Design and Analysis of Algorithms Assignment 3

October 8, 2012

Marks: 30
Due date: 19th October

1. You have seen how to find edge-disjoint paths from s to t in a graph using network flows. Using similar method, show how to find vertex-disjoint paths from s to t.

4 marks
(Hint: Unlike in the case of edge-disjoint paths, you need to modify the graph here.)
2. Construct the dual of the following linear programs:

4 marks

$$
\begin{array}{rlrl}
\text { Maximize } 3 x_{1}+4 x_{2}+2 x_{3} \text { subject to } & \text { Minimize } 2 x_{1}+5 x_{2}+6 x_{3} \text { subject to } \\
5 x_{1}+2 x_{2} & \leq 10 & 3 x_{1}+4 x_{2}+3 x_{3} & \geq 8 \\
3 x_{2}+4 x_{3} & \leq 7 & x_{1}+x_{2}+x_{3} & \geq 3 \\
x_{1}+x_{2}+x_{3} & =3 & x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

3. A vertex cover is a set of vertices $S \subseteq V$ in a graph such that each edge has at least one of its end-points in S. The vertex cover problem is to find an S of minimum cardinality.
Write an LP for this problem and construct its dual. Using strong duality, show that in a bipartite graph, the size of a minimum vertex cover is equal to the size of a maximum matching. 6 marks
4. We are given a string $S=a_{0} a_{1} \ldots a_{n-1}$ of zeros and ones of length n. We have to find if there exist three ones in S, say a_{i}, a_{j}, a_{k}, such that $k-j=j-i \geq 1$. Such a triple of ones will be referred to as a well-spaced triple. The string 10100101 does not have a well-spaced triple whereas the string 010100110011 does.

8 marks
(a) Give a simple $O\left(n^{2}\right)$ algorithm to find a well-spaced triple in a given string S. The goal in the next parts is to use FFT to find an $O(n \log n)$ time algorithm.
(b) Define convolution of two strings $a_{0} a_{1} \ldots a_{n-1}$ and $b_{0} b_{1} \ldots b_{m-1}$ to be another string $c_{0} c_{1} \ldots c_{n+m-2}$ where $c_{k}=\sum_{i, j: i+j=k} a_{i} b_{j}$. In the given problem, suppose we convolve S with itself, $P=$ $\operatorname{CONVOLVE}(S, S)$. Give an interpretation of P_{i} in the cases when i is odd and even.
(c) Use your interpretation to count the number of well-spaced triples in $O(n \log n)$ time.
(d) Give an algorithm to find a well-spaced triple in $O(n)$ time, given the convolution P.

Open question: Give an algorithm to find all well-spaced triples in $O(n+T)$ time given P, where T is the number of well-spaced triples in S. Note: By above algorithm, we need $O(n T)$ time.

