5. Linear Combinations

We recalled the Euclidean Algorithm from last class: Let a and b be two integers (assume $b \neq 0$). Dividing b into a we get

$$
a=b q_{1}+r_{1}
$$

with $0 \leq r_{1}<b$. If r_{1} is not zero, we can divide r_{1} into b :

$$
b=r_{1} q_{2}+r_{2}
$$

with $0 \leq r_{2}<r_{1}$. If $r_{2} \neq 0$, we repeat the process:

$$
r_{1}=r_{2} q_{3}+r_{3}
$$

with $0 \leq r_{3}<r_{2}$. Eventually, we get down to a remainder of zero:

$$
r_{n-1}=r_{n} q_{n+1}+0
$$

The first homework question was, why do we eventually get to a remainder of zero? In other words, why must the Euclidean Algorithm terminate? Megan explained that since the remainders are getting smaller and are always nonnegative, eventually we must reach a remainder of zero. In other words, since we have a sequence of nonnegative integers $b>r_{1}>r_{2}>r_{3}>\cdots$, we must have $r_{1} \leq b-1, r_{2} \leq b-2, r_{3} \leq b-3$ so that the process must terminate in at most b steps.

The next homework problem was to explain why the last nonzero remainder in the Euclidean Algorithm is $\operatorname{gcd}(a, b)$. The answer is given by the theorem we proved on September 4th: If $a=b q+r$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$. Applying this to each step in the Euclidean Algorithm above, we have

$$
\begin{aligned}
\operatorname{gcd}(a, b) & =\operatorname{gcd}\left(b, r_{1}\right) \\
& =\operatorname{gcd}\left(r_{1}, r_{2}\right) \\
& =\operatorname{gcd}\left(r_{2}, r_{3}\right) \\
& \cdots \\
& \cdots \\
& =\operatorname{gcd}\left(r_{n}, 0\right) \\
& =r_{n}
\end{aligned}
$$

Example: Find $\operatorname{gcd}(141,120)$:

$$
\begin{aligned}
141 & =120(1)+21 \\
120 & =21(5)+15 \\
21 & =15(1)+6 \\
15 & =6(2)+3 \\
6 & =3(2)+0
\end{aligned}
$$

This means that

$$
\operatorname{gcd}(141,120)=\operatorname{gcd}(120,21)=\operatorname{gcd}(21,15)=\operatorname{gcd}(15,6)=\operatorname{gcd}(6,3)=\operatorname{gcd}(3,0)=3
$$

The Euclidean Algorithm provides a fast way to compute gcds of pairs of even very large integers.

We spent the rest of class discussing "linear combinations" of integers:
Definition: Let a, b be integers. Any expression of the form $a x+b y$ where $x, y \in \mathbb{Z}$ is called a linear combination of a and b.

Example: Let $a=4$ and $b=7$. Some of the linear combinations of 4 and 7 we found were:

$$
\begin{aligned}
0 & =4(0)+7(0) \\
4 & =4(1)+7(0) \\
7 & =4(0)+7(1) \\
11 & =4(1)+7(1) \\
15 & =4(2)+7(1) \\
1 & =4(2)+7(-1) \\
-3 & =4(-2)+7(1) \\
-4 & =4(-1)+7(0)
\end{aligned}
$$

We noted that since 1 is a linear combination of 4 and 7 then every integer is a linear combination of 4 and 7: Let m be an integer. Then multiplying the equation $1=4(2)+7(-1)$ by m, we have $m=4(2 m)+7(-m)$, showing that m is indeed a linear combination of 4 and 7.

We also remarked that if d is a linear combination of a and b then so is $-d$, just by multiplying the equation by -1 . So from now on, we will only be interested in positive integers which are linear combinations of a and b.

We considered another example:
Example: Let $a=8$ and $b=12$. Some of the linear combinations of 8 and 12 we found were:

$$
\begin{aligned}
8 & =8(1)+12(0) \\
12 & =8(0)+12(1) \\
20 & =8(1)+12(1) \\
4 & =8(-1)+12(1)
\end{aligned}
$$

In this example, we wondered what the smallest positive linear combination of 8 and 12 is. Since this quantity will come up again, we made a definition:

Definition: Let a, b be integers. We define $\operatorname{splc}(a, b)$ to be the smallest positive integer which is a linear combination of a and b.

In our first example, clearly $\operatorname{splc}(4,7)=1$ since 1 is a linear combination of 4 and 7 and 1 is the smallest positive integer. In our second example, the smallest positive integer anyone could write as a linear combination of 8 and 12 was 4 . Is this indeed the smallest? Or is it possible that 1,2 , or 3 is a linear combination? Hui pointed out that since $8 x$ and $12 y$ are even, and since the sum of two even integers is even, every linear combination of 8 and 12 must be even. Thus, $\operatorname{splc}(8,12)$ is either 2 or 4 . Nick gave an argument that 2 is not a linear combination. For, suppose $2=8 x+12 y$. Dividing by 2 , we get $1=4 x+6 y$. But this says
that 1 is the sum of two even numbers, which is clearly a contradiction. Hence, 2 cannot be a linear combination of 8 and 12 . We can thus safely conclude that $\operatorname{splc}(8,12)=4$.

At this point, Gabe was ready to make a conjecture!
Conjecture: (Gabe) Let a and b be integers (not both zero). Then $\operatorname{splc}(a, b)=\operatorname{gcd}(a, b)$.
We tested this conjecture on another example:
Example: Let $a=12$ and $b=30$. Find $\operatorname{splc}(12,30)$.
Answer: We quickly noted that $6=12(3)+30(-1)$, so $\operatorname{splc}(12,30) \leq 6$. How do we eliminate 1 through 5 as possibilities. Again, we noted that $12 x$ and $30 y$ are both even, so $\operatorname{splc}(12,3)$ must be even. However, we can eliminate all the numbers 1 through 5 simultaneously by noting that $12 x+30 y=6(2 x+5 y)$, so any linear combination of 12 and 30 is a multiple of 6 . Since 6 is clearly the smallest positive multiple of 6 , we conclude that $\operatorname{splc}(12,30) \geq 6$. Thus, $\operatorname{splc}(12,30)=6=\operatorname{gcd}(12,30)$.

The solution to this example suggested the following theorem.
Theorem: Let a and b be two integers (not both zero). Then any linear combination of a and b is a multiple of $\operatorname{gcd}(a, b)$. In particular, $\operatorname{splc}(a, b) \geq \operatorname{gcd}(a, b)$.

Proof: (Michael) Let $d=\operatorname{gcd}(a, b)$. Then $a=d p$ and $b=d q$ for some integers p and q. Let m be a linear combination of a and b. Then $m=a x+b y$ for some $x, y \in \mathbb{Z}$. Then $m=a x+b y=d p x+d q y=d(p x+q y)$, which shows d divides m. This proves the first statement. For the second statement, $\operatorname{since} \operatorname{splc}(a, b)$ is a linear combination of a and b, the first statement says that $\operatorname{splc}(a, b)$ is a multiple of d. Since the smallest positive multiple of d is d, this shows that $\operatorname{splc}(a, b) \geq d$.

Homework: Use the Euclidean algorithm to find the following greatest common divisors:
(1) $\operatorname{gcd}(7696,4144)$
(2) $\operatorname{gcd}(1721,378)$

