Assignment 3

October 19, 2018

1. Find out which of the following systems are groups, and if not, why not.

- Set of all integers with subtraction operation.
- Set of all real 2×2 matrices with non-zero determinant under matrix multiplication.
- Set of all rational numbers with odd denominators under addition.
- The set $1,-1$ under multiplication.

2. List all the elements of S_{3}, the set of permutations on 3 elements. Label all the permutations in S_{3} in terms of the permutations $\pi=(1,2)$ and $\psi=(1,2,3)$.

- Is this an Abelian group? Justify.
- Find the subgroups of S_{3} and their left and right cosets. Which of the subgroups is(are) normal and why?
- Give a homomorphism from S_{3} to $1,-1$. What is the kernel of this homomorphism?

3. Show that any group of order 3 , 4 , or 5 is Abelian.
4. Let G be a group of even order. Show that G has an element a such that $o(a)=2$.
5. Consider a homomorphism $\phi: G \rightarrow G^{\prime}$. Show the following:

- The kernel of ϕ i.e. $\operatorname{Ker}(\phi)$ is a normal subgroup of G.
- The image of ϕ is a subgroup of G^{\prime}.
- The image of ϕ is isomorphic to the quotient group $G / \operatorname{Ker}(\phi)$.
- If ϕ is surjective, then G^{\prime} is isomorphic to $G / \operatorname{Ker}(\phi)$.

6. 1.2.19 from D.B.West
7. If G is a group in which $(a \cdot b)^{i}=a^{i} \cdot b^{i}$ for three consecutive integers i for all $a, b \in G$, show that G is abelian. Also show that, having this property for just two consecutive integers does not imply that G is abelian.
8. (a) Let G be the group of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
where a, b, c, d are integers modulo p, p a prime number, such that $a d-b c \neq 0$. G forms a group relative to matrix multiplication. What is $o(G)$?
(b) Let H be the subgroup of G above defined by $H=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G \right\rvert\, a d-b c=1\right\}$. What is $o(H)$?
9. If $a \in G$, define $N(a)=\{x \in G \mid a x=x a\}$. Show that $N(a)$ is a subgroup of G. It is called the normalizer or centralizer of a in G.
10. If H is of finite index in G prove that there is a subgroup N of G, contained in H, and of finite index in G such that $a N a^{-1}=N$ for all $a \in G$. Can you give an upper bound for the index of this N in G ?
11. Let G be an abelian group and let G have elements of orders m and n. Prove that G has an element whose order is the least common multiple of m and n.
12. Let G be a group and A, B subgroups of G. If $x, y \in G$ define $x \sim y$ if $y=a x b$ for some $a \in A, b \in B$. Prove
(a) The relation \sim is an equivalence relation.
(b) The equivalence class of x is $A x B=\{a x b \mid a \in A, b \in B\}$. ($A x B$ is called a double coset of A and B in G.)
13. Prove that the two permutations $(1,2)$ and $(1,2, \ldots, n)$ generate \mathcal{S}_{n} which is the group of all permutations on n elements.
14. Let G be the group $\{e, a, b, a b\}$ of order 4 , where $a^{2}=b^{2}=e$ and $a b=b a$. Find the permutations of \mathcal{S}_{4} corresponding to each element of G (called the permutation representation of G).
