# Hints/answers and marking scheme to Assignment 1 

14/09/2012

1. Both $O(\log n)$. Correct answer for sorted, reverse sorted: 1.5 marks each.
2. DFS + listing of tree edges (as they are obvious from the DFS): 3 marks Other types of edges: 1 mark each. (DFS tree has no cross edges).
3. Prim's algorithm with $a$ as root node adds edges in the order $(a, b),(b, c),(c, e),(d, a),(d, g),(e, f)$. Cost: 25. Correct answer: 5 marks.
4. Let $T, T^{\prime}$ be two MSTs in $G$. Consider $T \oplus T^{\prime}$ and choose the smallest weight edge $e$ from it. Let $e \in T$ but $e \notin T$. Then add $e$ to $T^{\prime}$. The resulting cycle has another edge $f \in T^{\prime}, f \notin T, w(f)>w(e)$ by the above assumption. Deleting $f$ from $T^{\prime}$ and adding $e$ reduces its weight, contradicting that $T^{\prime}$ is an MST. Correct proof: 6 marks
5. MST remains MST as relative ordering among edges remains the same A shortest path may not remain a shortest path. For example, if there are two paths from $u$ to $v$ of weights $3+11=14$ and $5+10=15$, they become $9+121=130$ and $25+100=125$ after squaring. Thus the relative order among paths does not remain the same.
Correct answers: 1 mark each, Correct explanation/counter example: 1 mark each
6. Do a topological sort in linear time. Go over the vertices in the topological order, maintain an array of counts count $[i]$ for number of $s$ to $i$ paths. For each vertex $i$, count $t i]=$ sum of counts of its in-neighbours. Due to topological ordering, their counts are available while processing $i$.
Correct algorithm: 6 marks
