
Design and Analysis of Algorithms
Problem Sheet 2

Dynamic Programming:

Problem 1:

Given an array of n positive integers a1, a2, . . . , an, give an algorithm to find the length of the longest
subsequence ai1 , ai2 , . . . , aik where 1 ≤ ai1 < ai2 < . . . < aik ≤ n such that each term divides the next
term, that is, aij divides aij+1

for all 1 ≤ j < k.

Problem 2:

Given a n ×m grid of integers where the rows are numbered from 1 to n and the columns are numbered
from 1 to m. Your task is to answer queries of the form (i, j, k, l) for different 1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m.
The answer to such a query is the sum of the numbers in the sub-grid bounded by the i, jth rows and the
k, lth columns. Preprocess the grid so as to efficiently answer each such query in constant time.

Problem 3:

Given an array of n integers a1, a2, . . . , an. You start with a score of 0. In each step, you are allowed
to choose an index i different from 1 and n and delete ai from the array. The value of ai−1 × ai+1 gets
added to your score. After deleting ai, the new array is of length n−1 and is a1, . . . , ai−1, ai+1, . . . , an. The
process stops when you have only 2 elements remaining. Compute the maximum possible score you can get.

Problem 4:

Given a set S of n distinct positive integers a1, . . . , an and a positive integer M . Give an algorithm to
compute the number of subsets T of S such that the sum of elements of T is exactly M .

Problem 5:

Given an array of n distinct integers a1, a2, . . . , an, give an algorithm to find the longest continuous moun-
tain present in the array, that is, the longest sub-array ai, . . . , aj such that there exists an index k, i ≤ k ≤ j
such that the sequence ai, . . . , ak is strictly increasing and the sequence ak, . . . , aj is strictly decreasing.
A sub-array is a contiguous portion of the array.

Greedy:

Problem 6:

Given n integers on the real line, a1, a2, . . . , an, you need to cover all of them using closed intervals of length
1. ie. you need to place some intervals on the real line such that every ai is contained within at least

1



one of the closed intervals. Give an algorithm to find the minimum number of such intervals that you need.

Problem 7:

You work in a pizza shop which offers a wide range of toppings. The toppings are stored in separate jars
which are kept in a cupboard (assume that the jars have unlimited capacity). But the cupboard is far
from the counter, and so you keep some jars in a nearby desk. Unfortunately the desk is small and you
can keep at most S jars on it at any given time. So when a customer asks for a topping which is not on
your desk, and if your desk is full, you will have to return some jar back to the cupboard and replace it
with the necessary jar. Miraculously you know the exact sequence of toppings that will be demanded by
your customers, which is a1, a2, . . . , an. Each ai corresponds to a topping. Describe an algorithm to find
the least number of trips that you will have to make to the cupboard. You can start off with any S jars
on the desk. Assume 1 ≤ ai ≤ n.

Problem 8:

You are given 2 integers, l and r. You need to find two numbers L and R, which satisfy l ≤ L ≤ R ≤ r,
and which maximize the bit-wise XOR of L and R.

A bitwise XOR takes two bit patterns of equal length and performs the logical exclusive OR operation
on each pair of corresponding bits. The result in each position is 1 if only the first bit is 1 or only the
second bit is 1, but will be 0 if both are 0 or both are 1.

Divide and Conquer:

Problem 9:

Given n integers, a1, a2, . . . , an, you need to find the sub-array with the maximum sum. A sub-array is a
contiguous portion of the array, and it’s sum is just the sum of all the array values which it covers.

Give a Divide and Conquer based algorithm to solve this. Try to come up with a linear time solution
(not Divide and Conquer based).

Problem 10:

You are given n integers, a1, a2, . . . , an, in an array. A majority element of this array is any element
occurring in more than dn

2
e positions. Assume that elements cannot be ordered or sorted, but can be

compared for equality. (You might think of the elements as chips, and there is a tester that can be used
to determine whether or not two chips are identical.) Design a divide and conquer algorithm to find a
majority element in this (or determine that no majority element exists)

2


