Assignment 2

March 29, 2017

1. Show that any 3 -regular 2 -edge-connected graph $G=(V, E)$ (not necessarily bipartite) has a perfect matching. A 2-edge-connected graph has at least two edges across any cut $(S, V \backslash S), S \subset V, S \neq \emptyset$.
2. Could there be several minimizers U in the Tutte-Berge formula? Either give a graph with several sets U achieving the minimum or prove that the set U is unique.
3. Unique set cover problem: We are given a set of n elements and a collection of m subsets of the elements. The goal is to pick out a number of subsets so as to maximize the number of uniquely covered elements, those that are contained in exactly one of the picked subsets. (Note that the cost or number of subsets picked is not important.)
(a) Consider the following algorithm: for some number $p<1$, the algorithm picks each subset independently with probability p. Assuming that every element is contained in exactly F subsets, compute the expected number of uniquely covered elements. For what value of p is this expectation maximized?
(b) Assuming that each element is contained in at least $F / 2$ subsets and at most F subsets, give a constant factor approximation to unique set cover using the algorithm in part 3a.
(c) Extend the algorithm to obtain an $O(\log m)$ approximation in general, without assumptions on the frequency of any element. (Hint: Try reducing this case to the case mentioned in part 3b.)
(d) Can you improve the approximation from part 3 c to a factor of $O(\log n)$? (Hint: Can you limit the number of sets under consideration to only n ?)
4. Suppose we run the Misra-Gries algorithm on two streams A_{1}, A_{2} and obtain a set of k (element, counter) pairs for each of them. The goal is to merge these k counters to get k counters for a single stream obtained by concatenation of A_{1}, A_{2}. Consider the following algorithm for this:
(a) Combine the two sets of counters, adding up the counters for common elements.
(b) If more than k counters remain, then let $c=$ value of $(k+1)$ th counter based on increasing order of value. Reduce each counter by c and delete all the pairs with non-positive counters.

Show that the resulting set of (element,counter) pairs satisfy the frequency estimate bound $f_{j}-\frac{m}{k} \leq$ $\hat{f}_{j} \leq f_{j}$ for the concatenated stream.

