Linear Programming and Combinatorial Optimization Tutorial 1

January 4, 2019

1. Find the rank of the following matrix by Gaussian elimination:

Γ	1	2	1	0]
	2	1	3	1
L	$\begin{array}{c} 1 \\ 2 \\ 4 \end{array}$	5	5	$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

- 2. Show that row operations (and hence Gaussian elimination) preserve the solutions to Ax = b.
- 3. Show that the set of solutions to Ax = 0 is a vector space.
- 4. Let x_1 and x_2 be solutions to Ax = b, $b \neq 0$. If $\alpha x_1 + \beta x_2$ is also a solution, what is the relation between α and β ?

Note: The relation derived above is called an affine combination.

- 5. The set of solutions to Ax = b in the above question form an *affine subspace*. Informally, an affine subspace is a translation of a subspace. Let A be an affine subspace of a vector space V. Show that, if A is a translation of a d-dimensional vector space, then there are d + 1 points in A that span whole of A. Here the span is considered as all affine combinations of the d + 1 points.
- 6. Write an LP for the following problems:
 - (a) **Matching:** Given a graph G = (V, E), a matching M is a subset of E such that no two edges in M share an end-point. The goal is to find a largest possible set M in G.
 - (b) Network flow: The input is a directed graph G = (V, E) with a source s and a sink t, along with a non-negative capacity c_e on each edge e. A flow in G is an assignment of a non-negative value f_e to each edge e such that
 - f_e does not exceed c_e ,
 - for each $v \in V \setminus \{s, t\}$, the sum of flows along incoming edges of v equals the sum of flows along outgoing edges of v. The goal is to maximize the total flow along incoming edges of t.
 - (c) Shortest path: Given a directed graph with positive integer weights on edges, and two designated vertices s, t, find a minimum weight path from s to t.
 - (d) Vertex cover: Given a graph G = (V, E), find a smallest possible set $S \subset V$ such that each edge has at least one end-point in S.