Class Test 1
 Design and Analysis of Algorithms (January-April 2012)

1st February, 2012

For each algorithm, write a correctness proof and analyze the time complexity.

1. (6 marks) Arrange the following functions in nonincreasing order of asymptotic growth rate: $n^{\log \log n}, \log n, 2^{\sqrt{2} \log n},(\log n)^{\log n}$
2. (6 marks) Solve the following recurrences:
(a) $T(n)=T(9 n / 10)+n$ by Recursion tree method
(b) $T(n)=4 T(n / 2)+n^{2}$ by Master method
(c) By substitution method, show that the solution to $T(n)=2 T(n / 2+17)+n$ is $O(n \log n)$
3. (5 marks) Describe a $\Theta(n \log n)$ time algorithm that, given a set S of n integers and another integer x, determines whether there exist two elements in S whose sum is exactly x.
4. (5 marks) Describe an algorithm to merge $\frac{n}{k}$ sorted lists of k elements each.
5. (8 marks) Give an $O\left(n^{2}\right)$ time algorithm to find a longest monotonically increasing subsequence of a sequence of n numbers.
