Assignment 3

October 19, 2018

- 1. Find out which of the following systems are groups, and if not, why not.
 - Set of all integers with subtraction operation.
 - Set of all real 2×2 matrices with non-zero determinant under matrix multiplication.
 - Set of all rational numbers with odd denominators under addition.
 - The set 1, -1 under multiplication.
- 2. List all the elements of S_3 , the set of permutations on 3 elements. Label all the permutations in S_3 in terms of the permutations $\pi = (1, 2)$ and $\psi = (1, 2, 3)$.
 - Is this an Abelian group? Justify.
 - Find the subgroups of S_3 and their left and right cosets. Which of the subgroups is(are) normal and why?
 - Give a homomorphism from S_3 to 1, -1. What is the kernel of this homomorphism?
- 3. Show that any group of order 3, 4, or 5 is Abelian.
- 4. Let G be a group of even order. Show that G has an element a such that o(a) = 2.
- 5. Consider a homomorphism $\phi: G \to G'$. Show the following:
 - The kernel of ϕ i.e. $Ker(\phi)$ is a normal subgroup of G.
 - The image of ϕ is a subgroup of G'.
 - The image of ϕ is isomorphic to the quotient group $G/Ker(\phi)$.
 - If ϕ is surjective, then G' is isomorphic to $G/Ker(\phi)$.
- 6. 1.2.19 from D.B.West
- 7. If G is a group in which $(a \cdot b)^i = a^i \cdot b^i$ for three consecutive integers i for all $a, b \in G$, show that G is abelian. Also show that, having this property for just two consecutive integers does not imply that G is abelian.
- 8. (a) Let G be the group of all 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

where a, b, c, d are integers modulo p, p a prime number, such that $ad - bc \neq 0$. G forms a group relative to matrix multiplication. What is o(G)?

- (b) Let *H* be the subgroup of *G* above defined by $H = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G \mid ad bc = 1 \}$. What is o(H)?
- 9. If $a \in G$, define $N(a) = \{x \in G \mid ax = xa\}$. Show that N(a) is a subgroup of G. It is called the *normalizer* or *centralizer* of a in G.

- 10. If H is of finite index in G prove that there is a subgroup N of G, contained in H, and of finite index in G such that $aNa^{-1} = N$ for all $a \in G$. Can you give an upper bound for the index of this N in G?
- 11. Let G be an abelian group and let G have elements of orders m and n. Prove that G has an element whose order is the least common multiple of m and n.
- 12. Let G be a group and A, B subgroups of G. If $x, y \in G$ define $x \sim y$ if y = axb for some $a \in A, b \in B$. Prove
 - (a) The relation \sim is an equivalence relation.
 - (b) The equivalence class of x is $AxB = \{axb \mid a \in A, b \in B\}$. (AxB is called a *double coset* of A and B in G.)
- 13. Prove that the two permutations (1,2) and $(1,2,\ldots,n)$ generate S_n which is the group of all permutations on n elements.
- 14. Let G be the group $\{e, a, b, ab\}$ of order 4, where $a^2 = b^2 = e$ and ab = ba. Find the permutations of S_4 corresponding to each element of G (called the permutation representation of G).