
Design and Analysis of Algorithms Problem Sheet 1 Solutions
22nd August, 2016 Sushant Agarwal

Solutions

1. A d-ary tree is a rooted tree in which each node has at most d children. Show that any d-ary tree with
n nodes must have a depth of Ω(log n/log d). Can you give a precise formula for the minimum depth
it could possibly have?

Solution: Any d-ary tree with n nodes must have a depth of Ω(log n/log d):

A d-ary tree of height h has at most 1 + d + ... + dh = (dh+1 − 1)/(d − 1) vertices. We can
prove this inductively.

(a) Claim: A d-ary tree of height h has at most 1 +d+ ... +dh = (dh+1− 1)/(d− 1) vertices.

(b) Base Case: When the height of h of the tree is 1, the number of vertices is at most
1 + d = (d1+1 − 1)/(d− 1). Therefore, the statement is true when h = 1.

(c) Induction Hypothesis: The statement is true when the height h of the tree is ≤ k.

(d) Induction Step: We will show that the statement is still true when h = k + 1. A d-ary
tree of height k + 1 consists of a root that has at most d children, each of which is the root
of a subtree with height at most k. By the Induction Hypothesis, the number of vertices in
a d-ary tree of height ≤ k is at most 1 + d + ... + dk = (dk+1 − 1)/(d − 1). Therefore,
a tree with height k + 1 has at most 1 + d(1 + d + ... + dk) vertices. Hence a tree with
height k + 1 has at most (dk+2 − 1)/(d− 1) vertices. We have completed the induction.

The height of a tree is equal to the maximum depth D of any node in the tree.

For a tree of height h, the maximum number of vertices n ≤ (dh+1 − 1)/(d− 1). Therefore,

dh+1 ≥ n · (d− 1) + 1 (1)

(h+ 1) ≥ logd(n · (d− 1) + 1) (2)

D = h ≥ (logd(n · (d− 1) + 1)− 1) (3)

By the definition of Big-Ω, the maximum depth D ≥ (logd(n · (d − 1) + 1) − 1) = Ω(logd (n)) =
Ω(log (n)/log (d)) is true.

To obtain the specific formula:
Let d = maximum number of children, h = height of tree
Geometric series:

Σnodes of complete tree =
1− dh+1

1− d
Using Σnodes of complete tree = n:

n(1− d)− 1 = −dh+1

n(d− 1) + 1 = dh+1

logdn(d− 1) + 1 = dh+1

log [n(d− 1) + 1]

log d
= h

This represents the height of a graph of a complete tree. To get the height of an incomplete
tree, we take the ceiling of this equation. Incomplete levels of the tree will be rounded up (eg.,
h = 2.334→ h = 3)

d log [n(d− 1) + 1]

log d
e = h

2. Sort each group of functions in increasing order of asymptotic (Big-O) growth. If two functions have
the same asymptotic growth, indicate this.

(a) 22
10

n, 1/n, log n, n2, 210n, n(n− 1)/2, n
√
n, n log n

Solution: 1/n < log n < 22
10

n < n log n < n
√
n < n2 = n(n− 1)/2 < 210n

• n log n < n
√
n

Solution: Show that n log n ∈ O(n
√
n)

lim
n→∞

n log n

n
√
n

= lim
n→∞

log n√
n

(Using L’Hopital’s rule)

= lim
n→∞

1/2
√
n

1/n
= lim
n→∞

2√
n

= 0 <∞

AND, show that n
√
n /∈ O(n log n):

lim
n→∞

n
√
n

n log n
= lim
n→∞

√
n

log n

(Using L’Hopital’s rule)

= lim
n→∞

1/n

1/2
√
n

= lim
n→∞

√
n

2
≮∞

• n2 = n(n−1)
2

Solution: Show that n2 ∈ Θ(n(n−1)2) (n2 ∈ O(n(n−1)2) and n(n−1)
2 ∈ O(n2))

To show n2 ∈ O(n(n−1)2): take c = 4, N = 2

To show n(n−1)
2 ∈ O(n2): take c = 1, N = 1

(b) n
√
n, 2n, n10, 3n, nlog n,

(
n

n/2

)
, log(nn), n!

Solution: log(nn) < n10 < nlog n < n
√
n <

(
n

n/2

)
< 2n < 3n < n!

• n
√
n < 2n

Hint: n
√
n can be written as 2log n·

√
n.

• 3n < n!

Solution: Show that 3n ∈ O(n!):

lim
n→∞

3n

n!
= lim
n→∞

3 ∗ 3 ∗ 3 · · · (n times)

n ∗ (n− 1) · · · (n terms)

= lim
n→∞

3

n
· 3

(n− 1)
· 3

(n− 2)
· · · 3

3
· 3

2
· 3

1

≤ lim
n→∞

3

n
· 3

3
· 3

3
· · · 3

3
· 3

2
· 3

1

= lim
n→∞

3

n
· 9

2
= 0 <∞

AND, show that n! /∈ O(3n) by showing that

lim
n→∞

n!

3n
≮∞

•
(
n

n/2

)
< 2n

Solution : Show that

(
n

n/2

)
∈ O(2n)

Using Stirling’s approximation as n→∞,

(
n

n/2

)
=

n!

(n/2)!(n/2)!
≈

√
2πn

(n
e

)n
(
√
πn

(n
2e

)n/2)2 ≈
√

2 · 2n√
πn

Therefore,

lim
n→∞

(
n

n/2

)
2n

≈ lim
n→∞

√
2 · 2n√
πn · 2n

= lim
n→∞

√
2√
πn

= 0

Similarly, show that 2n /∈ O
(
n

n/2

)

3. (a) Find (with proof) a function f1 mapping positive integers to positive integers such that f1(2n) is
O(f1(n)).

Solution: Consider f1(n) = n.
Let g(n) = f1(n) = n and h(n) = f1(2n) = 2n.

We now have to prove that h(n) ∈ O(g(n)):
By the definition of Big-O, h(n) ∈ O(g(n)) if ∃ positive constants c, N such that h(n) ≤
c · g(n), ∀n > N
Since, 2n ≤ 2 · n, ∀n > 0 (here c = 2, N = 0), h(n) ∈ O(g(n))

(b) Find (with proof) a function f2 mapping positive integers to positive integers such that f2(2n) is
not O(f2(n)).

Solution: Consider f2(n) = 2n.
Let g(n) = f2(n) = 2n and h(n) = f2(2n) = 22n = (22)n = 4n.

We now have to prove that h(n) /∈ O(g(n)):
Assume toward a contradiction that h(n) ∈ O(g(n)). By the definition of Big-O, this means
that there exist constants c > 0, N such that h(n) ≤ c · g(n) ∀n ≥ N . But this is equivalent
to saying 2n · 2n ≤ c · 2n ∀n ≥ N =⇒ 2n ≤ c ∀n ≥ N . But the function 2n is monotonically
increasing in n > 0, and cannot be bounded by the assumed constant c for all n > N .

Alternate proof using limits:

By the definition of Big-O, h(n) ∈ O(g(n)) if limn→∞
h(n)
g(n) <∞

lim
n→∞

h(n)

g(n)
= lim
n→∞

4n

2n
= lim
n→∞

2n ≮∞

(c) Prove that if f(n) is O(g(n)), and g(n) is O(h(n)), then f(n) is O(h(n)).

Solution: By the definition of Big-O, there exist positive integers N1 and N2 and positive
constants c1 and c2 such that f(n) ≤ c1 · g(n) for n > N1 and g(n) ≤ c2 · h(n) for n > N2.
Let N0 = max(N1, N2) and c0 = c1c2.

f(n) ≤ c1 · g(n), ∀n > N0 (1)

g(n) ≤ c2 · h(n), ∀n > N0 (2)

(1) and (2) imply,
f(n) ≤ c1 · g(n) ≤ c1c2 · h(n), ∀n > N0

Thus, f(n) is O(h(n))

(d) Prove or disprove: if f is not O(g), then g is O(f).

Solution:

A counterexample can disprove the above claim:

Let f(n) = 2n·sin n, g(n) = n. We will show that f(n) /∈ O(g(n)) and g(n) /∈ O(f(n))

Definition: f(n) /∈ O(g(n)) if for all choices of positive c and N , there exists some n > N
such that f(n) > cg(n).

Showing that 2n·sin n /∈ O(n):

Choose any c, N > 0. We can choose n > N such that:

i. sin n = d > 0

ii. 2dn > cn

Similarly, show that n /∈ O(2n·sin n):
Choose any c, N > 0. We can choose n > N such that:

i. sin n = e < 0

ii. cn > 2en

4. A binary tree is a rooted tree in which each node has at most two children. Show that in any binary
tree the number of nodes with two children is exactly one less than the number of leaves. (Hint:
induction.)

Solution: We will prove this by induction on number of nodes in a binary tree T .
Let n0(T) = number of leaves of binary tree T , n2(T) = number of nodes in T with 2 children

(a) Claim: A binary tree T with n vertices satisfies n0(T)− 1 = n2(T)

(b) Base Case: A binary tree with 1 vertex has 1 leaf and no vertices with 2 children. Hence,
the condition is satisfied.

(c) Induction Hypothesis: A binary tree T ′ with n vertices satisfies n0(T ′)− 1 = n2(T ′).

(d) Induction Step: We will show the condition to be true for a binary tree T with n + 1
vertices.

Let T be an arbitrary binary tree with n+ 1 vertices. Let v be a leaf of the tree. Since the
tree has more than one vertex, v is not the root and it therefore has a parent u. Let T ′ be
obtained by deleting the leaf v.

Case 1 : If the parent u had 2 children.
Number of leaves in the tree reduces by 1, n0(T ′) = n0(T)− 1
Number of vertices with 2 children reduces by 1, n2(T ′) = n2(T)− 1
By induction hypothesis, we know n0(T ′) = n2(T ′) + 1
n0(T ′) = n2(T ′) + 1 => n0(T) = n2(T) + 1
Therefore, the condition holds true for T with n+ 1 vertices.

Case 2 : If the parent u had 1 child. Now u becomes a leaf. Number of leaves and vertices
with 2 children remain unchanged:
n0(T ′) = n0(T)
n2(T ′) = n2(T)
n0(T ′) = n2(T ′) + 1 => n0(T) = n2(T) + 1
Therefore, the condition holds true for T with n+ 1 vertices.

Hence proved by induction.

5. In this problem the input includes an array A such that A[0 . . . n−1] contains n integers that are sorted
into non-decreasing order: A[i] ≤ A[i + 1] for i = 0, 1, . . . , n − 2. The array A may contain repeated
elements, e.g. A = [0, 1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 6, 6, 6]

(a) Describe carefully an algorithm COUNT (A, x) that, given an array A, and an integer x, returns
the number of occurrences of x in the array A. Your algorithm should be similar to binary search,
and must run in O(log n).

Solution: First we will implement the function FIRST INDEX(A, x, low, high) which re-
turns the smallest i such that low ≤ i < high and A[i] ≥ x. This is done by tweaking the
binary search algorithm so that it continues searching for the first index of the “key” even if
it has already found one occurrence. If no such index exists, then the function returns high.
We implement FIRST INDEX as follows:

FIRST INDEX(A, x, low, high)

if low = high

return low

mid = (low + high)/2

if A[mid] < x

then return FIRST INDEX(A, x, mid + 1, high)

if A[mid] ≥ x

then return FIRST INDEX(A, x, low, mid)

Then we implement COUNT(A, x) which will give the number of occurrences of x in array
A. It does this as shown below:

COUNT(A,x)

return FIRST INDEX(A, x+1, 0, n) - FIRST INDEX(A, x, 0, n).

Running time:
There are two calls to FIRST INDEX by COUNT. Therefore, running time of our algorithm
is the running time of FIRST INDEX.

Let n = high − low. If n > 1, then FIRST INDEX makes a recursive call to either the left
half or the right half of the array i.e. single subproblem of size n/2. This gives the recursive
relation

T (n) = T (n/2) + Θ(1)

which can be solved using the Master Theorem to give T (n) = Θ(log n).

(b) Prove that your algorithm always terminates.

Solution: We need only show that FIRST INDEX terminates.
The algorithm terminates because every recursive call to FIRST INDEX processes a smaller
range of A (the difference high−low strictly decreases), so every call will eventually terminate
at the base case where low = high.

Proof by induction:

(a) Claim: The algorithm FIRST INDEX terminates with any input of size n, n ≥ 0

(b) Base Case: The algorithm terminates with input of size 0: since low = high it
terminates

(c) Induction Hypothesis: The algorithm FIRST INDEX terminates with any input of
size n, ∀n ≤ k, k ≥ 0

(d) Induction Step: We need to show that FIRST INDEX terminates with input of size
k + 1
The algorithm makes a recursive call on either the left half of the array or the right
half of the array. The input sizes on both these recursive calls is < k+ 1. By induction
hypothesis we know that the algorithm terminates for input sizes ≤ k. Hence the
algorithm will terminate.

This completes the proof

(c) Prove that when your algorithm terminates, it terminates with the correct answer.

Solution: The function FIRST INDEX terminates with the correct answer because if A[mid]
is less than x, then no index less than mid can contain any element that is at least x, so we
can recurse to the right half. On the other hand, if A[mid] is at least x, then the smallest
index i such that A[i] is at least x must be at most equal to mid, so we can recurse to the
left half.

Finally, the difference between FIRST INDEX(A, x+1, 0, n) - FIRST INDEX(A, x, 0, n) must
be the number of indices that contain exactly x.

6. You are given a vertex-weighted graph. Consider the following definitions.

Independent set: a set of vertices in a graph, no two of which are adjacent.

Weight of independent set: sum of weights of vertices in the set.

Max-weight independent set problem: Find an independent set which has maximum weight.

Consider the following “greedy” approach to finding a max-weight independent set in a given vertex-
weighted graph:

1) Start with an empty set X.

2) For each vertex v of the graph, in decreasing order of weight:

add vertex v to the set X if v is not adjacent to any vertex in X.

3) Return X, weight(X).

(a) Show that the “greedy” approach for the max-weight independent set is not optimal, by exhibiting
a small counterexample.

Solution: Consider the graph shown below with w(B) = 3, w(A) = w(C) = 2:

The greedy approach adds B to set X and is unable to add more vertices. It returns {B}
with weight 3. However the max-weight independent set for the above is {A,C} with weight
= 4.

(b) How badly suboptimal can greed be, relative to optimal? Please clearly explain your definition of
“badly suboptimal”.

Solution: We define the suboptimality of greed relative to optimal as the ratio of the weight
of the optimum max-weight independent set to the weight of the greedy max-weight indepen-
dent set. The larger the ratio, the greater the suboptimality of the greedy approach.

Consider the n-vertex “star” below:

Worst case behavior of greedy approach:

• the addition of first vertex u to X forbids other vertices from getting added (all other
vertices are adjacent to u)

• Weight of u is just greater than that of the other vertices by a small amount (ε)

Therefore, suboptimality = n−1
1+ε ∈ Ω(n).

