Assignment 1 : Complexity Theory^{*}

To be submitted by Feb 19th

- 1. Let S_1, S_2, f be space-constructible with $S_2(n) \ge log(n)$ and $f(n) \ge n$. Show that $NSPACE(S_1(n)) \subseteq SPACE(S_2(n))$ implies $NSPACE(S_1(f(n))) \subseteq SPACE(S_2(f(n)))$.
- 2. For any real number a > 0 and natural number k > 1, show that $\text{DTIME}(n^k) \subset$ DTIME $(n^k \log^a(n))$. (Note that one consequence of this result is that within P, there can be no "complexity gaps" of size $(logn)^{\Omega(1)}$.)
- 3. **PRIMES** is in NP \cap co-NP.
- 4. Show that $\mathbf{P} = \mathbf{NP} \implies \mathbf{EXP} = \mathbf{NEXP}$.
- 5. Prove that the problem of deciding whether a polynomial with integer coefficients has an integer solution is **NP** hard.
- 6. Show that 2-SAT is in NL.
- 7. Show that $NP \neq SPACE(n)$.
- 8. *L* is a sparse set if there is a polynomial *p* such that $|L \cap \{0,1\}^n| \le p(n) \forall n$. Prove that if a sparse set is **NP**-complete, then **P** = **NP**.
- 9. Suppose we pick a random language C by choosing every string to be in C with probability $\frac{1}{2}$. Prove that, with high probability, $\mathbf{P}^{\mathbf{C}} \neq \mathbf{NP}^{\mathbf{C}}$.
- 10. Show that there is a language $B \in \mathbf{EXP}$ such that $\mathbf{NP^B} \neq \mathbf{P^B}$.
- 11. Suppose $L_1, L_2 \in \mathbf{NP} \cap \mathbf{co} \mathbf{NP}$. Then show that $L_1 \oplus L_2$ is in $\mathbf{NP} \cap \mathbf{co} \mathbf{NP}$, where $L_1 \oplus L_2 = \{x : x \text{ is in exactly one of } L_1, L_2 \}$.

^{*}Questions collected by Abhiroop Sanyal