Theoretical Foundations of Computer Science (Endsem)

November 27, 2017

1. Prove that, for every graph G, either G or \bar{G} is connected. Here \bar{G} is the complement of G, obtained by replacing every edge of G with a non-edge and vice versa.

6 marks
2. Show that every graph with an average degree d has an independent set of size $\frac{n}{2 d}$. A set of vertices S is termed as an independent set if no two vertices in S have an edge between them. 10 marks
(Hint: Form a set S by randomly picking vertices and then eliminate all the edges from S. Using probabilistic method, show the existence of an independent set of given size.)
3. Let G be a group. Prove that if G has no non-trivial subgroup, then G must be finite of prime order. 10 marks
4. Consider the polynomial ring $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ over a field \mathbb{F}. A polynomial in R is said to be homogeneous of degree d if all the monomials in the polynomial have total degree d. For example, $3 x_{1}^{2} x_{2}+x_{1} x_{2} x_{3}+x_{2}^{3}$ is a homogeneous polynomial of degree 3 .
Show that the homogeneous polynomials of degree d form a vector space. What is its dimension? 10 marks
5. Let X_{1}, X_{2} be two independent random variables uniformly distributed over a finite field \mathbb{F}. Define a set of random variables $Y_{u}, u \in \mathbb{F}$ as $Y_{u}=X_{1}+u X_{2}$. Show that $\left\{Y_{u} \mid u \in \mathbb{F}\right\}$ are pairwise independent. 10 marks
6. Let X have possible values x_{1}, \ldots, x_{n}. Prove that, for a prefix-free binary encoding of these values using lengths k_{1}, \ldots, k_{n}, it is necessary and sufficient that $\sum_{i=1}^{n} \frac{1}{2^{k_{i}}} \leq 1$.

8 marks
7. Let G be a simple, triangle-free undirected graph such that each pair of non-adjacent vertices has exactly two common neighbors. Show that G is regular i.e. each vertex of G has the same degree. 8 marks
8. Let G be a graph with only one maximum matching M. Show that M must be a perfect matching. 8 marks

