Design and Analysis of Algorithms End-Semester Examination: Marking scheme

November 28, 2012

1. Failure probability of a path $P=1-\prod_{e \in P}\left(1-p_{e}\right)$. Minimizing this is equivalent to maximizing $\prod_{e \in P}\left(1-p_{e}\right)$, hence maximize $\sum_{e \in P} \log \left(1-p_{e}\right)$, hence minimize $\sum_{e \in P} \log \frac{1}{1-p_{e}}$. With these edge weights, execute Dijkstra's algorithm. As $0 \leq p_{e}<1,0<1-p_{e} \leq 1$.
Correct algo: 4 marks, complexity: 1 mark
2. Maintain pointers to first occurrences of a ball of each color. Hence you need 3 pointers. Swap the balls pointed to by the pointers, if necessary and modify the poiners to again point to the correct position. Only red pointer needs to point to the first misplaced red ball.
You need to prove that for each pointer, the array is scanned only once throughout the algorithm. Hence $O(n)$ time.
Correct algo: 4 marks, complexity+correctness: 3 marks
3. Maintain a sorted array B of distinct elements. Scan the original array A, each time insert an element in B at correct position if it's not already present.
Checking an element's presence in B takes $O(\log \log n)$, insertion takes $O(\log n)$. Total time for search $=O(n \log \log n)$, total time for insertion $=\log ^{2} n$.
Correct algo: 5 marks, analysis: 3 marks
4. An Euler traversal gives the required list. Each edge is traversed twice, so $O(n)$ time.
5. (a) Case 1: $A=\{s\}$: Trivially no edges between A and $V \backslash A$.

Case 2: $B=\{t\}$: Again trivial
Case 3: $V \cap A=\emptyset$: This is a cut in which $A \backslash\{s\} \subseteq U$. Thus the edges cut are from s to $U \backslash A$ and from A to V. You can argue that there is another cut of the same cardinality or less if you A so that it becomes $N(A) \cup A$. Of course $N(A) \subseteq V$ and you reach one of the other cases now. Case 4: $V \cap A \neq \emptyset$. Let $X=U \cap A$ and $Y=V \cap A$. Also, let $X^{\prime}=U \backslash X, Y^{\prime}=V \backslash Y$. Thus $X^{\prime}, Y^{\prime} \subset B .|C u t|=\left|X^{\prime}\right|+|Y|+|E(X, N(X))|$.
As earlier, if $N(A) \cap X^{\prime} \neq \emptyset$, modify the partitions by putting $N(X)$ into A. In terms of the sets described above, the new cut size is $\left|X^{\prime}\right|+|Y|+|N(X)|$. As $|E(X, N(X))| \geq|N(X)|$, this cut is at most as large as the previous one and has no edges from A to $V \backslash A$.
(Ideally, I should have drawn figures here but I am not very good at it.)
Cases 1,2: 1 mark each, Case 3: 2 marks, Case 4: 3 marks
(b) Required vertex cover is $X^{\prime} \cup N(X)$. (Note that vertex cover is required for original graph, not for the flow graph. Hence you need not cover s to A edges.
(c) $A=\left\{v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, s\right\}, B=$ rest.
(d) \exists perfect matching \Leftrightarrow maxflow $=n$. If there is a subset X such that $|X|>|N(X)|$, form a cut as $A=\{s\} \cup X \cup N(X)$ and B the rest. This cut has size $(n-|X|)+|N(X)|<n$. Converse can be proved similarly.
First implication: 1 mark, above argument including converse: 3 marks
6. (a) Decision version, containment in NP : 1 mark

Reduction: Given an instance of set cover problem, sets form X partition in the bipartite dominating set instance, elements in the universe form Y partition. Correctness is trivial. 3 marks.
(b) Form clique on X to get an instance G^{\prime} of dominating set problem. For each dominating set that includes vertices in Y, remove those vertices and put their neighbours from X into the dominating set. Argue that this does not increase the size. Thus G^{\prime} has a dominating set of size k iff G does.
(c)

$$
\begin{aligned}
& \text { Minimize } \sum_{v \in V} x_{v} \quad \text { subjectto } \\
& x_{v}+\sum_{u:(u, v) \in E} x_{u} \quad \geq \quad 1 \forall v \in V \\
& x_{v} \quad \in \quad\{0,1\} \forall v \in V
\end{aligned}
$$

(d) (i) In any feasible solution of the relaxed LP, at least one of the $d+1$ variables in each constraint has value $\geq \frac{1}{d+1}$.
(ii) Opt of LP \leq Opt of ILP: 2 marks The above modification scales a variable by at most a factor of $d+1$. Hence the algorithmic solution $\leq(d+1)(\mathrm{LP}$ opt $) \leq(d+1)$ ILP opt $: 2$ marks
7. (a) Any $k+1$ clique can not be colored in k colors.
(b) A random coloring leaves an edge unsatisfied with probability $\frac{1}{k}: 2$ marks

Define a random variable $X=$ number of satisfied edges in a random coloring. Define random variables X_{e} such that $X_{e}=1$ if the coloring satisfies e and $X_{e}=0$ otherwise. $E[X]=\sum_{e \in E} E\left[X_{e}\right]=$ $\frac{k-1}{k}|E|: 2$ marks
Hence there exists required coloring: 2 marks
(c) Use method of conditional expectation as we used in class for 3-SAT. Pick a vertex v_{1} and split the expectation into k sums as

$$
E[X]=\sum_{i=1}^{k} \frac{1}{k} E\left[X \mid \operatorname{color}\left(v_{1}\right)=i\right]
$$

. By averaging argument, there exists one value of i where the conditional expectation is at least $\frac{k-1}{k}|E|$.

