Practice Sheet 2 Solutions

28th August, 2016

Dynamic Programming

1. Question: Given an array of n positive integers a_{1}, \cdots, a_{n}, give an algorithm to find the length of the longest subsequence $a_{i_{1}}, \cdots, a_{i_{k}}$ where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ such that each term divides the next term, that is $a_{i_{j}}$ divides $a_{i_{j+1}}, \forall 1 \leq j<k$.
Answer:
A subsequence $a_{i_{1}} \cdots a_{i_{k}}$ will be called a dividing subsequence if $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ and $a_{i_{j}}$ divides $a_{i_{j+1}}, \forall 1 \leq j<k$. Hence it is required to find the length of the longest dividing subsequence.
Let $d p(j)$ denote the length of the longest dividing subsequence ending at a_{j}. Clearly, $d p(1)=1$.
Suppose we want to calculate $d p(j+1)$.
Consider the set $s(j+1)=\left\{x: x<j+1, a_{x} \mid a_{j+1}\right\}$. If $s(j+1)=\emptyset$, then any dividing subsequence ending at $\mathrm{j}+1$ must consist of only a_{j+1} and so $d p(j+1)=1$.
Suppose $s(j+1)$ is not empty. Hence any longest dividing subsequence ending at $j+1$ has length atleast 2.
We observe that if $x \in s(j+1)$, then any longest dividing subsequence ending at x can be extended to a dividing subsequence ending at $j+1$. Also any longest dividing subsequence ending at $\mathbf{j}+1$, must have the last but one element to belong to the set $s(j+1)$.

It follows that, any longest dividing subsequence ending at $\mathrm{j}+1$ must be of the form $a_{i_{1}}, \cdots, a_{i_{m}}, a_{x}, a_{j+1}$ where $a_{i_{1}}, \cdots, a_{i_{m}}, a_{x}$ is a longest dividing subsequence of x and $a_{x} \in s(j+1)$
Therefore, we get the recurrence,

$$
\begin{gathered}
d p(j+1)=1 \text { if, } s(j+1)=\emptyset \\
d p(j+1)=\max \{1+d p(x): x \in s(j+1)\} \text { if, } s(j+1) \neq \emptyset
\end{gathered}
$$

The required solution is $\max \{d p(j): 1 \leq j \leq n\}$.
Pseudocode:
We give an iterated version of the pseudocode. Here dp[] is an array which at the j th postition contains the length of the longest dividing subsequence ending at j .

```
Algorithm 1 Iterative - Dividingsubseq:
    \(\mathrm{dp}[0]=1\)
    \(\mathrm{ma}=1\)
    for \(\mathrm{i}=2\) to n do
        \(\mathrm{dp}[\mathrm{i}]=1\)
        for \(\mathrm{j}=1\) to ( \(\mathrm{i}-1\) ) do
            if \(a_{j}\) divides \(a_{i}\) then
                    \(\mathrm{dp}[\mathrm{i}]=\max (\mathrm{dp}[\mathrm{i}], 1+\mathrm{dp}[\mathrm{j}])\)
            end if
        end for
        \(\operatorname{ma}=\max (\mathrm{ma}, \mathrm{dp}[\mathrm{i}])\)
    end for
        return ma
```

Lines 1 and 2 of the algorithm initialize the conditions. Lines 3-9 compute $\mathrm{dp}(\mathrm{i})$ for all i , $2 \leq i \leq n$. Line 10 compares the current maximum with the value of $\mathrm{dp}[\mathrm{i}]$ and updates it if necessary.

The first loop goes through n iterations and in each loop $O(n)$ steps are carried out. Hence the running time of the algorithm is $O\left(n^{2}\right)$.
2. Question: Given a $n \times m$ grid of integers where the rows are numbered from 1 to n and the columns are numbered from 1 to m,your task is to answer queries of the form (i,j,k,l) for different $1 \leq i, j \leq n$ and $1 \leq k, l \leq n$. The answer to such a query is the sum of the numbers in the sub-grid bounded by the i,j th rows and the k, l th columns. Preprocess the grid so as to efficiently answer each query in constant time.

Answer:

We will assume that the numbers are given in a 2-d array a[][].
Let $d p(x, y)=\sum_{i=1}^{x} \sum_{j=1}^{y} a[i][j] . \mathrm{dp}(\mathrm{x}, \mathrm{y})$ is the sum of all the numbers in the sub-grid bounded by the 1st,xth rows and 1st,yth columns. Clearly,

$$
\begin{gathered}
d p(1,1)=a[1][1] \\
\forall y>1, d p(1, y)=\sum_{j=1}^{y} a[1][j]=a[1][y]+d p(1, y-1) \\
\forall x>1, d p(x, 1)=\sum_{i=1}^{x} a[i][1]=a[x][1]+d p(x-1,1)
\end{gathered}
$$

Let $x>1, y>1$.

$$
\begin{aligned}
d p(x+1, y+1) & =\sum_{i=1}^{x+1} \sum_{j=1}^{y+1} a[i][j] \\
& =\sum_{i=1}^{x+1} \sum_{j=1}^{y} a[i][j]+\sum_{i=1}^{x+1} a[i][y+1] \\
& =\sum_{i=1}^{x+1} \sum_{j=1}^{y} a[i][j]-\sum_{i=1}^{x} \sum_{j=1}^{y} a[i][j]+\sum_{i=1}^{x} \sum_{j=1}^{y} a[i][j]+\sum_{i=1}^{x+1} a[i][y+1] \\
& =\sum_{i=1}^{x+1} \sum_{j=1}^{y} a[i][j]-\sum_{i=1}^{x} \sum_{j=1}^{y} a[i][j]+\sum_{i=1}^{x} \sum_{j=1}^{y+1} a[i][j]+a[x+1][y+1] \\
& =d p(x+1, y)+d p(x, y+1)-d p(x, y)+a[x+1][y+1]
\end{aligned}
$$

Now suppose we are given a query of the form (i,j,k,l).
Let $r 1=\min (i, j), c 1=\min (k, l), r 2=\max (i, j), c 2=\max (k, l)$
The required answer is $\sum_{x=r 1}^{r 2} \sum_{y=c 1}^{c 2} a[x][y]$. Let $\mathrm{S}=\sum_{x=r 1}^{r 2} \sum_{y=c 1}^{c 2} a[x][y]$.

$$
\begin{aligned}
S= & \sum_{x=r 1}^{r 2} \sum_{y=c 1}^{c 2} a[x][y] \\
= & \sum_{x=r 1}^{r 2} \sum_{y=c 1}^{c 2} a[x][y]+\sum_{x=1}^{r 1} \sum_{y=1}^{c 2} a[x][y]-\sum_{x=1}^{r 1} \sum_{y=1}^{c 2} a[x][y] \\
= & \sum_{x=r 1}^{r 2} \sum_{y=c 1}^{c 2} a[x][y]+\sum_{x=1}^{r 1} \sum_{y=1}^{c 2} a[x][y]+\sum_{x=1}^{r 2} \sum_{y=1}^{c 1} a[x][y]-\sum_{x=1}^{r 1} \sum_{y=1}^{c 2} a[x][y]-\sum_{x=1}^{r 2} \sum_{y=1}^{c 1} a[x][y] \\
= & \sum_{x=r 1}^{r 2} \sum_{y=c 1}^{c 2} a[x][y]+\sum_{x=1}^{r 1} \sum_{y=1}^{c 2} a[x][y]+\sum_{x=1}^{r 2} \sum_{y=1}^{c 1} a[x][y]-\sum_{x=1}^{r 1} \sum_{y=1}^{c 1} a[x][y]+\sum_{x=1}^{r 1} \sum_{y=1}^{c 1} a[x][y]-\sum_{x=1}^{r 1} \sum_{y=1}^{c 2} a[x][y] \\
& \quad-\sum_{x=1}^{r 2} \sum_{y=1}^{c 1} a[x][y]
\end{aligned}
$$

Notice that the first four terms combined is $\mathrm{dp}(\mathrm{r} 2, \mathrm{c} 2)$. The other three terms are $\mathrm{dp}(\mathrm{r} 1, \mathrm{c} 1)$, $\mathrm{dp}(\mathrm{r} 1, \mathrm{c} 2), \mathrm{dp}(\mathrm{r} 2, \mathrm{c} 1)$ respectively. Hence the equation becomes,

$$
S=d p(r 2, c 2)-d p(r 1, c 2)-d p(r 2, c 1)+d p(r 1, c 1)
$$

Hence every query can be answered in constant time if the we preprocess the dp function for each i, j.
Pseudocode:
We provide an iterative version of the algorithm. Here dp[][] is a 2-d array, where $\operatorname{dp}[\mathrm{i}][\mathrm{j}]$ stores the value $\sum_{i=1}^{x} \sum_{j=1}^{y} a[i][j]$ and Q is the number of queries.

```
Algorithm 2 Prefix Sums:
    \(\mathrm{dp}[1][1]=\mathrm{a}[1][1]\)
    for \(\mathrm{i}=2\) to n do
        \(\mathrm{dp}[\mathrm{i}][1]=\mathrm{a}[\mathrm{i}][1]+\mathrm{dp}[\mathrm{i}-1][1]\)
    end for
    for \(\mathrm{j}=2\) to m do
        \(\mathrm{dp}[1][\mathrm{j}]=\mathrm{a}[1][\mathrm{j}]+\mathrm{dp}[1][\mathrm{j}-1]\)
    end for
    for \(i=2\) to \(n\) : do
        for \(\mathrm{j}=2\) to m : do
                \(\mathrm{dp}[\mathrm{i}][\mathrm{j}]=\mathrm{dp}[\mathrm{i}-1][\mathrm{j}]+\mathrm{dp}[\mathrm{i}][\mathrm{j}-1]-\mathrm{dp}[\mathrm{i}][\mathrm{j}]+\mathrm{a}[\mathrm{i}][\mathrm{j}]\)
        end for
    end for
    for \(\mathrm{g}=1\) to Q : do
        ( \(\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}\) ) is the query
        \(\mathrm{r} 1=\min (\mathrm{i}, \mathrm{j})\)
        \(\mathrm{r} 2=\max (\mathrm{i}, \mathrm{j})\)
        \(\mathrm{c} 1=\min (\mathrm{k}, \mathrm{l})\)
        \(\mathrm{c} 2=\max (\mathrm{k}, \mathrm{l})\)
        Output (dp[r2][c2]-dp[r1][c2]-dp[r2][c1]+dp[r1][c1])
    end for
```

Lines 1-7 initialize the necessary base cases for the recurrence. Lines 8 -12 calculate $\mathrm{dp}[\mathrm{i}][\mathrm{j}]$ $\forall i, j \geq 2$. Lines $13-20$ processes the given query and returns the value of the query in constant time.

Lines 2-4 and 5-7 each have one for loop running n-1 and m-1 iterations respectively and hence each of them take $O(n)$ and $O(m)$ time respectively. In Lines $8-12$ there are n-1 iterations of the outer loop and each iteration has (m-1) iterations on the inner loop which take constant time to work out. Hence calculating $\mathrm{dp}[\mathrm{i}][\mathrm{j}]$ forall i,j takes $O(m n)$ time.

Lines 13-20 have one for loop having Q iterations with each iteration taking constant time and hence answering Q queries takes $O(Q)$ time.

Hence the overall complexity is $O(m n+Q)$.
3. Question: Given an array of n integers $a_{1}, \cdots a_{n}$. You start with a score of 0 . In each step, you are allowed to choose an index i different from 1 and n and delete a_{i} from the array. The value of $a_{i-1} \times a_{i+1}$ gets added to your score. After deleting a_{i}, the new array is of length $\mathrm{n}-1$ and is $a_{1}, \cdots, a_{i-1}, a_{i+1}, \cdots, a_{n}$. The process stops when you have only 2 elements remaining. Compute the maximum possible score you can get.

Answer:

Let a_{i}, \cdots, a_{j} denote the subarray from the ith to jth elements of the original array. Suppose we want to find the maximum score attainable restricted to this subarray.
Observation 1: Suppose a_{k} is the last element to be removed. Then, the problem reduces to finding the maximum score in a_{i}, \cdots, a_{k} and a_{k}, \cdots, a_{i} and adding a cost of $a_{i} \times a_{j}$ to the combined maximum score.
Let $\mathrm{dp}(\mathrm{i}, \mathrm{j})$ denote the maximum score from the subarray a_{i}, \cdots, a_{j} where a_{i} and a_{j} are not removed.

Clearly, $d p(i, i)=0$

Suppose $j>i$.
By our first observation, $d p(i, j)=\max \left\{d p(i, k)+d p(k, j)+a_{i} \times a_{j}: i<k<j\right\}$
Clearly, the required answer for our original question is $\operatorname{dp}(1, n)$.
Pseudocode:
We give an iterarive version of the alogrithm where the iteration is done over the length of the subarrays. dp[][] is an array storing the maximum score for the subarray a_{i}, \cdots, a_{j}.

```
Algorithm 3 Comp-Opt:
    for \(\mathrm{i}=1\) to n do
        \(\mathrm{dp}[\mathrm{i}][\mathrm{i}]=0\)
    end for
    for \(\mathrm{i}=1\) to n do
        for \(\mathrm{j}=1\) to \(\mathrm{n}-1\) do
            if \(i+j<n\) then
                \(\mathrm{dp}[\mathrm{i}][\mathrm{i}+\mathrm{j}]=0\)
                for \(k=i+1\) to \(i+j-1\) do
                    \(\mathrm{dp}[\mathrm{i}][\mathrm{i}+\mathrm{j}]=\max (\mathrm{dp}[\mathrm{i}][\mathrm{k}]+\mathrm{dp}[\mathrm{k}][\mathrm{i}+\mathrm{j}]+a[i] \times a[j], \operatorname{dp}[\mathrm{i}][\mathrm{i}+\mathrm{j}])\)
                end for
            end if
        end for
    end for
        return \(\mathrm{dp}[1][\mathrm{n}]\)
```

Lines 1-3 initialize the base cases. Lines 4-13 implement the given recurrence by iterating over the length of the intervals. Clearly, the algorithm takes $O\left(n^{3}\right)$ time.
4. Question: Given a set S of n distinct positive integers a_{1}, \cdots, a_{n} and a positive integer M , give an algorithm to compute the number of subsets T of S such that the sum of elements of T is exactly M .

Answer:

Let $\mathrm{dp}(\mathrm{x}, \mathrm{i})$ denote the number of subsets of $\{1 \cdots i\}$ whose sum is exactly x .
Since the numbers are distinct and positive, the number 0 if it occurs in the array occurs only once and hence we have,

$$
\begin{gathered}
d p(0, i)=0, \text { if } a_{j} \neq 0, \forall j, 1 \leq j \leq i \\
d p(0, i)=1, \text { if } \exists j, 1 \leq j \leq i \text { such that } a_{j}=0
\end{gathered}
$$

Also $d p(x, 1)=1$ if $x=a_{1}$ and 0 otherwise.
Now let $x \geq 0, i>1$. Consider the set of all subsets of $\{1 \cdots i\}$ whose sum is exactly x . Let this set be S. If $S=\emptyset$, then $\mathrm{dp}(\mathrm{x}, \mathrm{i})=0$. Suppose $S \neq \emptyset$.
Let s be a subset of $\{1, \cdots, i\}$ whose sum is exactly x .
Clearly, $i \notin s \Longleftrightarrow \mathrm{~s}$ is a subset of $\{1, \cdots, i-1\}$ whose sum is exactly x .
Also, $i \in s \Longleftrightarrow \mathrm{~s}$ is a subset of $\{1, \cdots, i-1\}$ whose sum is exactly $\mathrm{x}-\mathrm{a}[\mathrm{i}]$.
Therefore, we get the recurrence, $d p(x, i)=d p(x, i-1)+d p(x-a[i], i-1)$.

Pseudocode:
dp[][] is a $2-\mathrm{d}$ array where $\mathrm{dp}[\mathrm{i}][\mathrm{j}]$ stores the number of subsets of $\{1, \cdots, j\}$ whose sum is exactly i. We also assume that the numbers are given in an array a[].

```
Algorithm 4 Subset-Sum:
    \(\mathrm{f}=0\)
    for \(\mathrm{i}=1\) to n : do
        if \(\mathrm{a}[\mathrm{i}]=0\) then
            \(\mathrm{f}=1\)
        end if
        \(\mathrm{dp}[0][\mathrm{i}]=\mathrm{f}\)
    end for
    for \(\mathrm{j}=1\) to M do
        if \(j==a[1]\) then
            \(\mathrm{dp}[\mathrm{j}][1]=1\)
        else
            \(\mathrm{dp}[\mathrm{j}][1]=0\)
        end if
    end for
    for \(\mathrm{i}=2\) to M do
        for \(\mathrm{j}=2\) to n do
            \(\mathrm{dp}[\mathrm{i}][\mathrm{j}]=\mathrm{dp}[\mathrm{i}][\mathrm{j}-1]\)
            if \(i \geq a[j]\) then
                \(\operatorname{dp}[\mathrm{i}][\mathrm{j}]=\operatorname{dp}[\mathrm{i}][\mathrm{j}]+\operatorname{dp}[\mathrm{i}-\mathrm{a}[\mathrm{j}]][\mathrm{j}-1]\)
            end if
        end for
    end for
        return \(\operatorname{dp}[M][n]\)
```

Lines 1-10 initialize the base cases of the recurrence. Lines 11-18 fill up the other entries of the table as given by the recurrence.
It is clear that computing the base cases takes $O(n+M)$ time. In lines 11-18 there are M-1 iterations of the outer loop and each such iteration takes $O(n)$ time. Hence the overall complexity of computing the other entries takes $O(M n)$ time.
Hence the overall complexity is $O(M n)$. This is pseudopolynomial in terms of M since it is linear in terms of M , but is exponential in terms of the number of bits required to represent M.
5. Question: Given an array of n distinct integers a_{1}, \cdots, a_{n}, give an algorithm to find the longest continuous mountain present in the array, that is, the longest sub-array a_{i}, \cdots, a_{j} such that there exists an index $\mathrm{k}, i \leq k \leq j$ such that the sequece a_{i}, \cdots, a_{k} is strictly increasing and the sequence a_{k}, \cdots, a_{j} is strictly decreasing. A sub-array is a contiguous portion of the array.

Answer:

In this solution, whenever we refer to mountains we always mean continuous mountains.
Call a mountain, a proper mountain if it is neither a strictly increasing sequence nor a strictly decreasing sequence.
Clearly, any proper mountain starting at a_{i} and ending at a_{j} consists of atleast three elements and contains a $k, i<k<j$ such that a_{i}, \cdots, a_{k} is strictly increasing and $a_{k}, \cdots a_{j}$ is strictly decreasing.
Let $d p(i)$ denote the length of the longest mountain ending at $a_{i} \forall i, 1 \leq i \leq n$. Let $\operatorname{par}(i)=i-d p(i)+1$. (If M is the longest mountain ending at a_{i}, then $\operatorname{par}(\mathrm{i}$) is the starting point of M$)$. It is clear that there cannot be more than one longest mountain ending at a_{i}.
Clearly, $\operatorname{dp}(1)=1$.
Suppose $j>1$. Consider the longest mountain M ending at a_{j}. Clearly M always contains atleast two elements, since a_{j-1}, a_{j} is always a mountain.
So now the problem reduces to finding the optimal mountain among all the mountains ending at a_{j-1} which can be extended to a mountain ending at a_{j}.
We consider two cases:
Case i): $a_{j-1}<a_{j}$
If the sequence $a_{\operatorname{par}(j-1)}, \cdots, a_{j-1}$ is a strictly increasing sequence, then clearly, $a_{\operatorname{par}(j-1)}, \cdots, a_{j}$ is the longest mountain ending at a_{j}.
Suppose the sequence $a_{\operatorname{par}(j-1)}, \cdots, a_{j-1}$ is a strictly decreasing sequence. Clearly, a_{j-1}, a_{j} is the only mountain ending at a_{j} and hence the longest mountain ending at a_{j}.
If the sequence $a_{\operatorname{par}(j-1)}, \cdots, a_{j-1}$ is a proper mountain, then $\exists k$ such that $\operatorname{par}(j-1)<$ $k<j-1$ and $a_{\operatorname{par}(j-1)} \cdots a_{k}$ is a strictly increasing sequence and $a_{k} \cdots a_{j-1}$ is a strictly decreasing sequence. Therefore, a_{j-1}, a_{j} is the only mountain ending at a_{j} and hence the longest mountain ending at a_{j}.
Case ii): $a_{j-1}>a_{j}$
Suppose the sequence $a_{\operatorname{par}(j-1)}, \cdots, a_{j-1}$ is a strictly increasing sequence. Clearly, $a_{\operatorname{par}(j-1)}, a_{j}$ is the the longest mountain ending at a_{j}.
If the sequence $a_{\operatorname{par}(j-1)}, \cdots, a_{j-1}$ is a strictly decreasing sequence, then clearly, $a_{\operatorname{par}(j-1)}, \cdots, a_{j}$ is the longest mountain ending at a_{j}.
If the sequence $a_{\operatorname{par}(j-1)}, \cdots, a_{j-1}$ is a proper mountain, then $\exists k$ such that $\operatorname{par}(j-1)<$ $k<j-1$ and $a_{\operatorname{par}(j-1)} \cdots a_{k}$ is a strictly increasing sequence and $a_{k} \cdots a_{j-1}$ is a strictly decreasing sequence. Hence, $a_{\operatorname{par}(j-1)}, \cdots, a_{j}$ is a proper mountain ending at a_{j} and no other mountain ending at a_{j} can have a length greater than the length of this mountain. Hence $a_{\operatorname{par}(j-1)}, \cdots, a_{j}$ is the length of the longest mountain ending at a_{j}.
These observations immediately give rise to an algorithm.

Pseudocode:

In the following pseudocode, dp[] is an array, where $\mathrm{dp}[\mathrm{i}]$ stores the length of the longest mountain ending at i . a[] is an array which stores the numbers and n is the size of the array. ma is the variable which stores the length of the longest mountain. mark[] is an array, where
i) $\operatorname{mark}[\mathrm{i}]=-1$ if the longest mountain ending at i is strictly decreasing
ii) $\operatorname{mark}[\mathrm{i}]=1$ if the longest mountain ending at i is strictly increasing
iii) $\operatorname{mark}[\mathrm{i}]=0$ if the longest mountain ending at i is a proper mountain

By convention, we take mark[1] =1

```
Algorithm 5 Longest-Mountain:
    \(\mathrm{dp}[1]=1\)
    \(\operatorname{mark}[1]=1\)
    if \(n\) is equal to 1 then
        return 1
    end if
    if \(a[2]>a[1]\) then
        \(\mathrm{dp}[2]=2\)
        \(\operatorname{mark}[2]=1\)
    else
        \(\mathrm{dp}[2]=2\)
        \(\operatorname{mark}[2]=-1\)
    end if
    \(\mathrm{ma}=2\)
    for \(\mathrm{i}=3\) to n do
        if \(a[i]>a[i-1]\) then
            if mark[ \(\mathrm{i}-1]\) equal to 1 then
                    \(\mathrm{dp}[\mathrm{i}]=\mathrm{dp}[\mathrm{i}-1]+1\)
                    \(\operatorname{mark}[\mathrm{i}]=1\)
            else if mark \([\mathrm{i}-1]\) equal to -1 then
                    \(\mathrm{dp}[\mathrm{i}]=2\)
                    \(\operatorname{mark}[\mathrm{i}]=1\)
            else
                \(\mathrm{dp}[\mathrm{i}]=2\)
                \(\operatorname{mark}[\mathrm{i}]=1\)
            end if
```

```
else
    if mark[i-1] equal to 1 then
            dp[i] = dp[i-1]+1
            mark[i] =0
        else if mark[i-1] equal to -1 then
            dp[i] = dp[i-1]+1
            mark[i] =-1
        else
            dp[i] = dp[i-1]+1
            mark[i] =0
        end if
    end if
    ma= max(ma,dp[i])
end for
    return ma
```

Lines 1-12 are used to initialize the base cases for $\mathrm{i}=1$ and 2 . The loop in line 14 runs for $\mathrm{n}-2$ iterations and at each iteration, it exhausts all possible cases discuused above and stores the required values.

Line 38 updates the current value of ma with the value of the longest mountain seen so far. The running time of this program is clearly $O(n)$.

Greedy

6. Question: Given n real numbers on the real line a_{1}, \cdots, a_{n} you need to cover all of them using closed intervals of length 1 (i.e) you need to place some intervals on the real line such that every a_{i} is contained within at least one of the closed intervals. Give an algorithm to find the minimum number of such intervals that you need.

Answer:

We can assume that the given numbers are distinct. Whenever we refer to an optimal solution in this problem, we assume that the intervals in the optimal solution are sorted according to their starting point.
Clearly, any optimal solution cannot contain an interval which contains none of the given numbers.

Lemma 1: There exists an optimal solution $\mathrm{O}=\left\{I_{1}, \cdots, I_{k}\right\}$, (where I_{1}, \cdots, I_{k} are the intervals in the optimal solution) such that $I_{a} \cap I_{a+1}=\emptyset \forall a, 1 \leq a \leq k$. (We will call such a property as having no intersections).
Proof: Let $\mathrm{O}^{\prime}=\left\{I_{1}, \cdots, I_{k}\right\}$ be any optimal solution and suppose that a is the first position, where $I_{a} \cap I_{a+1} \neq \emptyset$. Let b_{a}, e_{a} denote the starting and ending points of I_{a} and b_{a+1}, e_{a+1} denote the starting and ending points of I_{a+1}.
Clearly, $b_{a+1} \leq e_{a}$. Consider the new interval I_{a+1}^{\prime} whose starting point is the first a_{l} such that $a_{l}>e_{a}$ and whose ending point is $a_{l}+1$.
Consider the set $O=\left\{I_{1}, \cdots, I_{a}, I_{a+1}^{\prime}, I_{a+2}, \cdots, I_{k}\right\}$. Clearly, all elements in the array which were covered by O' are covered by O as well and the number of intersections between the intervals has reduced by one. Also, the number of the intervals in O is the same as that of O'.
Hence O is also an optimal solution. Applying this process iteratively, we get an optimal solution which contains no intersections.
Lemma 2: There is an optimal solution $\mathrm{O}=I_{1}, \cdots, I_{k}$ having no intersections such that $b_{j}=a_{l}, \forall j, 1 \leq j \leq k$ for some a_{l}, where b_{j} is the starting point of I_{j} and where a_{l} can depend on I_{j}
Proof: Let $\mathrm{O}=I_{1}, \cdots, I_{k}$ be an optimal solution with no intersections. We will inductively transform O into the needed optimal solution.
Base Case: Suppose $b_{1}=a_{1}$, then we are done. Suppose $b_{1} \neq a_{1}$. Clearly, $b_{1}<a_{1}$. Updating $b_{1}=a_{1}$ and $e_{1}=a_{1}+1$ and resolving the intersections as was done in Lemma 1, we see that the new solution O^{\prime} is still optimal.
Induction Hypothesis: Suppose $b_{j}=a_{l}, j \geq 1$ for some 1 such that I_{1}, \cdots, I_{j} has no intersections.
Induction Step: Suppose $b_{j+1}=a_{m}$ for some m. Then the induction step is true.
Suppose $b_{j+1} \neq a_{m}$ for all m . Let $a_{m-1}<b_{j+1}<a_{m}$. Set $b_{j+1}=a_{m}$ and $e_{j+1}=a_{m}+1$ and resolve the intersections (if any) that occur from I_{j+1} to I_{n}. Again, we see that in the new solution, the optimality is preserved.
Therefore, by the Principle of Mathematical Induction, Lemma 2 is true.
Motivated by these two lemmas, we give an algorithm and prove its correctness.
We sort the numbers in ascending order. We process through the list in ascending order and whenever we find an a_{l} which has not been covered by any interval, we place an interval starting at a_{l} and remove all the points from the list which lie in this interval.

Pseudocode:

Here count is the variable which on temination, gives the minimum number of intervals.

```
Algorithm 6 Intervals
    count \(=0\)
    Sort the given numbers in ascending order.
    \(\mathrm{i}=1\)
    while \(i \leq n\) do
        count \(=\) count +1
        \(\mathrm{x}=\mathrm{a}[\mathrm{i}]+1\)
        while \(a[i] \leq x\) do
            i++
        end while
    end while
        return count
```

We will prove that the above algorithm returns the minimum number of intervals necessary to cover all the numbers.
Let $\mathrm{O}=I_{1}, \cdots, I_{k}$ be an optimal solution with no intersections such that each one of it's intervals start at some a_{l}. Let $\mathrm{I}=J_{1}, \cdots, J_{q}$ be the solution generated by our algorithm.
Claim: Suppose $a_{i} \in I_{w}$, then $a_{i} \in J_{r}$ for some r where $r \leq w$.
Proof: Throughout this proof we use b_{j} to denote the starting point of I_{j}.
We proceed by induction on the number of elements in the array a.
Base Case: Clearly, $a_{1} \in I_{1}$ and $a_{1} \in J_{1}$. Hence the claim is true for a_{1}.
Induction Hypothesis: Suppose the claim is true $\forall a_{j}, 1 \leq j \leq i$.
Induction Step: Suppose $a_{i+1} \in I_{w}$. There are two cases:
Case i: $b_{w}=a_{i+1}$
Hence, $a_{i} \in I_{w-1}$. By I.H, $a_{i} \in J_{r}$ for some $r \leq w-1$. Therefore, a_{i+1} can either belong to J_{r} or it can belong to J_{r+1}. In either case, $a_{i} \in J_{r}$ for some $r \leq w$ and so the induction step is complete.
Case ii: $b_{w}<a_{i+1}$
By assumption, we can take b_{w} to be some a_{j}. By I.H, $a_{j} \in J_{r}$ for some $r \leq w$.
Suppose $r \leq w-1$. Clearly, $a_{i} \in J_{e}$ for some $e \leq w$ and hence the induction step is complete.
Suppose $r=w$ and a_{j} is the starting point of J_{r}. Clearly, $a_{i} \leq a_{j}+1$ and hence $a_{i} \in J_{r}$.
Suppose $r=w$ and a_{j} is not the starting point of J_{w}. Therefore, $a_{j-1} \in J_{w}$ and $a_{j-1} \in I_{w-1}$ (because a_{j} is the starting point of I_{w}). But this is not possible due to I.H.
Hence for all possible cases of a_{j} the induction step holds.
Hence by the Principle of Induction, the claims is true for all elements of the array.
The claim immediately implies that I is an optimal solution.
We can use mergesort to sort the numbers in $O(n \operatorname{logn})$ time. The while loop in the pseudocode, clearly checks an element only once and so the number of iterations in the while loop is $O(n)$ with each iteration taking constant time.

Hence the overall complexity is $O(n \operatorname{logn})$.
7. Question: You work in a pizza shop which offers a wide range of toppings. The toppings are stored in separate jars which are kept in a cupboard (assume that the jars have unlimited capacity). But the cupboard is far from the counter, and so you keep some jars in a nearby desk. Unfortunately the desk is small and you can keep at most S jars on it at any given time. So when a customer asks for a topping which is not on your desk, and if your desk is full, you will have to return some jar back to the cupboard and replace it with the necessary jar. Miraculously you know the exact sequence of toppings that will be demanded by your customers, which is a_{1}, \ldots, a_{n}. Each a_{i} corresponds to a topping. Describe an algorithm to find the least number of trips that you will have to make to the cupboard. You can start off with any S jars on the desk. Assume $1 \leq a_{i} \leq n$.
Answer: We first present an algorithm and prove it's optimality.

Algorithm:

While we need to bring a_{i} to the desk and a_{i} is not in the desk:
Put back the item which is needed farthest in the future and include a_{i} in the desk.
We will now prove its optimality. Let I_{F} be the sequence of moves made by our algorithm.
Definition: Let I be any sequence of moves and define I^{\prime} to be the reduction of I as follows:
Suppose in step i, we bring in an item a_{j} which was not requested at step i. In the new sequence I', we do not bring in a_{j}. We bring in a_{j} only when it is requested in the step k . Hence, the trip made at the move by I' at step k , can be accounted for by the trip made by I at step i.
Therefore, the number of trips made by I' is atmost that of I .
Lemma: Let I be a reduced sequence that makes the same trips as I_{F} through the first j steps. Then there is a reduced sequence I " which makes the same trips as I_{F} through the first $\mathrm{j}+1$ steps and incurs no more trips than I does.
Proof: Consider the $\mathrm{j}+1$ th request. Since I and I_{F} have agreed up till this point, if a_{j+1} lies in the desk of I, then no trip is necessary. Hence we can set $I^{\prime \prime}=I$. Suppose a_{j+1} is not in the desk of I and further suppose that I and I_{F} both remove the same element from the desk. Then also, we can set $I "=I$ and we would be done.
Suppose a_{j+1} is not in the desk of I and I takes way b while I_{F} takes away c where $c \neq b$. Then construct $I "$ as follows. Let the first j moves be the same as I. Let the $j+1$ th move be that of taking away c.
From the $\mathrm{j}+2$ th move let I " be the same as that of I until one of the following happens: Case i):
$d \neq b, c$ is requested and I takes away c to make room for d . Since the desk of $\mathrm{I} "$ and I are the same except for b and c, it must be that d is not in the desk of I. Hence we can take away b and bring in d in I" and from this point onwards, we can again set I" = I
Case ii):
b is requested and I takes away c'. If c' is equal to c, then we can simply access b from the desk of $\mathrm{I} "$ and we can set $\mathrm{I} "=I$ from this point onwards.

Suppose $c^{\prime} \neq c$. Then, we can make I" take away c' and bring in c and set I" $=\mathrm{I}$ from this point onwards. But I " is no longer a reduced sequence, therefore we make I" to be the reduction of I".
Hence in both the cases, we have a new reduced sequence I" which agrees with I_{F} till the first $\mathrm{j}+1$ steps and incurs no more trips than I does.
One of these two cases, will appear before c is requested, because I_{F} took away c which would be the farthest in the future to be requested and hence b would always be requested before c is and hence case ii) comes into hold.
Using this Lemma, we prove optimality as follows. Let \bar{I} be a reduced sequence. Using the Lemma we can construct a sequence I_{1} which would agree through with the first move of I_{F} and incur no more trips than \bar{I}.
By induction, we can construct for all j, I_{j} in the same manner. In every step optimality is preserved.
Hence I_{F} incurs no more trips than \bar{I} and hence is optimal.
8. Question: You are given 2 integers, 1 and . You need to find two numbers L and R , which satisfy $l \leq L \leq R \leq r$, and which maximize the bit-wise XOR of L and R .
Answer: We first give an algorithm and prove it correctness.
Let l_{1}, \cdots, l_{m} and r_{1}, \cdots, r_{n} be the binary representations of 1 and r respectively. If $n \neq m$, pad zeroes in the front of l_{1} to make both of them to of length n.

```
Algorithm 7 XOR
    if \(\mathrm{l}==\mathrm{r}\) then return 0
    end if
    \(i=1\)
    if \(l_{i}==0\) and \(r_{i}==1\) then
        Let \(L\) be such that the binary representation of \(L\) is \(0,1, \cdots, 1\) where the number of 1 's
    is \(\mathrm{n}-1\).
            Let \(R\) be such that the binary representation of \(R\) is \(1,0, \cdots, 0\) where the number of 0 's
    is \(\mathrm{n}-1\).
            return L and R .
    else
        i++
    end if
    while \(i \leq n\) do
        if \(l_{i}==0\) and \(r_{i}==1\) then
            Let L be such that the binary representation of L is \(l_{1}, \cdots, l_{i-1}, 0,1, \cdots, 1\) where the
    number of 1 's after \(l_{i-1}\) is n - .
4: Let R be such that the binary representation of R is \(r_{1}, \cdots, r_{i-1}, 1,0, \cdots, 0\) where the
    number of 0 's after \(r_{i-1}\) is n-i.
            return \(L\) and \(R\)
            end if
            i++
    end while
```

Proof of optimality:
Suppose the binary representation of 1 and r are the same. Then $l=r$ and hence the maximum xor is 0 .
Suppose 'i' is the first point where $l_{i} \neq r_{i}$. Then, $l_{i}=0$ and $r_{i}=1$ because $r \geq l$. Clearly, any number lying in between l and r must have the same first $i-1$ digits as that of l and r in its binary representation.
Therefore, to maximise the bitwise XOR between any two numbers between 1 and r, we can only modify the digits from i to n . Therefore, we consider L and R as constructed in the algorithm. Clearly, $l \leq L \leq r$ and $l \leq R \leq r$. Let M be the bitwise XOR of L and R . Clearly, the first i-1 digits of $\overline{\mathrm{M}}$ are the same as the XOR of l_{j} and r_{j} for $1 \leq j \leq i-1$. The next $\mathrm{n}-\mathrm{i}+1$ digits of M are 1 by construction.
Since we cannot modify the first $\mathrm{i}-1$ digits of L and R , it follows that L and R are the required numbers.
The time complexity of the algorithms is $O(\log l+\log r)$.

Divide and Conquer

9. Question: Given n integers, a_{1}, \ldots, a_{n} you need to find the sub-array with the maximum sum. A sub-array is a contiguous portion of the array, and its sum is just the sum of all the array values which it covers.

Answer:

We split the array into two parts, $a_{1}, \cdots, a_{\lfloor n / 2\rfloor}$ and $a_{\lfloor n / 2\rfloor+1}, \cdots, a_{n}$. Any subarray with maximum sum can either lie entirely in the first or second partitions or lies in between the two.
We evaluate the maximum subarray sum in both the partitions and let M be the maximum of those two.

Now, any subarray lying in between the two partitions must contain $a_{\lfloor n / 2\rfloor}$ and $a_{\lfloor n / 2\rfloor+1}$.
Therefore, among all subarrays ending at $a_{\lfloor n / 2\rfloor}$, we find the one with maximum sum. Also among all subarrays starting at $a_{\lfloor n / 2\rfloor+1}$, we find the one with maximum sum and append these two.
If the resulting sum of this subarray is greater than M, we report this sum. Else we report M.

Implementation:

```
Algorithm 8 MaxSum(A,n)
    if \(\mathrm{n}==1\) then return \(\mathrm{A}[1]\)
    end if
    if \(\mathrm{n}==2\) then return \(\max (\mathrm{A}[1], \mathrm{A}[2], \mathrm{A}[1]+\mathrm{A}[2])\)
    end if
    \(g=\lfloor n / 2\rfloor\)
    Let \(A_{1}\) be \(a_{1}, \cdots, a_{g}\)
    Let \(A_{2}\) be \(a_{g+1}, \cdots, a_{n}\).
    \(M_{1}=\operatorname{MaxSum}\left(A_{1}, g\right)\)
    \(M_{2}=\operatorname{MaxSum}\left(A_{2}, n-g\right)\)
    \(M=\max \left(M_{1}, M_{2}\right)\)
    \(\mathrm{i}=\mathrm{g}-1\)
    \(\mathrm{ma} 1=\mathrm{A}[\mathrm{g}]\)
    sum \(=A[g]\)
    while \(i \geq 1\) do
        sum \(=\operatorname{sum}+\mathrm{A}[\mathrm{i}]\)
        \(\operatorname{ma1}=\max (\) sum,ma1)
    end while
    \(i=g+2\)
    \(\mathrm{ma} 2=\mathrm{A}[\mathrm{g}+1]\)
    sum \(=A[g+1]\)
```

```
25: while \(i \leq n\) do
        sum \(=\) sum \(+\mathrm{A}[\mathrm{i}]\)
    \(\operatorname{ma} 2=\max (\) sum,ma2 \()\)
end while
29:
\(\mathrm{ma}=\mathrm{ma} 1+\mathrm{ma} 2\)
    return \(\max (\mathrm{ma}, \mathrm{M})\)
```

Lines 1 till 4 constitute the base case. Lines 5-12 form the recursive part of the algorithm. Lines 14-30 compute the maximum sum of the subarray containing $a_{\lfloor n / 2\rfloor}$ and $a_{\lfloor n / 2\rfloor+1}$.
For the above algorithm, we get the recurrence, $T(n)=2 T(n / 2)+O(n)$ whose solution is clearly $O(n \log n)$
There is an $O(n)$ dynamic progrraming solution for this problem.
Let $d p(i)$ denote the maximum sum of all subarrays ending at i.
Clearly, $\operatorname{dp}(1)=a_{1}$.
Suppose we want to compute $d p(i), i>1$. There are two cases: Either the maximum sum subarray ending at i starts at i or does not start at i. In the former case, the sum is just $\mathrm{a}[\mathrm{i}]$. In the latter case, $\mathrm{i}-1$ certainly lies in the subarray and so the maximum sum would be $d p(i-1)+a[i]$.

Therefore, we get the recursion, $d p(i)=\max (a[i], d p(i-1)+a[i])$
Computing $d p(i)$ from 1 to n, and taking the maximum among all those, we see that the whole solution takes $O(n)$ time.
10. Question: You are given n integers, a_{1}, \ldots, a_{n}, in an array. A majority element of this array is any element occurring in more than $\lceil n / 2\rceil$ positions. Assume that elements cannot be ordered or sorted, but can be compared for equality. Design a divide and conquer algorithm to find a majority element in this (or determine that no majority element exists)
Answer: We split the array into two parts : $a_{1}, \cdots, a_{\lfloor n / 2\rfloor}$ and $a_{\lceil n / 2\rceil}, \cdots, a_{n}$. Suppose an element occurs more than $\lceil n / 2\rceil$ positions in the original array. Then that element must occur for more tha $\lceil n / 4\rceil$ positions in one of the arrays.
Therefore, we find all elements which occur atleast for $\lceil n / 4\rceil$ in the left partition and also in the right partition.
Now we compare the elements which we have got from the left partition to all the elements in the right partition to check if any element occurs more than $\lceil n / 2\rceil$ positions and vice versa.
The following observations can be summed up into the pseudocode as follows:

```
Algorithm 9 MoreThan(A,n)
    if \(\mathrm{n}==1\) then return \(\mathrm{A}[1]\)
    end if
    if \(\mathrm{n}==2\) then
        if \(\mathrm{A}[1]==\mathrm{A}[2]\) then return \(\mathrm{A}[1]\)
        else
            return None
        end if
    end if
    \(g=\lfloor n / 2\rfloor\)
    \(A_{1}=a_{1}, \cdots, a_{g}\)
    \(A_{2}=a_{g+1}, \cdots, a_{n}\)
    \(X=\operatorname{MoreThan}\left(A_{1}, g\right)\)
    if \(X \neq\) None then
        Test X with all other cards in \(A_{2}\) and return X if the total number of occurrences are
    greater than \(\lceil n / 2\rceil\)
    else
        \(X=\operatorname{MoreThan}\left(A_{2}, n-g\right)\)
        if \(X \neq\) None then
            Test X with all other cards in \(A_{1}\) and return X if the total number of occurrences are
    greater than \(\lceil n / 2\rceil\)
        end if
    end if
            return None
```

We get the recurrence $T(n)=2 T(n / 2)+c n$ for the above algorithms whose solution is $O(n \log n)$.

