Theoretical Foundations of Computer Science (Midsem)

September 25, 2017

1. Let $G=(V, E)$ be a connected, simple, undirected graph (with no self-loops or parallel edges), and each vertex in G has degree exactly 4. Prove or disprove: For any partition of vertices of G into two non-empty sets S and $T=V \backslash S$, there are at least two edges that have one end-point in S and another end-point in T.

8 marks
2. A Hamiltonian path in a graph is a simple path that passes through all the vertices. Prove that every tournament has a Hamiltonian path.

10 marks
3. Let a_{1}, \ldots, a_{n} be integers. Show that some consecutive sum $a_{k}+a_{k+1}+\ldots+a_{m}$ is divisible by n. In other words, there exist $1 \leq k \leq m \leq n$ such that the sum $a_{k}+a_{k+1}+\ldots+a_{m}$ is divisible by n. 8 marks
4. Which of the following are posets? Justify your answer.

6 marks
(a) $(\mathbb{Z},=)$
(b) (\mathbb{Z}, \neq)
(c) Set of divisors of a given number $n \in \mathbb{N}$ under divisibility relation.
5. Given n matrices A_{1}, \ldots, A_{n}, find the number of ways in which the product $A_{1} \cdot A_{2} \cdot \ldots \cdot A_{n}$ can be computed. For example, for $n=3$, there are two ways: $\left(A_{1} \cdot A_{2}\right) \cdot A_{3}$ and $A_{1} \cdot\left(A_{2} \cdot A_{3}\right)$. Assume that the matrices have appropriate dimensions i.e. there are integers p_{1}, \ldots, p_{n+1} such that each A_{i} has dimension $p_{i} \times p_{i+1}$. 8 marks
6. Which of the following are groups? Justify your answer.

8 marks
(a) Set of 2×2 matrices over real numbers under multiplication.
(b) Set of integers k such that $1 \leq k \leq n$ and $\operatorname{gcd}(n, k)=1$.
(c) Union of two subgroups of a group
(d) Intersection of two subgroups of a group
7. Sterling numbers of second kind: Find the number of ways of distributing n distinguishable balls into k indistinguishable bins with no bin empty.

12 marks

