Design and Analysis of Algorithms
 Class Test 1

August 30, 2012

Time: 1 hr 30 min
Marks: 30

Instructions:

1. Solve as many questions as you can.
2. Try to optimize your algorithm as much as possible.
3. Whenever you are asked to design an algorithm, write a correctness proof and analyze its time complexity.

Questions:

1. Compare each of the following pairs of functions and state whether they are related by O, o, Ω, ω, or Θ relation.
(a) $\sqrt{(} n),(\log n)^{2}$
(b) $n^{\frac{3}{2}}, n^{\frac{1}{2}}$
(c) $2^{\sqrt{n}}, n^{2}$
(d) $2^{n}, 4^{n}$
(e) $2^{n}, n$!
(f) $2^{n}, n^{\log \log n}$
2. Solve the following recurrences by the method indicated:
(a) $T(n)=4 T\left(\frac{n}{2}\right)+n$ by the master method
(b) $T(n)=T\left(\frac{n}{2}\right)+\Theta(1)$ by substitution method 2
(c) $T(n)=2 T\left(\frac{n}{2}\right)+n \log n$ by recursion tree. Can the master method be applied here? If yes, also find the answer by the master method. If no, why?

3
3. To cut a wooden board, a sawmill charges proportional to the length of the board. The cost of cutting a single board into many smaller boards will thus depend on the order of the cuts.
As an example, lets say cutting a 10 m board into two pieces costs $\$ 10$. Then to cut a 10 m long board at marked positions 3 m and 5 m costs $\$ 10+\$ 7=\$ 17$ if it is first cut at position 3 m and then at 5 m . On the other hand, if it is cut at 5 m position first, and then at 3 m , it would cost $\$ 10+\$ 5=\$ 15$.
As input, you are given a board of length n with k marks on it. You need to give an algorithm that, given an input length n and a set of k desired cut points along the board, will produce a cutting order with minimal cost in $O\left(k^{c}\right)$ time, for some constant c.
Does a greedy strategy work here? If yes, give a greedy algorithm and prove its optimality. Otherwise give a dynamic programming solution.
4. Consider the following pseudocode for finding the i th smallest element from an array A of n elements: Initial call is made with $\operatorname{Select}(A, i, 1, n)$.

```
\(\operatorname{Select}(A, i, x, y) / /\) Finds \(i\) th smallest of \(A[x, \ldots, y]\).
Divide the elements of \(A\) into groups of 5 each.
\(m=y-x+1 / /\) Number of elements in the portion of \(A\) being considered.
\(B=\) array of medians of all the groups
\(r=\operatorname{Select}\left(B,\left\lceil\frac{m}{10}\right\rceil, 1,\left\lfloor\frac{m}{5}\right\rfloor\right)\)
Partition \(A\) around \(r\). Let \(q\) be the correct position of \(r\) in \(A\).
if \(q=i\) then
    return \(r\).
else
    if \(q>i\) then
        return \(\operatorname{Select}(A, i, x, x+q)\)
        else
            return \(\operatorname{Select}(A, i-q, x+q+1, y)\)
        end if
end if
```

(a) Show how to implement Select in-place i.e. without using the auxillary array B.
(b) What is the running time of Select if elements are divided into groups of 3 instead of groups of 5 ?
5. Given a weighted directed graph with no negative weight cycles (but possibly negative weight edges), let $m_{u v}$ be the minimum number of edges which appear on a shortest path from u to v. Let $m=$ $\max _{u, v} m_{u v}$. Modify the Bellman-Ford algorithm to run in time $O(m E)$ (assuming m is not known to you).

