Questions:

1. Order the following functions in the increasing order of growth (no justification needed): $\mathbf{6}$ marks

$$
n^{2}, 2^{\log ^{2} n}, n^{1 / 3}, n^{\log \log n}
$$

2. Solve the following recurrence by recursion tree method, and verify your answer using Master method: 6 marks

$$
T(n)=5 T\left(\frac{n}{7}\right)+n^{2}
$$

3. You need to find k largest elements from an unsorted array of n distinct elements. Design an efficient algorithm for the same. There is no credit for a suboptimal algorithm.

8 marks
4. You are given n distinct points and one line ℓ on the plane, and some constant $r>0$. Each of the n points is within (perpendicular) distance r of the line. You need to place disks of radius r with their centers on line ℓ such that each of the n points lies within at least one disk.
Design an $O(n \log n)$ time greedy algorithm to find the minimum number of disks required. Prove its optimality.

Questions:

1. Order the following functions in the increasing order of growth (no justification needed): $\mathbf{6}$ marks

$$
n^{2}, 2^{\log ^{2} n}, n^{1 / 3}, n^{\log \log n}
$$

2. Solve the following recurrence by recursion tree method, and verify your answer using Master method: 6 marks

$$
T(n)=5 T\left(\frac{n}{7}\right)+n^{2}
$$

3. You need to find k largest elements from an unsorted array of n distinct elements. Design an efficient algorithm for the same. There is no credit for a suboptimal algorithm.
4. You are given n distinct points and one line ℓ on the plane, and some constant $r>0$. Each of the n points is within (perpendicular) distance r of the line. You need to place disks of radius r with their centers on line ℓ such that each of the n points lies within at least one disk.
Design an $O(n \log n)$ time greedy algorithm to find the minimum number of disks required. Prove its optimality.

10 marks

