph
G = (V,E), which we can think of as a network. Each node has a processor and two processors can
communicate with each other if they are connected by an edge. All nodes run the same distributed
algorithm A. We will additionally assume the graph is connected.

Each node has a unique ID ID(v) ∈ {1, 2, · · ·nc}. The computation proceeds in synchronous
communication rounds. In each round, all nodes first perform some local computations and then
exchange (unbounded) messages with their neighbours. After some r communication rounds the
nodes stop and produce local outputs. Here r is the running time of A and the output of v is
denoted A(G, v). We ignore the local computation time when measuring complexity of algorithms.

Every computable function can be computed by an algorithm in O(|V |) time by an algorithm
where in the ith round each node sends its radius-i neighborhood to its neighbours. When this
algorithm terminates all the nodes have complete information about the graph and can run any
deterministic sequential algorithm locally.
Example 1. We demonstrate a simple algorithm in the local model for finding 3 coloring of a path
graph.

This algorithm runs in O(n) rounds but there exists algorithms for this problem which run in
O(log∗(n)) rounds.
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Algorithm 1: Two coloring of path
c = IDx

for ∞ do
Send c to all neighbours
Receive messages from all neighbours, let M be the set all messages from neighbours
if c /∈ 1, 2, 3 and c > max(M) then

c = min({1, 2, 3}rM)
end

end

2 Graph Decompositions
Definition 1. Let G = (V,E) be a graph. Any subset W ⊂ V is said to be a block. The strong
diameter of a block W , SD(W ) is the maximum diameter of any connected component of the graph
GW induced on W . The weak diameter WD(W ) is the maximum distance in G between any two
vertices in W . The difference between strong diameter and weak diameter is that while calculating
weak diameter we allowed to shortcut through vertices not in W . Clearly WD(W ) ≤ SD(W ).

A partition Π of V into λ disjoint blocks is called a λ-decomposition of G. SD(Π)(WD(Π)) is
the maximum strong (weak) diameter of any of its blocks.

We are interested in finding a graph decomposition into a small number of blocks each of a small
diameter.

Theorem 1. Let p ∈ (0, 1), G be an n vertex undirected graph and λ = log(n)

log
(

1
1−p

) . Then there is a

λ-decomposition of G with strong diameter at most 2log(n)

log
(

1
p

) .

Proof. For an integer r let Br(x) be the ball of radius r around x. We call an integer r a safe radius
if p|Br(x)| < |Br−1(x)|.

If 1, 2, · · · , r are all unsafe for x, then |Bj(x)| >
(

1
p

)j

∀j ∈ [r], in particular n ≥
(

1
p

)r

. In other

words, for every x there exists a safe radius not exceeding log(n)

log
(

1
p

) .

We construct λ-decomposition V1, V2, · · · one block at a time. Pick any vertex x1 of G1 = G
and let r1 be the smallest safe radius of x1. Add all the vertices of Br1−1(x) to V1 and define
G2 = G1 rBr1(x). Similarly construct xi, ri, Gi till we run out of vertices.

Having constructed V1, V2, · · · , Vi−1, define Gi = G r (V1, V2, · · · , Vi−1) and apply the process
to Gi to obtain Vi.

The construction of the blocks guarantees that its strong diameter is at most twice the largest
radius of any of the selected balls. Therefore,

SD(W ) ≤ 2log(n)

log(1/p)
.

Since, the ratio of |Brj−1(x)| to |Brj (x)| is at least p for each selected ball,the fraction of vertices
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of Gi not assigned to Vi is at most 1− p. Therefore, |Gi| ≤ (1− p)|Gi−1|. This implies

λ ≤ log(n)

log(1/(1− p)

We now give a randomized distributed algorithm for construction of the blocks which we call
Construct_Block.

Given a p and B, we call the following a truncated geometric distribution:

P (X = j) = pj(1− p)∀j ∈ {0, 1, 2, · · · , B − 1}

P (X = B) = pB .

First each vertex x selects an integer radius rx according to the truncated geometric distribution
(we will choose the p and B later). It then broadcasts (IDx, rx) to every node within distance rx of
it. Now each node z selects its center node, C(z) to be the highest ID whose broadcast it received.
If C(z) > d(z, C(z)), z joins the block else it waits for the next iteration of Construct_Block.

Lemma 1. If Construct_Block is applied to G with n vertices and S be the set of vertices comprising
the block selected:

1. WD(S) ≤ 2B

2. ∀x ∈ VG, probability that it belongs to S is at least p(1− pB)n.

Proof. 1. To prove the first part we just need to prove that for any connected subset T of S,
C(y) is the same vertex for all y ∈ T .
We give a proof of this fact by contradiction, say there exists adjacent vertices, y and z with
C(y) 6= C(z). We assume, WLOG, IDCy

> IDCz
. By the definition of S, rCy

> d(C(y), y).
Since y and z are neighbours, rCy

≥ d(C(y), z). Therefore z received the broadcast sent by
C(y). This contradicts the fact that C(z) < C(y).

2. We have,
P (y ∈ S) ≥

∑
d(z,y)<B

P (y ∈ S|C(y) = z)P (C(y) = z).

We define the following events

(a) Dz : rz ≥ d(z, y)

(b) Ez : rz > d(z, y)

(c) Fz: For every vertex w with ID higher z, rCw
< d(w, y).

We then have,

P (y ∈ S|C(y) = z) = P (Ez ∧ Fz|Dz ∧ Fz) = P (Ez ∧ Fz)/P (Dz ∧ Fz) = P (Ez)/P (Dz) = p.

Since, P (Dz) = pd(z,y), P (Ez) = pd(z,y)+1. Thus,

P (y ∈ S) ≥ p
∑

d(z,y)<B

P (C(y) = z) ≥ pP (d(C(y), y) < B) ≥ pP (rz 6= B, ∀z) ≥ p(1− pB)n.
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3 Distributed algorithm for minimum vertex cover
Theorem 2. Let ε > 0. An expected (1 + O(ε)) approximation of minimum vertex cover can be
found in time O

(
log(n)

ε

)
on graphs of maximum degree ∆ = O(1).

Proof. We run Construct_Block algorithm with p = 2−ε, B = 2log(n)
log(1/p) .

By Lemma 1, each component of GS , has a weak diameter at most B = 4log(n)
log(1/p) .

We also have,

lim
n→∞

(1− pB)n = lim
n→∞

(1− n−2)n
2×n−1

= lim
n→∞

e−n−1

= 1.

Therefore E[|S|] ≥ np(1 + o(1)) ≥ (1 + o(1))n(1− ε).

Now, let C be a component of GS , every node can discover the structure of C in time O
(

log(n)
ε

)
exploiting weak diameter. Therefore, every node of C can internally compute the same optimal
solution for vertex cover.

We then output as a vertex cover for G the union of vertex cover of each component of GS and
V r S. This results in a solution of size at most

OPTGS
+ εn ≤ OPTG + εn.

But we have OPTG ≥ |E|
∆ = Ω(n) for a connected graph. Therefore this is an expected (1 + O(ε))-

approximation of minimum vertex cover.
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