Hints to Assignment 1

February 12, 2012

- 2-3 a. $\Theta(n)$, b. $\lceil \log k \rceil$ multiplications for x^k , hence $\Theta(n \log n)$ running time.
- 2-4 a. (2,1), (3,1), (8,6), (8,1), (6,1) b. Reverse sorted array $\frac{n(n-1)}{2}$ c. Running time = number of inversions d. In the merge routine, suppose array A is merged with B to get a new array C. Suppose i > 0 elements of A are yet uncopied. If, at this stage, and still the next element is copied from B, increase a counter by i. Keep the same global counter for all the calls to the merge routine.
- 3.1-1 $\max\{f(n), g(n)\} \le f(n) + g(n) \le 2 \max\{f(n), g(n)\}$
- 3.1-4 yes, no
- 3-2 $o, o, \text{none}, \omega, \Theta, \Theta$
- 3-4 F, F, T, F, T, T, F, T
- **4.1-6** $S(m) = 2S(m/2) + 1 = m = \log n$
- 4.2-4 $\Theta(n^2)$
- 4.2-5 $\Theta(n \log n)$
- **4.3-2** 48
- 4.4 c. $\Theta(n^2\sqrt{n})$, f. $\Theta(n)$, j. $\Theta(n\log\log n)$
- 6-2 a. child: (i-1)d+j parent: $\lceil \frac{i-1}{d} \rceil$, b. height = $\lceil \log_d(n(d-1)+1) \rceil 1$ (Yet to find out a better expression, if any.)
- 6-3 c. Move $\min\{Y[1,2],Y[2,1]\}$ to Y[1,1] position, replacing the earlier entry by ∞ . If Y[1,2] is moved, the first row is completely sorted and we have to deal with an $(m-1)\times n$ tableau. Similar case for Y[2,1]. Recurrence: $T(p)=T(p-1)+\Theta(1)=\Theta(p)$
 - d. Insert the new element at Y[m,n] and follow a procedure similar to c. above.
 - e. Insert all the elements into a $n \times n$ Young's tableau and perform n^2 extract-min operations as in c. above.

- f. Check the last element of the first row. Either the first row or the last column is eliminated.
- \bullet 8-6 d. Worst-case: Each of the lists contain alternate elements from the sorted list.