1) Problem 3-2 from CLRS

A	B	O	0	Ω	ω	Θ
$\log^k n$	n^{ϵ}	Y	Y	n	n	n
n^k	c^n	Y	Y	n	n	n
\sqrt{n}	$n^{\sin n}$	-	-	-	-	-
2^n	$2^{n/2}$	n	n	Y	Y	n
$n^{\log c}$	$c^{\log n}$	Y	n	Y	n	Y
$\log n!$	$\log n^n$	Y	n	Y	n	Y

2) Problem 4.2-5 from CLRS

The answer is $\Theta(n \log n)$.

3) Problem 4-4 (a, c, f, j) from CLRS

a. $\Theta(n^{\log 3})$ c. $\Theta(n^{2.5})$ f. $\Theta(n)$ j. $\Theta(n \log \log n)$

4) Suppose we are given an array $A[1 \dots n]$ with the special property that $A[1] \ge A[2]$ and $A[n - 1] \le A[n]$. We say that an element A[i] is a local minimum if $A[i - 1] \ge A[i]$ and $A[i + 1] \ge A[i]$. For example, there are six local minima (underlined) in the following array:

$$9, \underline{7}, 7, 2, \underline{1}, 3, 7, 5, \underline{4}, 7, \underline{3}, \underline{3}, 4, 8, \underline{6}, 9$$

We can obviously find a local minimum in O(n) time by scanning through the array. Given and analyze an $O(\log n)$ time algorithm for the same.

5) Problem 7-3 from CLRS

The correctness can be proved by induction. Assume it is true for 1. Then for a call Stooge(A, i, j), assume it sorts any array of size less than |j - i| and use that to show that it works for (A, i, j).

0	
procedure LocalMin(A, i, j)	\triangleright Finds the local min in A[i j]
if $(j-i) \leq 1$ then	
return i	
end if	
$mid \leftarrow \frac{i+j}{2}$	
if $A[mid-1] \ge A[mid]$ and $A[mid] \le A[mid+1]$ then	\triangleright If mid is the local min
return mid	\triangleright Return it
end if	
if $A[mid-1] < A[mid]$ then	
return LocalMin(A, i, mid)	\triangleright Search for min in the lower half
else	\triangleright Definitely $A[mid] > A[mid+1]$
return LocalMin(A, mid, j)	\triangleright Search for min in the upper half
end if	
end procedure	

The recurrence is

$$\begin{split} T(n) &= 3T\left(\frac{2}{3}n\right) + \Theta(1) \\ T(n) &= 3T\left(\frac{2}{3}n\right) + 1 \\ \vdots \\ &= 3^k T\left(\left(\frac{2}{3}\right)^k n\right) + \sum_{i=0}^{k-1} 3^i \\ &= \sum_{i=0}^k 3^i \\ &= \frac{2^k}{3^{\log_{(3/2)} n+1} - 1}{3 - 1} \\ &= \Theta(3^{\log_{(3/2)} n}) = \Theta(n^{\log_{(3/2)} 3}) \\ &= \Theta(n^{2.7095}) \end{split}$$

6) Problem 8.3-2 from CLRS

Use Radix sort. We can use Lemma 8.4 with $b = \log(n^2) = 2\log n$, $r = \log n$. Then by using radix sort, we can sort it in time $\Theta((b/r)(n+2^r)) = \Theta(n)$.