Linear Programming and Combinatorial Optimization Tutorial 2

January 18, 2019

1. Show how to compute the inverse of an $n \times n$ matrix. What is the time complexity?
2. Given a non-zero vector c, find a vector x such that $c^{T} x>0$. A point in $S=\{x: A x \leq b\}$ is said to be on the boundary if at least one of the inequalities is an equality i.e. $\exists i \quad A_{i} x=b_{i}$. Prove that in such a case, there is a direction vector y such that moving along the direction of y takes you outside S. That is, $x+\epsilon y \notin S$ for any $\epsilon>0$.
3. Let x_{0} be on the boundary. Let $A^{\prime} x_{0}=b^{\prime}$ be the equalities and $A^{\prime \prime} x_{0}<b^{\prime \prime}$ be the strict inequalities. Let rank of A^{\prime} be r. Then the set $\left\{y \mid A^{\prime} y=b^{\prime}, A^{\prime \prime} y<b^{\prime \prime}\right\}$ is called an $n-r$ face or $n-r$ dimensional face of S.
What is the maximum number of k dimensional faces possible as a function of m, n, k ?
4. During the execution of simplex algorithm, show how to detect if there is a degeneracy at a given extreme point.
5. In continuation to the above, show how a degeneracy can be eliminated without affecting the feasible region.
