Design and Analysis of Algorithms : Assignment 1

1) Problem 3-2 from CLRS

A	B	O	o	Ω	ω	Θ
$\log ^{k} n$	n^{ϵ}	Y	Y	n	n	n
n^{k}	c^{n}	Y	Y	n	n	n
\sqrt{n}	$n^{\sin n}$	-	-	-	-	-
2^{n}	$2^{n / 2}$	n	n	Y	Y	n
$n^{\log c}$	$c^{\log n}$	Y	n	Y	n	Y
$\log n!$	$\log n^{n}$	Y	n	Y	n	Y

2) Problem 4.2-5 from CLRS

The answer is $\Theta(n \log n)$.
3) Problem 4-4 (a, c, f, j) from CLRS
a. $\Theta\left(n^{\log 3}\right)$
c. $\Theta\left(n^{2.5}\right)$
f. $\Theta(n)$
j. $\Theta(n \log \log n)$
4) Suppose we are given an array $A[1 \ldots n]$ with the special property that $A[1] \geq A[2]$ and $A[n-$ $1] \leq \mathrm{A}[\mathrm{n}]$. We say that an element $\mathrm{A}[\mathrm{i}]$ is a local minimum if $\mathrm{A}[\mathrm{i}-1] \geq \mathrm{A}[\mathrm{i}]$ and $\mathrm{A}[\mathrm{i}+1] \geq \mathrm{A}[\mathrm{i}]$. For example, there are six local minima (underlined) in the following array:

$$
9, \underline{7}, 7,2, \underline{1}, 3,7,5, \underline{4}, 7, \underline{3}, \underline{3}, 4,8, \underline{6}, 9
$$

We can obviously find a local minimum in $O(n)$ time by scanning through the array. Given and analyze an $O(\log n)$ time algorithm for the same.

5) Problem 7-3 from CLRS

The correctness can be proved by induction. Assume it is true for 1 . Then for a call Stooge(A, i, j), assume it sorts any array of size less than $|j-i|$ and use that to show that it works for (A, i, j).

```
Algorithm 1 LocalMin
    procedure LocalMin \((\mathrm{A}, \mathrm{i}, \mathrm{j}) \quad \triangleright\) Finds the local min in \(\mathrm{A}[\mathrm{i} \ldots \mathrm{j}]\)
        if \((j-i) \leq 1\) then
            return i
        end if
        mid \(\leftarrow \frac{i+j}{2}\)
        if \(A[\) mid -1\(] \geq A[\) mid \(]\) and \(A[\) mid \(] \leq A[\) mid +1\(]\) then \(\triangleright\) If mid is the local min
            return mid
                        \(\triangleright\) Return it
        end if
        if \(A[\) mid -1\(]<A[\) mid \(]\) then
            return LocalMin(A, i, mid) \(\quad\) Search for min in the lower half
        else \(\quad \triangleright\) Definitely \(A[\) mid \(]>A[\) mid +1\(]\)
            return \(\operatorname{LocalMin}(A\), mid, j\() \quad \triangleright\) Search for min in the upper half
        end if
    end procedure
```

The recurrence is

$$
\begin{aligned}
T(n) & =3 T\left(\frac{2}{3} n\right)+\Theta(1) \\
T(n) & =3 T\left(\frac{2}{3} n\right)+1 \\
& \vdots \\
& =3^{k} T\left(\left(\frac{2}{3}\right)^{k} n\right)+\sum_{i=0}^{k-1} 3^{i} \\
& =\sum_{i=0}^{k} 3^{i} \quad n \approx\left(\frac{2}{3}\right)^{k}, k=\log _{(3 / 2)} n \\
& =\frac{3^{\log _{(3 / 2)} n+1}-1}{3-1} \\
& =\Theta\left(3^{\log _{(3 / 2)} n}\right)=\Theta\left(n^{\log _{(3 / 2)} 3}\right) \\
& =\Theta\left(n^{2 \cdot 7095}\right)
\end{aligned}
$$

6) Problem 8.3-2 from CLRS

Use Radix sort. We can use Lemma 8.4 with $b=\log \left(n^{2}\right)=2 \log n, r=\log n$. Then by using radix sort, we can sort it in time $\Theta\left((b / r)\left(n+2^{r}\right)\right)=\Theta(n)$.

