Hints/answers and marking scheme to Assignment 3

19/10/2012

1. Split each vertex v into two vertices $v_{i n}$ and $v_{\text {out }}$. Join them by a directed edge. A directed edge (u, v) from the original graph now becomes a directed edge ($u_{\text {out }}, v_{i n}$). All the edges have capacity 1 .
You need to prove a small claim that the number of vertex-disjoint paths in the original graph is same as the number of edge-disjoint paths in the new graph.
Correct construction: 2 marks
Explanation: 2 marks
2. Duals:

$$
\begin{array}{rlrl}
\text { Minimize } 10 y_{1}+7 y_{2}+3 y_{3} \text { subject to } & \text { Maximize } 8 y_{1}+3 y_{2} \text { subject to } \\
5 y_{1}+y_{3} & \geq 3 & 3 y_{1}+y_{2} & \leq 2 \\
2 y_{1}+3 y_{2}+y_{3} & \geq 4 & 4 y_{1}+y_{2} & \leq 5 \\
4 y_{2}+y_{3} & \geq 2 & 3 y_{1}+y_{2} & \leq 6 \\
y_{1}, y_{2} & \geq 0 & y_{1}, y_{2} & \geq 0
\end{array}
$$

3. Vertex cover LP for bipartite graph $G=(U, V, E)$:

$$
\begin{aligned}
& \text { Minimize } \sum_{u \in U} x_{u}+\sum_{v \in V} y_{v} \text { subject to } \\
& x_{u}+y_{v} \geq 1 \quad \forall(u, v) \in E \\
& x_{u}, y_{v} \geq 0
\end{aligned}
$$

Dual:

$$
\begin{aligned}
& \text { Maximize } \sum_{e=(u, v)} p_{e} \text { subject to } \\
& \sum_{e=(u, v) \in E} p_{e} \leq 1 \quad \forall v \in V \\
& \sum_{e=(u, v) \in E} p_{e} \leq 1 \quad \forall u \in U \\
& p_{e} \geq 0
\end{aligned}
$$

Correct LP for vertex cover: 2 marks
Correct dual: 2 marks
Interpretation of dual, and application of strong duality: 2 marks
4. (a) $O\left(n^{2}\right)$ algorithm: For each i, j, check if $i, j, i+j$ form a well-spaced triple of 1 s .

Correct algorithm: 2 marks
(b) Interpretation: $i=2 k, P_{i}$ is odd, $P_{i} \geq 3 \Leftrightarrow \exists$ a well-spaced triple centered at k.

Moreover, P_{i} is odd $\Rightarrow a_{k}=1$, and $\frac{P_{i}-1}{2}$ is the number of well-spaced triples centered at k.
If $i=2 k+1, \frac{P_{i}}{2}=$ number of pairs of 1 s separated by an even number of positions (i.e. pairs of 1 s at positions p, q such that $p+q=2 k+1$). These are precisely those pairs which can't participate in any well-spaced triple.
Existential interpretation for even i : 1 mark
Counting the number of well-spaced triples looking at the value of $P_{i}: 1 \mathrm{mark}$ Interpretation for odd i : 1 mark
(c) Compute P in $O(n \log n)$ time. Go over all the P_{i} s where i is even. Count as mentioned above. Correct counting: 2 marks
(d) Find an even i such that $P_{i} \geq 3, P_{i}$ is odd. Go over each of the positions $p, p+i$ in S and check for 1 s .
Correctly finding a triple: 1 mark.

