Assignment-2
 Theoretical Foundations of Computer Science

Instructor: Prajakta Nimbhorkar
Student: Pankaj Kumar

Problem1. We have seen that the hypercube graph Q_{n} has a perfect matching, counting problem is the following. How many number of perfect matchings are there in Q_{n}.

Problem2. We have seen combinatorial proofs in the class at several places, one was, the proof of the principle of inclusion exclusion formula. Give a combinatorial proof for the following :
a. $\binom{n}{k}=\frac{n}{k} \cdot\binom{n-1}{k-1} k \neq$,0 .
b. $(n-k) \cdot\binom{n}{k}=n\binom{n-1}{k}$

Problem3. Prove the following identities, algebraically or combinatorially :
a. $\Sigma_{k \leq n}\binom{m+k}{k}=\binom{m+n+1}{n}$.
b. $\Sigma_{0 \leq k \leq n}\binom{k}{m}=\binom{n+1}{m+1}, m, n \geq 0$.
c. $\Sigma_{k}\binom{n}{k} \cdot\binom{s}{n-k}=\binom{n+s}{n}$.
b. $\Sigma_{k}\binom{l}{m+k} \cdot\binom{s}{n+k}=\binom{l+s}{l-m+n}$.

Problem4. How many relations are there, defined on a set $A=\{1,2, \ldots, n\}$, which are of the type :
(a). Reflexive
(b) Symmetric
(c) antisymmetric
(d) asymmetric
(e) irreflexive
(f) reflexive and symmetric
(g) neither reflexive nor irreflexive.

Problem5. Prove that the number of ways to choose k points, from a collection of m points, and arranged them in a circular fashion, so that no two of them are consecutive, are $\frac{m}{m-k} \cdot\binom{m-k}{k}$.

Problem6. Considet the set $A=\{1,2, \ldots, n\}=[n]$, find the number of k-tuples $\left(A_{1}, A_{2}, \ldots, A_{k}\right)$, where $A_{i} \subseteq A$ and k, n are positive integers, such that
a. $A_{1} \cap A_{2} \cap \ldots \cap A_{k}=\Phi$.
b. $A_{1} \subseteq A_{2} \subseteq \ldots \subseteq A_{k}$.

Problem7. Find the number of subsets A_{i} of $A=[n]$, such that A_{i} contains no two consecutive elements of A.
Problem8. Find the number of n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where each $a_{i} \in\{0,1\}$, such that, $a_{1} \leq a_{2} \geq a_{3} \leq \ldots$

Problem9. Find the unique sequence of real numbers with $a_{0}=1, a_{2}, a_{3}, \ldots$ such that, $\Sigma_{k=0}^{n} a_{k} a_{n-k}=1 \forall n \in \mathbb{N}$.
Problem10. Remember the postman, from your childhood memory, he used to carry postcards, with envelopes. Here is the postman from my hometown, carrying n-square-envelopes of different sizes. I unpretentiously asked the following counting problem : In how many different ways, can they be arranged by inclusion. Obviously the postman is confused, and needs your help. Could you help him in counting? Here is a small instance : for $n=2$, let the envelpoes are labelled by A, B and A is larger than B, and $I \in J$ denotes that the envelope I is inside the envelope J, then there are following two ways to arrange the envelopes by inclusion, namely: 1. Φ, keep them seperately, $\mathbf{2} . B \in A$.

The Following seven problems are from the book by Robert-Tesman :
Problem11. From exercise 5.4 : Problem no. 18,19,20.
Problem12. From exercise 5.5 : Problem no.9.

Problem13. From exercise 6.2 : Problem no. 17.
Problem14. From exercise 6.2 : Problem no. 19.

Problem15. From exercise 6.2 : Problem no. 29.
Problem16. From exercise 6.2 : Problem no. 30
Problem17. From exercise 6.1 : Problem no. 32

Problem18. Consider a $n \times n$-grid. If you are only allowed to either move upward[i.e. from (i, j) to $(i, j+1)$] or rightward [i.e. from (i, j) to $(i+1, j)$] in one step, then how many number of paths are there from the point $(0,0)$ to (n, n). How many paths are there from $(0,0)$ to (n, n), which do not cross the diagonal points [i.e. does not go beyond points $(i, i)]$.

