Theoretical Foundations of Computer Science (Test 2)

Time: 1 hr $15~{\rm min}$

Questions:

- 1. If every element of a group G is its own inverse, show that G is abelian. 5 marks
- 2. Let G be a group of even order. Prove that there must be an element $a \neq e$ in G such that $a^2 = e$. 5 marks
- 3. Prove that the product of all non-zero elements of \mathbb{F}_p is -1. 5 marks
- 4. Prove that the set of real $n \times n$ matrices is a vector space. Which of the following are its subspaces and why? 8 marks
 - (a) Symmetric matrices $(A = A^T)$
 - (b) Invertible matrices
 - (c) Upper triangular matrices
- 5. Sterling numbers of second kind: Find the number of ways of distributing n distinguishable balls into k indistinguishable bins with no bin empty. 7 marks

Theoretical Foundations of Computer Science (Test 2)

Time: 1 hr $15~{\rm min}$

Questions:

- 1. If every element of a group G is its own inverse, show that G is abelian. 5 marks
- 2. Let G be a group of even order. Prove that there must be an element $a \neq e$ in G such that $a^2 = e$. 5 marks
- 3. Prove that the product of all non-zero elements of \mathbb{F}_p is -1. 5 marks
- 4. Prove that the set of real $n \times n$ matrices is a vector space. Which of the following are its subspaces and why? 8 marks
 - (a) Symmetric matrices $(A = A^T)$
 - (b) Invertible matrices
 - (c) Upper triangular matrices
- 5. Sterling numbers of second kind: Find the number of ways of distributing n distinguishable balls into k indistinguishable bins with no bin empty. 7 marks

Marks: 30

Marks: 30