Theoretical Foundations of Computer Science (Midsem)

September 25, 2017

- 1. Let G = (V, E) be a connected, simple, undirected graph (with no self-loops or parallel edges), and each vertex in G has degree exactly 4. Prove or disprove: For any partition of vertices of G into two non-empty sets S and $T = V \setminus S$, there are at least two edges that have one end-point in S and another end-point in T. 8 marks
- 2. A *Hamiltonian path* in a graph is a simple path that passes through all the vertices. Prove that every tournament has a Hamiltonian path. 10 marks
- 3. Let a_1, \ldots, a_n be integers. Show that some consecutive sum $a_k + a_{k+1} + \ldots + a_m$ is divisible by n. In other words, there exist $1 \le k \le m \le n$ such that the sum $a_k + a_{k+1} + \ldots + a_m$ is divisible by n. 8 marks
- 4. Which of the following are posets? Justify your answer.
 - (a) $(\mathbb{Z}, =)$
 - (b) (\mathbb{Z}, \neq)
 - (c) Set of divisors of a given number $n \in \mathbb{N}$ under divisibility relation.
- 5. Given n matrices A_1, \ldots, A_n , find the number of ways in which the product $A_1 \cdot A_2 \cdot \ldots \cdot A_n$ can be computed. For example, for n = 3, there are two ways: $(A_1 \cdot A_2) \cdot A_3$ and $A_1 \cdot (A_2 \cdot A_3)$. Assume that the matrices have appropriate dimensions i.e. there are integers p_1, \ldots, p_{n+1} such that each A_i has dimension $p_i \times p_{i+1}$.
- 6. Which of the following are groups? Justify your answer. 8 marks
 - (a) Set of 2×2 matrices over real numbers under multiplication.
 - (b) Set of integers k such that $1 \le k \le n$ and gcd(n,k) = 1.
 - (c) Union of two subgroups of a group
 - (d) Intersection of two subgroups of a group
- 7. Sterling numbers of second kind: Find the number of ways of distributing n distinguishable balls into k indistinguishable bins with no bin empty. 12 marks

6 marks