Design and Analysis of Algorithms Assignment 3

October 8, 2012

Marks: 30

Due date: 19th October

- 1. You have seen how to find edge-disjoint paths from s to t in a graph using network flows. Using similar method, show how to find vertex-disjoint paths from s to t. 4 marks
 - (Hint: Unlike in the case of edge-disjoint paths, you need to modify the graph here.)
- 2. Construct the dual of the following linear programs: 4 marks Minimize $2x_1 + 5x_2 + 6x_3$ subject to Maximize $3x_1 + 4x_2 + 2x_3$ subject to

$5x_1 + 2x_2$	\leq	10	$3x_1 + 4x_2 + 3x_3$	\geq	8
$3x_2 + 4x_3$	\leq	7	$x_1 + x_2 + x_3$	\geq	3
$x_1 + x_2 + x_3$	=	3	x_1, x_2, x_3	\geq	0

3. A vertex cover is a set of vertices $S \subseteq V$ in a graph such that each edge has at least one of its end-points in S. The vertex cover problem is to find an S of minimum cardinality.

Write an LP for this problem and construct its dual. Using strong duality, show that in a bipartite graph, the size of a minimum vertex cover is equal to the size of a maximum matching. 6 marks

- 4. We are given a string $S = a_0 a_1 \dots a_{n-1}$ of zeros and ones of length n. We have to find if there exist three ones in S, say a_i, a_j, a_k , such that $k - j = j - i \ge 1$. Such a triple of ones will be referred to as a *well-spaced triple*. The string 10100101 does not have a well-spaced triple whereas the string 010100110011 does. 8 marks
 - (a) Give a simple $O(n^2)$ algorithm to find a well-spaced triple in a given string S. The goal in the next parts is to use FFT to find an $O(n \log n)$ time algorithm.
 - (b) Define convolution of two strings $a_0a_1 \dots a_{n-1}$ and $b_0b_1 \dots b_{m-1}$ to be another string $c_0c_1 \dots c_{n+m-2}$ where $c_k = \sum_{i,j:i+j=k} a_i b_j$. In the given problem, suppose we convolve S with itself, P = CONVOLVE(S, S). Give an interpretation of P_i in the cases when i is odd and even.
 - (c) Use your interpretation to count the number of well-spaced triples in O(nlogn) time.
 - (d) Give an algorithm to find a well-spaced triple in O(n) time, given the convolution P. **Open question:** Give an algorithm to find all well-spaced triples in O(n + T) time given P, where T is the number of well-spaced triples in S. Note: By above algorithm, we need O(nT)time.
- 5. Problem 2.30 page 88-89 from Dasgupta et al.

8 marks