
Practice Sheet 2 Solutions

28th August, 2016

Dynamic Programming

1. Question: Given an array of n positive integers a1, · · · , an, give an algorithm to find the
length of the longest subsequence ai1 , · · · , aik where 1 ≤ i1 < i2 < · · · < ik ≤ n such that
each term divides the next term, that is aij divides aij+1

,∀1 ≤ j < k.

Answer:

A subsequence ai1 · · · aik will be called a dividing subsequence if 1 ≤ i1 < i2 < · · · < ik ≤ n
and aij divides aij+1 ,∀1 ≤ j < k. Hence it is required to find the length of the longest
dividing subsequence.

Let dp(j) denote the length of the longest dividing subsequence ending at aj . Clearly,
dp(1) = 1.

Suppose we want to calculate dp(j + 1).

Consider the set s(j + 1) = {x : x < j + 1, ax|aj+1}. If s(j + 1) = ∅, then any dividing
subsequence ending at j+1 must consist of only aj+1 and so dp(j + 1) = 1.

Suppose s(j + 1) is not empty. Hence any longest dividing subsequence ending at j + 1 has
length atleast 2.

We observe that if x ∈ s(j + 1), then any longest dividing subsequence ending at x can be
extended to a dividing subsequence ending at j+1. Also any longest dividing subsequence
ending at j+1, must have the last but one element to belong to the set s(j + 1).

It follows that, any longest dividing subsequence ending at j+1 must be of the form
ai1 , · · · , aim , ax, aj+1 where ai1 , · · · , aim , ax is a longest dividing subsequence of x and
ax ∈ s(j + 1)

Therefore, we get the recurrence,

dp(j + 1) = 1 if, s(j + 1) = ∅

dp(j + 1) = max{1 + dp(x) : x ∈ s(j + 1)} if, s(j + 1) 6= ∅

The required solution is max{dp(j) : 1 ≤ j ≤ n}.
Pseudocode:

We give an iterated version of the pseudocode. Here dp[] is an array which at the jth
postition contains the length of the longest dividing subsequence ending at j.

1



Algorithm 1 Iterative - Dividingsubseq:

1: dp[0] = 1
2: ma = 1
3: for i = 2 to n do
4: dp[i] = 1
5: for j = 1 to (i-1) do
6: if aj divides ai then
7: dp[i] = max(dp[i],1+dp[j])
8: end if
9: end for

10: ma = max(ma,dp[i])
11: end for

return ma

Lines 1 and 2 of the algorithm initialize the conditions. Lines 3-9 compute dp(i) for all i,
2 ≤ i ≤ n. Line 10 compares the current maximum with the value of dp[i] and updates it
if necessary.

The first loop goes through n iterations and in each loop O(n) steps are carried out. Hence
the running time of the algorithm is O(n2).

2. Question: Given a n×m grid of integers where the rows are numbered from 1 to n and
the columns are numbered from 1 to m,your task is to answer queries of the form (i,j,k,l)
for different 1 ≤ i, j ≤ n and 1 ≤ k, l ≤ n. The answer to such a query is the sum of the
numbers in the sub-grid bounded by the i,j th rows and the k,l th columns. Preprocess the
grid so as to efficiently answer each query in constant time.

Answer:

We will assume that the numbers are given in a 2-d array a[][].

Let dp(x, y) =
∑x

i=1

∑y
j=1 a[i][j]. dp(x,y) is the sum of all the numbers in the sub-grid

bounded by the 1st,xth rows and 1st,yth columns. Clearly,

dp(1, 1) = a[1][1]

∀y > 1, dp(1, y) =

y∑
j=1

a[1][j] = a[1][y] + dp(1, y − 1)

∀x > 1, dp(x, 1) =

x∑
i=1

a[i][1] = a[x][1] + dp(x− 1, 1)

2



Let x > 1, y > 1.

dp(x + 1, y + 1) =

x+1∑
i=1

y+1∑
j=1

a[i][j]

=

x+1∑
i=1

y∑
j=1

a[i][j] +

x+1∑
i=1

a[i][y + 1]

=

x+1∑
i=1

y∑
j=1

a[i][j]−
x∑

i=1

y∑
j=1

a[i][j] +

x∑
i=1

y∑
j=1

a[i][j] +

x+1∑
i=1

a[i][y + 1]

=

x+1∑
i=1

y∑
j=1

a[i][j]−
x∑

i=1

y∑
j=1

a[i][j] +

x∑
i=1

y+1∑
j=1

a[i][j] + a[x + 1][y + 1]

= dp(x + 1, y) + dp(x, y + 1)− dp(x, y) + a[x + 1][y + 1]

Now suppose we are given a query of the form (i,j,k,l).

Let r1 = min(i, j), c1 = min(k, l), r2 = max(i, j), c2 = max(k, l)

The required answer is
∑r2

x=r1

∑c2
y=c1 a[x][y]. Let S =

∑r2
x=r1

∑c2
y=c1 a[x][y].

S =

r2∑
x=r1

c2∑
y=c1

a[x][y]

=

r2∑
x=r1

c2∑
y=c1

a[x][y] +

r1∑
x=1

c2∑
y=1

a[x][y]−
r1∑
x=1

c2∑
y=1

a[x][y]

=

r2∑
x=r1

c2∑
y=c1

a[x][y] +

r1∑
x=1

c2∑
y=1

a[x][y] +

r2∑
x=1

c1∑
y=1

a[x][y]−
r1∑
x=1

c2∑
y=1

a[x][y]−
r2∑
x=1

c1∑
y=1

a[x][y]

=

r2∑
x=r1

c2∑
y=c1

a[x][y] +

r1∑
x=1

c2∑
y=1

a[x][y] +

r2∑
x=1

c1∑
y=1

a[x][y]−
r1∑
x=1

c1∑
y=1

a[x][y] +

r1∑
x=1

c1∑
y=1

a[x][y]−
r1∑
x=1

c2∑
y=1

a[x][y]

−
r2∑
x=1

c1∑
y=1

a[x][y]

Notice that the first four terms combined is dp(r2,c2). The other three terms are dp(r1,c1),
dp(r1,c2), dp(r2,c1) respectively. Hence the equation becomes,

S = dp(r2, c2)− dp(r1, c2)− dp(r2, c1) + dp(r1, c1)

Hence every query can be answered in constant time if the we preprocess the dp function
for each i, j.

Pseudocode:

We provide an iterative version of the algorithm. Here dp[][] is a 2-d array, where dp[i][j]
stores the value

∑x
i=1

∑y
j=1 a[i][j] and Q is the number of queries.

3



Algorithm 2 Prefix Sums:

1: dp[1][1] = a[1][1]
2: for i = 2 to n do
3: dp[i][1] = a[i][1] + dp[i-1][1]
4: end for
5: for j = 2 to m do
6: dp[1][j] = a[1][j] + dp[1][j-1]
7: end for
8: for i = 2 to n: do
9: for j = 2 to m: do

10: dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i][j] + a[i][j]
11: end for
12: end for
13: for g = 1 to Q: do
14: (i,j,k,l) is the query
15: r1 = min(i,j)
16: r2 = max(i,j)
17: c1 = min(k,l)
18: c2 = max(k,l)
19: Output (dp[r2][c2] - dp[r1][c2] - dp[r2][c1] + dp[r1][c1])
20: end for

Lines 1-7 initialize the necessary base cases for the recurrence. Lines 8-12 calculate dp[i][j]
∀i, j ≥ 2. Lines 13-20 processes the given query and returns the value of the query in
constant time.

Lines 2-4 and 5-7 each have one for loop running n-1 and m-1 iterations respectively and
hence each of them take O(n) and O(m) time respectively. In Lines 8-12 there are n-1
iterations of the outer loop and each iteration has (m-1) iterations on the inner loop which
take constant time to work out. Hence calculating dp[i][j] forall i,j takes O(mn) time.

Lines 13-20 have one for loop having Q iterations with each iteration taking constant time
and hence answering Q queries takes O(Q) time.

Hence the overall complexity is O(mn + Q).

3. Question: Given an array of n integers a1, · · · an. You start with a score of 0. In each
step, you are allowed to choose an index i different from 1 and n and delete ai from the
array. The value of ai−1 × ai+1 gets added to your score. After deleting ai, the new array
is of length n-1 and is a1, · · · , ai−1, ai+1, · · · , an. The process stops when you have only 2
elements remaining. Compute the maximum possible score you can get.

Answer:

Let ai, · · · , aj denote the subarray from the ith to jth elements of the original array. Suppose
we want to find the maximum score attainable restricted to this subarray.

Observation 1: Suppose ak is the last element to be removed. Then, the problem reduces
to finding the maximum score in ai, · · · , ak and ak, · · · , ai and adding a cost of ai × aj to
the combined maximum score.

Let dp(i,j) denote the maximum score from the subarray ai, · · · , aj where ai and aj are
not removed.

Clearly, dp(i, i) = 0

4



Suppose j > i.

By our first observation, dp(i, j) = max{dp(i, k) + dp(k, j) + ai × aj : i < k < j}
Clearly, the required answer for our original question is dp(1,n).

Pseudocode:

We give an iterarive version of the alogrithm where the iteration is done over the length of
the subarrays. dp[][] is an array storing the maximum score for the subarray ai, · · · , aj .

Algorithm 3 Comp-Opt:

1: for i = 1 to n do
2: dp[i][i] = 0
3: end for
4: for i = 1 to n do
5: for j = 1 to n-1 do
6: if i + j < n then
7: dp[i][i+j] = 0
8: for k = i+1 to i+j-1 do
9: dp[i][i+j] = max(dp[i][k]+dp[k][i+j]+ a[i]× a[j], dp[i][i+j])

10: end for
11: end if
12: end for
13: end for

return dp[1][n]

Lines 1-3 initialize the base cases. Lines 4-13 implement the given recurrence by iterating
over the length of the intervals. Clearly, the algorithm takes O(n3) time.

4. Question: Given a set S of n distinct positive integers a1, · · · , an and a positive integer M,
give an algorithm to compute the number of subsets T of S such that the sum of elements
of T is exactly M.

Answer:

Let dp(x,i) denote the number of subsets of {1 · · · i} whose sum is exactly x.

Since the numbers are distinct and positive, the number 0 if it occurs in the array occurs
only once and hence we have,

dp(0, i) = 0, if aj 6= 0,∀j, 1 ≤ j ≤ i

dp(0, i) = 1, if ∃j, 1 ≤ j ≤ i such that aj = 0

Also dp(x, 1) = 1 if x = a1 and 0 otherwise.

Now let x ≥ 0, i > 1. Consider the set of all subsets of {1 · · · i} whose sum is exactly x.
Let this set be S. If S = ∅, then dp(x,i) = 0. Suppose S 6= ∅.
Let s be a subset of {1, · · · , i} whose sum is exactly x.

Clearly, i /∈ s ⇐⇒ s is a subset of {1, · · · , i− 1} whose sum is exactly x.
Also, i ∈ s ⇐⇒ s is a subset of {1, · · · , i− 1} whose sum is exactly x-a[i].

Therefore, we get the recurrence, dp(x, i) = dp(x, i− 1) + dp(x− a[i], i− 1).

5



Pseudocode:

dp[][] is a 2-d array where dp[i][j] stores the number of subsets of {1, · · · , j} whose sum is
exactly i. We also assume that the numbers are given in an array a[].

Algorithm 4 Subset-Sum:

1: f = 0
2: for i = 1 to n: do
3: if a[i] = 0 then
4: f = 1
5: end if
6: dp[0][i] = f
7: end for
8: for j = 1 to M do
9: if j == a[1] then

10: dp[j][1] = 1
11: else
12: dp[j][1] = 0
13: end if
14: end for
15: for i = 2 to M do
16: for j = 2 to n do
17: dp[i][j] = dp[i][j-1]
18: if i ≥ a[j] then
19: dp[i][j] = dp[i][j] + dp[i-a[j]][j-1]
20: end if
21: end for
22: end for

return dp[M][n]

Lines 1-10 initialize the base cases of the recurrence. Lines 11-18 fill up the other entries
of the table as given by the recurrence.

It is clear that computing the base cases takes O(n + M) time. In lines 11-18 there are
M-1 iterations of the outer loop and each such iteration takes O(n) time. Hence the overall
complexity of computing the other entries takes O(Mn) time.

Hence the overall complexity is O(Mn). This is pseudopolynomial in terms of M since it is
linear in terms of M, but is exponential in terms of the number of bits required to represent
M.

5. Question: Given an array of n distinct integers a1, · · · , an, give an algorithm to find the
longest continuous mountain present in the array, that is, the longest sub-array ai, · · · , aj
such that there exists an index k, i ≤ k ≤ j such that the sequece ai, · · · , ak is strictly
increasing and the sequence ak, · · · , aj is strictly decreasing. A sub-array is a contiguous
portion of the array.

6



Answer:

In this solution, whenever we refer to mountains we always mean continuous mountains.

Call a mountain, a proper mountain if it is neither a strictly increasing sequence nor a
strictly decreasing sequence.

Clearly, any proper mountain starting at ai and ending at aj consists of atleast three
elements and contains a k, i < k < j such that ai, · · · , ak is strictly increasing and ak, · · · aj
is strictly decreasing.

Let dp(i) denote the length of the longest mountain ending at ai ∀i, 1 ≤ i ≤ n. Let
par(i) = i − dp(i) + 1. (If M is the longest mountain ending at ai, then par(i) is the
starting point of M). It is clear that there cannot be more than one longest mountain
ending at ai.

Clearly, dp(1) = 1.

Suppose j > 1. Consider the longest mountain M ending at aj . Clearly M always contains
atleast two elements, since aj−1, aj is always a mountain.

So now the problem reduces to finding the optimal mountain among all the mountains
ending at aj−1 which can be extended to a mountain ending at aj .

We consider two cases:

Case i): aj−1 < aj

If the sequence apar(j−1), · · · , aj−1 is a strictly increasing sequence, then clearly, apar(j−1), · · · , aj
is the longest mountain ending at aj .

Suppose the sequence apar(j−1), · · · , aj−1 is a strictly decreasing sequence. Clearly, aj−1, aj
is the only mountain ending at aj and hence the longest mountain ending at aj .

If the sequence apar(j−1), · · · , aj−1 is a proper mountain, then ∃k such that par(j − 1) <
k < j − 1 and apar(j−1) · · · ak is a strictly increasing sequence and ak · · · aj−1 is a strictly
decreasing sequence. Therefore, aj−1, aj is the only mountain ending at aj and hence the
longest mountain ending at aj .

Case ii): aj−1 > aj

Suppose the sequence apar(j−1), · · · , aj−1 is a strictly increasing sequence. Clearly, apar(j−1), aj
is the the longest mountain ending at aj .

If the sequence apar(j−1), · · · , aj−1 is a strictly decreasing sequence, then clearly, apar(j−1), · · · , aj
is the longest mountain ending at aj .

If the sequence apar(j−1), · · · , aj−1 is a proper mountain, then ∃k such that par(j − 1) <
k < j − 1 and apar(j−1) · · · ak is a strictly increasing sequence and ak · · · aj−1 is a strictly
decreasing sequence. Hence, apar(j−1), · · · , aj is a proper mountain ending at aj and no
other mountain ending at aj can have a length greater than the length of this mountain.
Hence apar(j−1), · · · , aj is the length of the longest mountain ending at aj .

These observations immediately give rise to an algorithm.

7



Pseudocode:

In the following pseudocode, dp[] is an array, where dp[i] stores the length of the longest
mountain ending at i. a[] is an array which stores the numbers and n is the size of the
array. ma is the variable which stores the length of the longest mountain. mark[] is an
array, where

i) mark[i] = -1 if the longest mountain ending at i is strictly decreasing
ii) mark[i] = 1 if the longest mountain ending at i is strictly increasing
iii) mark[i] = 0 if the longest mountain ending at i is a proper mountain

By convention, we take mark[1] = 1

Algorithm 5 Longest-Mountain:

1: dp[1] = 1
2: mark[1] = 1
3: if n is equal to 1 then
4: return 1
5: end if
6: if a[2] > a[1] then
7: dp[2] = 2
8: mark[2] = 1
9: else

10: dp[2] = 2
11: mark[2] = -1
12: end if
13: ma = 2
14: for i = 3 to n do
15: if a[i] > a[i− 1] then
16: if mark[i-1] equal to 1 then
17: dp[i] = dp[i-1]+1
18: mark[i] = 1
19: else if mark[i-1] equal to -1 then
20: dp[i] = 2
21: mark[i] = 1
22: else
23: dp[i] = 2
24: mark[i] = 1
25: end if

8



26: else
27: if mark[i-1] equal to 1 then
28: dp[i] = dp[i-1]+1
29: mark[i] = 0
30: else if mark[i-1] equal to -1 then
31: dp[i] = dp[i-1]+1
32: mark[i] = -1
33: else
34: dp[i] = dp[i-1]+1
35: mark[i] = 0
36: end if
37: end if
38: ma = max(ma,dp[i])
39: end for

return ma

Lines 1-12 are used to initialize the base cases for i = 1 and 2. The loop in line 14 runs
for n-2 iterations and at each iteration, it exhausts all possible cases discuused above and
stores the required values.

Line 38 updates the current value of ma with the value of the longest mountain seen so far.

The running time of this program is clearly O(n).

9



Greedy

6. Question: Given n real numbers on the real line a1, · · · , an you need to cover all of them
using closed intervals of length 1 (i.e) you need to place some intervals on the real line such
that every ai is contained within at least one of the closed intervals. Give an algorithm to
find the minimum number of such intervals that you need.

Answer:

We can assume that the given numbers are distinct. Whenever we refer to an optimal
solution in this problem, we assume that the intervals in the optimal solution are sorted
according to their starting point.

Clearly, any optimal solution cannot contain an interval which contains none of the given
numbers.

Lemma 1: There exists an optimal solution O = {I1, · · · , Ik}, (where I1, · · · , Ik are the
intervals in the optimal solution) such that Ia ∩ Ia+1 = ∅∀a, 1 ≤ a ≤ k. (We will call such
a property as having no intersections).

Proof: Let O’ = {I1, · · · , Ik} be any optimal solution and suppose that a is the first position,
where Ia ∩ Ia+1 6= ∅. Let ba, ea denote the starting and ending points of Ia and ba+1, ea+1

denote the starting and ending points of Ia+1.

Clearly, ba+1 ≤ ea. Consider the new interval I ′a+1 whose starting point is the first al such
that al > ea and whose ending point is al + 1.

Consider the set O = {I1, · · · , Ia, I ′a+1, Ia+2, · · · , Ik}. Clearly, all elements in the array
which were covered by O’ are covered by O as well and the number of intersections between
the intervals has reduced by one. Also, the number of the intervals in O is the same as
that of O’.

Hence O is also an optimal solution. Applying this process iteratively, we get an optimal
solution which contains no intersections.

Lemma 2: There is an optimal solution O = I1, · · · , Ik having no intersections such that
bj = al,∀j, 1 ≤ j ≤ k for some al, where bj is the starting point of Ij and where al can
depend on Ij

Proof: Let O = I1, · · · , Ik be an optimal solution with no intersections. We will inductively
transform O into the needed optimal solution.

Base Case: Suppose b1 = a1, then we are done. Suppose b1 6= a1. Clearly, b1 < a1.
Updating b1 = a1and e1 = a1 + 1 and resolving the intersections as was done in Lemma 1,
we see that the new solution O’ is still optimal.

Induction Hypothesis: Suppose bj = al, j ≥ 1 for some l such that I1, · · · , Ij has no
intersections.

Induction Step: Suppose bj+1 = am for some m. Then the induction step is true.
Suppose bj+1 6= am for all m. Let am−1 < bj+1 < am. Set bj+1 = am and ej+1 = am + 1
and resolve the intersections (if any) that occur from Ij+1 to In. Again, we see that in the
new solution, the optimality is preserved.

Therefore, by the Principle of Mathematical Induction, Lemma 2 is true.

Motivated by these two lemmas, we give an algorithm and prove its correctness.

We sort the numbers in ascending order. We process through the list in ascending order
and whenever we find an al which has not been covered by any interval, we place an interval
starting at al and remove all the points from the list which lie in this interval.

10



Pseudocode:

Here count is the variable which on temination, gives the minimum number of intervals.

Algorithm 6 Intervals

1: count = 0
2: Sort the given numbers in ascending order.
3: i = 1
4: while i ≤ n do
5: count = count + 1
6: x = a[i] + 1
7: while a[i] ≤ x do
8: i++
9: end while

10: end while
return count

We will prove that the above algorithm returns the minimum number of intervals necessary
to cover all the numbers.

Let O = I1, · · · , Ik be an optimal solution with no intersections such that each one of it’s
intervals start at some al. Let I = J1, · · · , Jq be the solution generated by our algorithm.

Claim: Suppose ai ∈ Iw, then ai ∈ Jr for some r where r ≤ w.
Proof: Throughout this proof we use bj to denote the starting point of Ij .

We proceed by induction on the number of elements in the array a.

Base Case: Clearly, a1 ∈ I1 and a1 ∈ J1. Hence the claim is true for a1.

Induction Hypothesis: Suppose the claim is true ∀aj , 1 ≤ j ≤ i.

Induction Step: Suppose ai+1 ∈ Iw. There are two cases:

Case i: bw = ai+1

Hence, ai ∈ Iw−1. By I.H, ai ∈ Jr for some r ≤ w − 1. Therefore, ai+1 can either belong
to Jr or it can belong to Jr+1. In either case, ai ∈ Jr for some r ≤ w and so the induction
step is complete.

Case ii: bw < ai+1

By assumption, we can take bw to be some aj . By I.H, aj ∈ Jr for some r ≤ w.

Suppose r ≤ w − 1. Clearly, ai ∈ Je for some e ≤ w and hence the induction step is
complete.

Suppose r = w and aj is the starting point of Jr. Clearly, ai ≤ aj + 1 and hence ai ∈ Jr.

Suppose r = w and aj is not the starting point of Jw. Therefore, aj−1 ∈ Jw and aj−1 ∈ Iw−1
(because aj is the starting point of Iw). But this is not possible due to I.H.

Hence for all possible cases of aj the induction step holds.

Hence by the Principle of Induction, the claims is true for all elements of the array.

The claim immediately implies that I is an optimal solution.

We can use mergesort to sort the numbers in O(nlogn) time. The while loop in the
pseudocode, clearly checks an element only once and so the number of iterations in the
while loop is O(n) with each iteration taking constant time.

11



Hence the overall complexity is O(nlogn).

7. Question: You work in a pizza shop which offers a wide range of toppings. The toppings
are stored in separate jars which are kept in a cupboard (assume that the jars have unlimited
capacity). But the cupboard is far from the counter, and so you keep some jars in a nearby
desk. Unfortunately the desk is small and you can keep at most S jars on it at any given
time. So when a customer asks for a topping which is not on your desk, and if your desk is
full, you will have to return some jar back to the cupboard and replace it with the necessary
jar. Miraculously you know the exact sequence of toppings that will be demanded by your
customers, which is ia1, ..., an . Each ai corresponds to a topping. Describe an algorithm
to find the least number of trips that you will have to make to the cupboard. You can start
off with any S jars on the desk. Assume 1 ≤ ai ≤ n.

Answer: We first present an algorithm and prove it’s optimality.

Algorithm:

While we need to bring ai to the desk and ai is not in the desk:
Put back the item which is needed farthest in the future and include ai in the desk.

We will now prove its optimality. Let IF be the sequence of moves made by our algorithm.

Definition: Let I be any sequence of moves and define I ′ to be the reduction of I as follows:

Suppose in step i, we bring in an item aj which was not requested at step i. In the new
sequence I’, we do not bring in aj . We bring in aj only when it is requested in the step k.

Hence, the trip made at the move by I’ at step k, can be accounted for by the trip made
by I at step i.

Therefore, the number of trips made by I’ is atmost that of I.

Lemma : Let I be a reduced sequence that makes the same trips as IF through the first j
steps. Then there is a reduced sequence I” which makes the same trips as IF through the
first j+1 steps and incurs no more trips than I does.

Proof: Consider the j+1 th request. Since I and IF have agreed up till this point, if aj+1

lies in the desk of I, then no trip is necessary. Hence we can set I” = I. Suppose aj+1 is
not in the desk of I and further suppose that I and IF both remove the same element from
the desk. Then also, we can set I” = I and we would be done.

Suppose aj+1 is not in the desk of I and I takes way b while IF takes away c where c 6= b.
Then construct I” as follows. Let the first j moves be the same as I. Let the j + 1th move
be that of taking away c.

From the j+2 th move let I” be the same as that of I until one of the following happens:

Case i):

d 6= b, c is requested and I takes away c to make room for d. Since the desk of I” and I are
the same except for b and c, it must be that d is not in the desk of I. Hence we can take
away b and bring in d in I” and from this point onwards, we can again set I” = I

Case ii):

b is requested and I takes away c’. If c’ is equal to c, then we can simply access b from the
desk of I” and we can set I” = I from this point onwards.

12



Suppose c′ 6= c. Then , we can make I” take away c’ and bring in c and set I” = I from
this point onwards. But I” is no longer a reduced sequence, therefore we make I” to be the
reduction of I”.

Hence in both the cases, we have a new reduced sequence I” which agrees with IF till the
first j+1 steps and incurs no more trips than I does.

One of these two cases, will appear before c is requested, because IF took away c which
would be the farthest in the future to be requested and hence b would always be requested
before c is and hence case ii) comes into hold.

Using this Lemma, we prove optimality as follows. Let Ī be a reduced sequence. Using the
Lemma we can construct a sequence I1 which would agree through with the first move of
IF and incur no more trips than Ī.

By induction, we can construct for all j, Ij in the same manner. In every step optimality
is preserved.

Hence IF incurs no more trips than Ī and hence is optimal.

8. Question: You are given 2 integers, l and r. You need to find two numbers L and R,
which satisfy l ≤ L ≤ R ≤ r, and which maximize the bit-wise XOR of L and R.

Answer: We first give an algorithm and prove it correctness.

Let l1, · · · , lm and r1, · · · , rn be the binary representations of l and r respectively. If n 6= m,
pad zeroes in the front of l1 to make both of them to of length n.

Algorithm 7 XOR

1: if l == r then return 0
2: end if
3: i = 1
4: if li == 0 and ri == 1 then
5: Let L be such that the binary representation of L is 0, 1, · · · , 1 where the number of 1’s

is n-1.
6: Let R be such that the binary representation of R is 1, 0, · · · , 0 where the number of 0’s

is n-1.
return L and R.

7: else
8: i++
9: end if

10:

11: while i ≤ n do
12: if li == 0 and ri == 1 then
13: Let L be such that the binary representation of L is l1, · · · , li−1, 0, 1, · · · , 1 where the

number of 1’s after li−1 is n-i.
14: Let R be such that the binary representation of R is r1, · · · , ri−1, 1, 0, · · · , 0 where the

number of 0’s after ri−1 is n-i.
return L and R

15: end if
16: i++
17: end while

13



Proof of optimality:

Suppose the binary representation of l and r are the same. Then l = r and hence the
maximum xor is 0.

Suppose ’i’ is the first point where li 6= ri. Then, li = 0 and ri = 1 because r ≥ l. Clearly,
any number lying in between l and r must have the same first i− 1 digits as that of l and
r in its binary representation.

Therefore, to maximise the bitwise XOR between any two numbers between l and r, we
can only modify the digits from i to n. Therefore, we consider L and R as constructed in
the algorithm. Clearly, l ≤ L ≤ r and l ≤ R ≤ r. Let M be the bitwise XOR of L and R.
Clearly, the first i-1 digits of M are the same as the XOR of lj and rj for 1 ≤ j ≤ i − 1.
The next n-i+1 digits of M are 1 by construction.

Since we cannot modify the first i-1 digits of L and R, it follows that L and R are the
required numbers.

The time complexity of the algorithms is O(logl + logr).

14



Divide and Conquer

9. Question: Given n integers, a1, ..., an you need to find the sub-array with the maximum
sum. A sub-array is a contiguous portion of the array, and its sum is just the sum of all
the array values which it covers.

Answer:

We split the array into two parts, a1, · · · , abn/2c and abn/2c+1, · · · , an. Any subarray with
maximum sum can either lie entirely in the first or second partitions or lies in between the
two.

We evaluate the maximum subarray sum in both the partitions and let M be the maximum
of those two.

Now, any subarray lying in between the two partitions must contain abn/2c and abn/2c+1.

Therefore, among all subarrays ending at abn/2c, we find the one with maximum sum. Also
among all subarrays starting at abn/2c+1, we find the one with maximum sum and append
these two.

If the resulting sum of this subarray is greater than M, we report this sum. Else we report
M.

Implementation:

Algorithm 8 MaxSum(A,n)

1: if n == 1 then return A[1]
2: end if
3: if n == 2 then return max(A[1],A[2],A[1]+A[2])
4: end if
5: g = bn/2c
6:

7: Let A1 be a1, · · · , ag
8: Let A2 be ag+1, · · · , an.
9: M1 = MaxSum(A1, g)

10: M2 = MaxSum(A2, n− g)
11:

12: M = max(M1,M2)
13:

14: i = g-1
15: ma1 = A[g]
16: sum = A[g]
17: while i ≥ 1 do
18: sum = sum + A[i]
19: ma1 = max(sum,ma1)
20: end while
21:

22: i = g+2
23: ma2 = A[g+1]
24: sum = A[g+1]

15



25: while i ≤ n do
26: sum = sum + A[i]
27: ma2 = max(sum,ma2)
28: end while
29:

30: ma = ma1 + ma2
return max(ma,M)

Lines 1 till 4 constitute the base case. Lines 5-12 form the recursive part of the algorithm.
Lines 14-30 compute the maximum sum of the subarray containing abn/2c and abn/2c+1.

For the above algorithm, we get the recurrence, T (n) = 2T (n/2) + O(n) whose solution is
clearly O(nlogn)

There is an O(n) dynamic progrraming solution for this problem.

Let dp(i) denote the maximum sum of all subarrays ending at i.

Clearly, dp(1) = a1.

Suppose we want to compute dp(i), i > 1. There are two cases: Either the maximum sum
subarray ending at i starts at i or does not start at i. In the former case, the sum is just
a[i]. In the latter case, i-1 certainly lies in the subarray and so the maximum sum would
be dp(i− 1) + a[i].

Therefore, we get the recursion, dp(i) = max(a[i], dp(i− 1) + a[i])

Computing dp(i) from 1 to n, and taking the maximum among all those, we see that the
whole solution takes O(n) time.

10. Question: You are given n integers, a1, ..., an , in an array. A majority element of this
array is any element occurring in more than dn/2e positions. Assume that elements cannot
be ordered or sorted, but can be compared for equality. Design a divide and conquer
algorithm to find a majority element in this (or determine that no majority element exists)

Answer: We split the array into two parts : a1, · · · , abn/2c and adn/2e, · · · , an. Suppose
an element occurs more than dn/2e positions in the original array. Then that element must
occur for more tha dn/4e positions in one of the arrays.

Therefore, we find all elements which occur atleast for dn/4e in the left partition and also
in the right partition.

Now we compare the elements which we have got from the left partition to all the elements
in the right partition to check if any element occurs more than dn/2e positions and vice
versa.

The following observations can be summed up into the pseudocode as follows:

16



Algorithm 9 MoreThan(A,n)

1: if n == 1 then return A[1]
2: end if
3: if n == 2 then
4: if A[1] == A[2] then return A[1]
5: else
6: return None
7: end if
8: end if
9:

10: g = bn/2c
11: A1 = a1, · · · , ag
12: A2 = ag+1, · · · , an
13:

14: X = MoreThan(A1, g)
15:

16: if X 6= None then
17: Test X with all other cards in A2 and return X if the total number of occurrences are

greater than dn/2e
18: else
19: X = MoreThan(A2, n− g)
20: if X 6= None then
21: Test X with all other cards in A1 and return X if the total number of occurrences are

greater than dn/2e
22: end if
23: end if

return None

We get the recurrence T (n) = 2T (n/2) + cn for the above algorithms whose solution is
O(nlogn).

17


