Problem Set-1
 Theoretical Foundations of Computer Science

Instructor: Prajakta Nimbhorkar
Student: Pankaj Kumar

Problem1. Let G_{n} be the graph whose vertices are the permutations of $\{1,2, \ldots, n\}$, with two permutations $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ adjacent if they differ by interchanging a pair of adjacent entries. Prove that G_{n} is connected.

Problem2. The k-dimentional cube or hypercube Q_{k} is the simple graph whosse vertices are the k-tuples with entries in $\{0,1\}$ and whose edges are pairs of k-tuples that differ in exactly one position. Prove the following :
(a) $\left|V\left(Q_{k}\right)\right|=2^{k}$ and $\left|E\left(Q_{k}\right)\right|=k 2^{k-1}$.
(b) Q_{k} is bipartite.

Problem3. Let G be a simple graph on vertices $v_{1}, v_{2}, \ldots, v_{n}$ with m edges. Let $G-v_{i}$ have m_{i} edges for $i=1,2, \ldots, n$. Prove the following :
(a) $m=\frac{1}{n-2} \Sigma_{i=1}^{n} m_{i}$
(b) $\operatorname{deg}\left(v_{i}\right)=\left[\frac{1}{n-2} \sum_{j=1}^{n} m_{j}\right]-m_{i}$ for $i=1,2, \ldots, n$.

Problem4. Let G be a graph with no 3 -cycles, and let each vertex in G have degree at least k. What is the minimum number of vertices in G ? Can you give an example of such a graph with minimum possible vertices where there is no 3 -cycle and degree of each vertex is exactly k ?

Problem5. Let G be a simple graph such that degree of each vertex is at least 3. Prove that G has a cycle of even length. Also prove that G has a cycle with a chord [a chord of a cycle is an edge between non-consecutive vertices along the cycle].

Problem6. Every graph G with average degree d contains a subgraph H such that all vertices of H have degree at least $d / 2$ (with respect to H).

Problem7. Prove that every n-vertex graph with $n+1$ edges contains at least two (possibly overlapping) cycles. Does it always contain at least 3 ?

Problem8. Show that any tree T has at least $\Delta(T)$ leaves, where $\Delta(T)$ is the maximum degree in the graph.
Problem9. Show that a graph is bipartite if and only if every induced cycle has even length. (without using the other characterisation of bipartite graphs, we had seen in the class, and a constructive proof would be appreciated)

Problem10. Prove that every simple graph has a bipartite subgraph with edges $\geq|E| / 2$.
Problem11. Let G be a bipartite simple graph with n vertices and e edges. Give a tight lower bound on the number of edges in the complement graph \bar{G}.

Problem12. Show that a simple graph with at least two vertices, has at least two vertices that are not cut vertices.

Problem13. A simple graph with n vertices and k components has at most $(n-k)(n-k+1) / 2$ edges. [Hint : use and prove the alebraic identity : $\sum_{i=1}^{k} n_{i}^{2} \leq n^{2}-(k-1)(2 n-k)$]

Problem14. Show that if graph G has no even cycles then G can have $\leq 3 n / 2$ edges, where n is the number of vertices in graph G. Is this bound tight?

