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Abstract

Given n positive real numbers l1, . . . , ln, the tuple

L = (l1, . . . , ln) ∈ Rn
+

is called a length vector. The set of all planar polygons with these numbers as side lengths has a
natural structure of a topological space. If we consider two polygons to be equivalent when
one can be obtained from the other by a rotation or translation of the plane, the resulting set
of equivalence classes of polygons can be the empty set, a manifold of dimension n− 3, or a
manifold of dimension n− 3 with finitely many singularities. This space is called the moduli
space of polygons associated with the given length vector L, and is denoted by ML.

Moduli spaces of polygons have been encountered in engineering contexts for centuries.
Robot arms, for example, can be profitably modeled as polygon spaces. Many of the questions
asked in the topological theory have direct applications in robotics. An important result in this
context is that of M. Farber and D. Schütz, which states that the Z-homology groups of ML are
all free, and even gives a formula for the ranks of these homology groups purely in terms of L.

The aim of this thesis is to understand a natural regular cell structure admitted by these
moduli spaces when they are manifolds. This cell structure, introduced by G. Panina, has a
convenient combinatorial description which can be exploited to extract information about the
space. In fact, the k-cells correspond precisely to cyclically ordered partitions of the set {1, . . . , n}
into n− 3− k blocks. (For example, when n = 4, the partition {1, 2}{3}{4} corresponds to
a 0-cell, which is the same as the partition {3}{4}{1, 2}, which is the same as the partition
{4}{1, 2}{3}.)

After a brief glance at discrete Morse theory, we study Panina’s construction of a so-called
“perfect” Morse function on this cell structure. This perfect Morse function pairs off cells in an
orderly fashion, until precisely as many k-cells remain, for each k, as the kth Betti number of
ML. On the way, we also use Panina’s results to gain combinatorial insights into why Farber’s
and Schütz’s result holds.

The moduli spaces we are studying admit a natural involution, wherein each polygon is
mapped to its reflection about the X-axis. Generically, this is fixed-point free, and is also
otherwise sufficiently nice, so that the quotient by Z2 is a manifold. We show that Panina’s
cell structure interacts comfortably with this action to give a cell structure on the quotient. We
prove, in certain special cases, the existence of Z2-perfect Morse functions on these quotient
manifolds, using results by J.-C. Hausmann and A. Knutson.
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Introduction

The study of moduli spaces of polygons has its origins in the mechanical linkages used in
engineering. A mechanical linkage is an assembly of bodies connected to manage forces and
movement. A lever, for example, is a simple mechanical linkage. Topologically, the natural way
to think about such linkages is as (possibly self-intersecting) polygons with some constraints.
Generally speaking, the moduli space of a system is the space of all possible states of that system.
Thus the space of all possible configurations of a mechanical linkage is naturally identified with
a moduli space of polygons.

The topological study of these moduli spaces was initiated in the 1960s. Over the course
of half a century, many techniques—including Morse theory and symplectic geometry, among
others—have been used to understand these spaces and compute their Betti numbers as well
as other topological invariants. Over time, many of these results have found applications in
molecular biology, statistical shape analysis and, most notably, robotics: it turns out that the
study of robot arms, which are themselves mechanical linkages, can benefit greatly from the
topological theory. Consequently, the study of such moduli spaces can be considered part of the
blossoming discipline called topological robotics, elaborated upon by M. Farber in [Far08].

The study of polygons in Euclidean space R3 has a rich history, with many interesting results.
However, we restrict our attention to moduli spaces of polygons in the plane, that is, R2. Since
we are concerned only with the shapes of the polygons we get, and not with how they lie within
the ambient space, we usually consider these moduli spaces modulo rotations and translations
of the plane. In such a situation the moduli space, denoted by ML, is, generically, a manifold.
For example, modulo rotations and translations of the plane, there are only two triangles with
side lengths 3, 4 and 5, so the corresponding moduli space consists of two points. In other
words, ML (where L depends on the lengths 3, 4 and 5) is a 0-sphere.

Computations of Betti numbers and other topological invariants of ML are among the classi-
cal results of the field, while in [Pan12], G. Panina describes a regular CW complex structure
on ML (a regular CW complex is one in which the attaching maps are all homeomorphisms).
The cells and boundary maps of this CW complex have combinatorial descriptions which lend
themselves to easy comprehension and computation, and, moreover, provide a direct connection
between the polygons in ML and the cells they belong to, allowing one to “see” how one can
move from a certain cell to the other by adjusting the polygon accordingly.

An analog of classical Morse theory, known as discrete Morse theory, can be used to eliminate
cells in a regular CW complex that do not contribute to homology. A discrete Morse function, as
described by R. Forman in [For02], is a collection of pairs of cells such that each cell appears
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in at most one pair. The cells that do not appear in any pair are the ones that might possibly
contribute to homology. When the number of unpaired cells is equal to the sum of Betti numbers
of the complex, we say that the function is perfect. Discrete Morse functions are useful because
they allow us to construct complexes with fewer cells while maintaining the homotopy type.

The space ML admits an involution—reflection in the X-axis—that, generically, has no fixed
points. Therefore we can form the quotient OL = ML/Z2. Adapting the description in [Pan12],
we construct a CW complex on OL and show that the cells have a convenient combinatorial
description, just as the ones in ML do. In [PZ15], G. Panina describes a perfect Morse function
on the dual CW complex of ML. We modify this function to construct a discrete Morse function
on the dual CW complex of OL, and show that in some cases the function is perfect.

Chapter-wise organization

Chapter 1. The first chapter contains basic definitions needed to understand most of the
results. We also introduce here some of the foundational, well-known results of the area (taken
mainly from [Far08] and [KM95]). Examples of familiar manifolds arising as ML, such as
spheres, tori and orientable surfaces, are discussed.

Chapter 2. With this chapter, the main content of the thesis begins. We discuss in detail the
construction, following [Pan12], of a regular CW complex on ML. Included here is a new proof
of the fact that the convex polygons in ML form an open ball. Combinatorial aspects of the CW
complex are illuminated using permutohedra, face figures and dual posets.

Chapter 3. We start the third chapter with a brief tour of discrete Morse theory as done in
[For02], taking care to formulate the main results in the language of posets as well as that of
directed graphs. Then we examine the perfect Morse function outlined in [PZ15]. A standard
example (that of the circle) is used throughout Chapters 2 and 3 to illustrate the ideas.

Chapter 4. The quotient space OL is the focus of this chapter. We describe a CW complex
structure on OL: this in fact follows from the fact that the CW structure on ML is Z2-equivariant.
Then, as in Chapter 3, we construct a discrete Morse function on the dual complex, and look at
some cases where this function is actually perfect (with respect to Z2-Betti numbers). We also
give a necessary and sufficient condition for this function to arise from a Z2-equivariant discrete
Morse function on (the dual complex of) ML. With the exception of a calculation of Z2-Betti
numbers of OL based on [HK98], all results in this chapter are, to the best of our knowledge,
new.

Chapter 5. Finally, we describe some of our current efforts and outline avenues for possible
future work. Some of these are natural extensions of the questions answered in the first four
chapters. Others move in slightly different directions.



Chapter 1

Moduli spaces of planar polygons

In this chapter, we introduce the basic definitions and examples. We also state some of the
foundational results of the area. The main source used is M. Farber’s [Far08].
Notation: The set {1, . . . , n} will be denoted throughout by [n].

1.1 Preliminaries

Before we move to the study of moduli spaces, we need a precise definition of what we mean
by the word polygon.

Definition 1.1. A length vector

L = (l1, . . . , ln) ∈ Rn
+

is an n-tuple of positive real numbers.

Definition 1.2. A polygon with length vector L,

P = (−→u1 , . . . ,−→un) ∈ R2 × . . .×R2,
∥∥∥−→ui

∥∥∥ = 1 ∀i,

is an n-tuple of unit-length vectors in the plane, satisfying the equation

n

∑
i=1

li
−→ui = 0. (1.1)

The points

V1 = 0,

V2 = l1
−→u1 ,

V3 = l1
−→u1 + l2

−→u2 ,
...

and Vn =
n−1

∑
i=1

li
−→ui

1



CHAPTER 1. MODULI SPACES OF PLANAR POLYGONS 2

are called the vertices of the polygon, while the segments joining successive edges (thought of
as translated vectors) are called the sides or edges of the polygon.

Thus a polygon always has its first vertex at (and therefore last edge pointing towards) the
origin. Observe that our edges are always directed.

The way we have defined them, polygons can be objects which we do not conventionally
recognize as polygons, as the following example and figures show.

Example 1.1. Let L = (1, 2, 1, 2). Fig. 1.1 shows examples of polygons with this length vector.
Fig. 1.1a shows an object the like of which we usually associate with the word “polygon”.
However, polygons according to our definition can be non-convex and even self-intersecting, as
Fig. 1.1b shows. In fact, our polygons can even degenerate to a line (Fig. 1.1c).

V1

V2 V3

V4

(a) Usual polygon

V1

V2

V3

V4

(b) Self-intersecting polygon

V1 V2 V3V4

(c) Degenerate polygon

Figure 1.1: Examples of polygons with length vector L = (1, 2, 1, 2).

Example 1.2. Here we list some non-examples. Again, let L = (1, 2, 1, 2). The object shown in
Fig. 1.2a does not satisfy ∑ li

−→ui = 0, and hence is not a polygon. Fig. 1.2b shows a polygon,
but its length vector is L′ = (1, 1, 1, 1), hence it is not a polygon with length vector L.

V1

V2 V3

V4

(a) ∑ li
−→ui 6= 0

V1

V2 V3

V4

(b) Polygon for L′ = (1, 1, 1, 1)

Figure 1.2: Non-examples of polygons with length vector L = (1, 2, 1, 2).

In general, the moduli space of a system is the space (suitably topologized) of all possible states
of that system. This system for us is the set of all polygons with a given length vector L.

When talking about such a moduli space, we do not wish consider certain “redundant”
polygons. One redundancy we wish to do away with is that obtained by rotation: if a polygon P
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can be obtained from a polygon Q by a rotation of the plane about the origin (recall that all our
polygons “start” at the origin), we wish to consider them equal. Since each such equivalence
class contains a unique polygon whose last side is oriented in the negative X-direction, getting
rid of this redundancy is equivalent to imposing the condition

−→un = −−→e1 . (1.2)

where −→e1 is the unit length vector in the positive X-direction.
Since we can think of a unit vector in R2 as actually lying on the circle S1, it follows that

a polygon, being a tuple of unit vectors, can be thought of as a point in the n-fold product
S1 × . . .× S1. Using Eq. (1.1) and Eq. (1.2), we are now ready to define our moduli space.

Definition 1.3. Let L be a length vector. The moduli space of polygons with length vector
L, denoted by ML, is defined as

ML =

(−→u1 , . . . ,−→un) ∈ S1 × . . .× S1︸ ︷︷ ︸
n−fold product

∣∣∣∣∣∣∣
n

∑
i=1

li
−→ui = 0; −→un = −−→e1

. (1.3)

Thus ML is a subspace of the n-torus Tn = (S1)n. Since rotation in the plane corresponds to the
action of the matrix group SO(2), we can also say that

ML =

{
(−→u1 , . . . ,−→un) ∈ S1 × . . .× S1

∣∣∣∣∣ n

∑
i=1

li
−→ui = 0

}/
SO(2). (1.4)

Example 1.3. Let L = (1, 1, 1). Up to rotation, there are only two triangles in the plane with this
length vector (starting at the origin, that is). They are shown in Fig. 1.3. Thus ML is just two
points. In other words, ML = S0.

(The reader can verify that no rotation of the plane can bring the triangle in Fig. 1.3a to the
one in Fig. 1.3b.)

V1

V2

V3

(a)

V1

V2

V3

(b)

Figure 1.3: The two triangles in ML for L = (1, 1, 1).

Example 1.4. Let L = (1, 1, 2). Then, since l1 + l2 = l3, there is precisely one triangle correspon-
ding to L: the degenerate one, obtained by placing V2 on the edge between V1 and V3. Hence
ML = {a point}.
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Example 1.5. Let L = (1, 1, 3). Since l1 + l2 < l3, the triangle inequality is not satisfied, so there
are no triangles for this length vector. Hence ML = ∅.

As seen in Example 1.5, the triangle inequality is a necessary condition for ML to be nonempty.
This is just a special case of the following:

Proposition 1.1. [Far08, Lemma 1.1] The space ML is empty if and only if there exists i ∈ [n]
such that

li > ∑
k 6=i

lk. (1.5)

1.2 Basic results

Let L = (l1, . . . , ln) be a length vector. The moduli space ML is a subspace of the n-torus, but, as
the last examples of the previous section show, it can be of a much lower dimension, and need
not be a manifold. So, when is it a manifold? When is it connected? What is its dimension?
The results in this section seek to answer these questions.

Definition 1.4. A subset I ⊂ [n] is called short with respect to L if

∑
i∈I

li < ∑
i/∈I

li.

Definition 1.5. A subset I ⊂ [n] is called long with respect to L if

∑
i∈I

li > ∑
i/∈I

li.

Definition 1.6. A subset I ⊂ [n] is called median with respect to L if

∑
i∈I

li = ∑
i/∈I

li.

When L is clear from the context, we drop the “with respect to” and simply say that a subset is
short, median or long. Clearly, I is short if and only if its complement [n] \ I is long; I is median
if and only if [n] \ I is also median. Every subset of a short subset is itself short.

Using these new terms, we may restate Proposition 1.1: ML is empty if and only if there
exists a singleton long subset; or, equivalently, ML is nonempty if and only if all singletons are
short.

While technically the empty set is a short subset, we don’t usually consider it as such (nor
do we consider [n] to be long).

Definition 1.7. L is called generic if there are no median subsets with respect to L.

Example 1.6. For L = (1, 1, 1), the short subsets are {1}, {2} and {3}; the long subsets are
{1, 2}, {1, 3} and {2, 3}. There are no median subsets, hence L is generic.

Example 1.7. For L = (1, 2, 3, 4), the short subsets are {1}, {2}, {3}, {4}, {1, 2} and {1, 3}, with
the long subsets being the complements of these. The set {2, 3} and (naturally) its complement
{1, 4} are median subsets. Thus L is not generic.
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Remark 1.1. Let J ⊂ [n] be a median subset that contains n (if not, take its complement).
For each j ∈ J, orient −→uj in the negative X-direction, and for each k /∈ J, orient −→uk in the
positive X-direction. The result is a degenerate (or collinear) polygon PJ. For example, taking
L = (1, 2, 1, 2) and J = {3, 4} gives the polygon in Fig. 1.1c. Conversely, any degenerate polygon
arises in this way from some median subset J. Thus we conclude that

Median subsets J correspond to degenerate polygons PJ.

Remark 1.2. Suppose σ : [n]→ [n] is a permutation. Then the map

φσ : S1 × . . .× S1 → S1 × . . .× S1

(−→u1 , . . . ,−→un) 7→ (−−→uσ(1), . . . ,−−→uσ(n))

is a diffeomorphism from ML onto ML′ , where L′ = (lσ(1), . . . , lσ(n)). Thus what order the li’s
appear in does not affect the diffeomorphism type of ML. Therefore, when convenient, we will
often assume that ln ≥ li for all 1 ≤ i ≤ n, or that l1 ≤ . . . ≤ ln.

We now state, without proof, the main results.

Theorem 1.2. [Far08, Theorem 1.3] If L is generic, then ML is a closed orientable manifold of
dimension n− 3.

While we will never have occasion to consider the case when L is not generic, we include the
following result here for completeness:

Theorem 1.3. [Far08, Theorem 1.6] Suppose L is not generic. Then ML is a compact (n− 3)-
dimensional manifold “with singularities”: it has finitely many singular points which are in one-
to-one correspondence with degenerate polygons PJ where J ⊂ [n] is a median subset containing
n.

Each such PJ has a neighborhood in ML homeomorphic to the cone over the product of two
spheres

S|J|−2 × Sn−|J|−2.

The next theorem is computationally handy, because it allows us to compute homology groups
of ML without knowing anything other than L.

Theorem 1.4. [FS07, Theorem 1] Let i ∈ [n] be such that li ≥ lj for all j ∈ [n]. For each
0 ≤ k ≤ n− 3, define

ak := no. of short subsets of cardinality k + 1 containing i,

bk := no. of median subsets of cardinality k + 1 containing i.

Then, for every 0 ≤ k ≤ n− 3, the homology group Hk(ML;Z) is free abelian, with

Rank Hk(ML;Z) = ak + bk + an−3−k. (1.6)

For the rest of this section, assume that l1 ≤ . . . ≤ ln. Unless stated otherwise, we also assume
that ML is a manifold (that is, L is generic).

We now look at a few results that follow (at least partly) from Theorem 1.4.
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Theorem 1.5. ML is homeomorphic to the sphere Sn−3 if and only if the only short subset
containing n is the singleton.

Proof. Suppose ML is homeomorphic to a sphere. In particular, ML is nonempty, so by Proposi-
tion 1.1, {n} is short. Therefore a0 = 1. We also have

Rank Hk(ML;Z) =

1, if k = 0 or n− 3

0, otherwise.

Comparing with Eq. (1.6), we must have ai = 0 for i > 0. Hence the only short subset containing
n is the singleton.

Conversely, suppose the only short subset containing n is the singleton. In particular, the set
{1, n} is long, so we must have −→u1 6= −−→e1 . Then the function f : ML → R—that maps each
polygon to θ1, the angle made by the first side with the X-axis—attains a unique maximum and
minimum. At any point other than these extrema, ∂ f

∂θ1
= 1, so these are the only critical points.

Now we use a theorem of differential topology (see [Mil64, Theorem 1’]): a closed manifold
which possesses a smooth real-valued function with exactly two critical points is homeomorphic
to a sphere.

The proof of the next result has a similar flavor to the previous one, and we omit it here.

Theorem 1.6. ML is homeomorphic to the product S1 × Sn−4 if and only if the only short subsets
containing n are {n} and {1, n}.

We are now also in a position to answer one of the questions asked earlier: when is ML

connected?

Lemma 1.7. ML is disconnected if and only if {n− 2, n− 1} is a long subset. In that case,

Rank Hk(ML;Z) = 2
(

n− 3
k

)
. (1.7)

Proof. If ML = ∅, then {n} is long, so {n− 2, n− 1} is short. So we may assume that ML is
nonempty.

The rank of the zeroth homology group is a0 + an−3 (we always assume that ML is a
manifold, so bi = 0 for all i). Since ML is nonempty, a0 = 1. Thus ML is disconnected if and
only if an−3 > 0, that is, there exists at least one short subset of cardinality n− 2 containing
n. Since we have assumed that l1 ≤ . . . ≤ ln−2 ≤ ln−1 ≤ ln, that short subset has to be the set
A = {1, 2, . . . , n− 3, n}. Moreover, in that case every subset of A is also short. Thus ak = (n−3

k )

and an−3−k = ( n−3
n−3−k) = (n−3

k ), so Eq. (1.7) follows from Eq. (1.6).

As one might guess from Eq. (1.7), one has the following theorem:

Theorem 1.8. [KM95, Theorem 1] When the equivalent conditions of Lemma 1.7 hold, ML is
diffeomorphic to the disjoint union of two (n− 3)-dimensional tori.

We conclude this chapter with some examples.
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Example 1.8. Let L = (1, 1, 1, . . . , 1, n− 1− ε) for some 0 < ε ≤ 1. Then n− 1− ε < ∑n−1
i=1 1 =

n − 1 and (n − 1 − ε) + 1 > ∑n−1
i=2 1 = n − 2, so the only short subset containing n is the

singleton. By Theorem 1.5, ML is homeomorphic to a sphere.
In particular, if L = (1, 1, 1, 2), ML is a circle. This is an example that we will use throughout

this thesis to illustrate various ideas.

Example 1.9. Let L = (1, 2, 2, 2). Then {2, 3} is a long subset, so by Theorem 1.8, ML is a
disjoint union of two 1-dimensional tori, that is, ML ' S1 t S1.

Observe that the only short subsets containing 4 are {4} and {1, 4}, so we can even apply
Theorem 1.6 here and get ML ' S1 × S0, which is the same as S1 t S1.

Example 1.10. Let L = (1, 1, 1, 1, 1). The short subsets containing 5 are {5}, {1, 5}, {2, 5}, {3, 5}
and {4, 5}. So a0 = 1, a1 = 4 and a2 = 0. Therefore, by Theorem 1.4, we have

Rank H0(ML;Z) = a0 + a2 = 1,

Rank H1(ML;Z) = a1 + a1 = 8,

Rank H2(ML;Z) = a2 + a0 = 1.

These homology groups suggest that ML might be a surface of genus 4, and that is in fact true.

Theorem 1.9. [KM95, Theorem 2] Suppose n = 5, ML is connected and g is the number of long
subsets of cardinality 2. Then ML is the closed orientable surface of genus 4− g.



Chapter 2

A regular cell structure

When ML is a manifold, it admits a regular cell structure that has a succinct combinatorial
description purely in terms of L (such a cell structure exists even when ML is not a manifold,
but we restrict ourselves to the former case here). This cell structure has been described in
detail by G. Panina in [Pan12], and the exposition here is based on that paper.

In the current and subsequent chapters, we assume that L is generic and therefore ML is a
manifold. Unless explicitly mentioned, we also assume that n ≥ 4.

2.1 Labeling polygons

The first step in this combinatorial construction is to assign a label to each polygon (or, to be
precise, equivalence class of polygons). We represent a polygon P ∈ML by the tuple (θ1, . . . , θn),
where θi is the angle made by the ith side with the horizontal, and −π < θi ≤ π for all i. In
other words, since P = (−→u1 , . . . ,−→un), we have −→ui = (cos θi, sin θi) for all i. The last side is
always horizontal and oriented in the negative X-direction, so θn = π. Before we proceed, a
definition:

Definition 2.1. A polygon P is said to be convex if the angles θ1, . . . , θn are in strictly ascending
order, that is, θ1 < . . . < θn.

The above definition is different from what is usually defined as a convex polygon in R2: all
polygons it includes are certainly convex in the usual sense, but it does not include all convex
polygons, as Fig. 2.1 shows.

Why does our definition of convex imply the usual one? Given a polygon in the plane,
each edge of the polygon divides the plane into two half-planes. A sufficient condition for the
polygon to be convex is that, for each of its edges, it lie entirely within one of these half-planes.
If the angles made by the edges with the horizontal are in increasing order, then the polygon
must lie entirely within one half-plane of each edge, and hence is convex.

We can now continue. For assigning labels, it will be convenient to split the polygons
into two classes—those with and those without parallel edges—and to deal with these classes
individually:

8
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1 2

3

4

5

(a) Not convex

41

2 3

5

(b) Not convex

41

2 3

5

(c) Convex

Figure 2.1: These pictures show when our definition of convex coincides with the usual one,
and when it doesn’t.

1. Polygons without parallel edges Given a polygon P, no two of whose edges are parallel
(that is, θi 6= θj if i 6= j; note that we are allowing θi = −θj, so the “parallel” here is in a very
strict sense), there is a way to associate a unique convex polygon to P: arrange the angles θi in
ascending order. This gives rise to a permutation λ ∈ Sn, since no two edges are parallel. That
is, λ is the unique permutation such that θλ(1) ≤ . . . ≤ θλ(n). By hypothesis, λ(n) = n. Now
construct the polygon Pconv whose ith edge has length lλ(i) and makes an angle of uλ(i) with the
horizontal. This construction is made clear with an example in Fig. 2.2.

Remark 2.1. The polygon Pconv itself is not an element of ML. In fact, Pconv ∈MλL.

The label for P is just λ([n]), but we want to express it in a way that will allow us to deal
with the situation when our polygons do have parallel edges. We therefore make the following
definitions:

Definition 2.2. An ordered partition

α = (I1 . . . Ik)

of [n] is a partition in which the order of the Ij’s matters. (Here Ij ⊂ [n]; Ii ∩ Ij = ∅ for i 6= j;
and ∪j Ij = [n].) The subsets Ij’s are called blocks of α.

Note that, if
β = (I2 I1 I3 I4 . . . Ik)

is another partition of [n] with the same sets but in a different order, then β 6= α.

Definition 2.3. A cyclically ordered partition of [n] is an ordered partition which is equivalent
to any partition obtained from it by a cyclic permutation of its blocks. That is, if α = (I1 . . . Ik)

is a cyclically ordered partition, then α = (I2 . . . Ik I1) = (I3 . . . Ik I1 I2) = . . . = (Ik I1 . . . Ik−1).
When dealing with such partitions, we will always assume that the set containing n is the last
set.

Definition 2.4. Fix a length vector L. A cyclically ordered partition of [n] is called admissible
if each block in the partition is a short subset of [n].

Example 2.1. For L = (1, 1, 1, 2), the ordered partition ({1}{2, 3}{4}) is different from ({1, 2}{3}{4}),
because they have different blocks. It is also different from ({2, 3}{1}{4}), because their blocks
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1 2

3

4

5

(a) The polygon P. Observe
that no two edges point in the
same direction.

1

2

3

4

5

(b) The edges of P drawn origi-
nating from the same point. Ar-
ranged in ascending order, they
are 2,4,1,3,5. Thus
λ(1) = 2
λ(2) = 4
λ(3) = 1
λ(4) = 3
λ(5) = 5

32

4
1

5

(c) The polygon Pconv. Its first
edge is λ(1) = 2, that is, the
edge that was the second edge
in P, and similarly for the rest
of the edges. Clearly, Pconv

is convex. The label for P is
({2}{4}{1}{3}{5}).

Figure 2.2: Labeling a polygon without parallel edges

are in different orders.
The cyclically ordered partition ({1, 2}{3}{4}) is, however, equal to the cyclically ordered
partition {4}({1, 2}{3}) and, as mentioned above, we will always write it with {4} as the last
block.
Further, the ordered partition ({1}{2}{3, 4}) is not admissible, because {3, 4} is not a short
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subset, while ({1, 2}{3}{4}) is admissible.

The label assigned to a polygon P is the admissible partition consisting of singletons whose order
is given by λ. In other words, the label is (

{
λ(1)

}{
λ(2)

}
. . .
{

λ(n− 1)
}
{n}).

Fig. 2.2c shows how this label is assigned. We point out here that, since for a polygon without
parallel edges the label consists only of singletons, it follows that we don’t have to check
whether the partition is admissible (because all singletons are short subsets). In other words,
any partition of [n] consisting of singletons is a label. Assigning a cyclically ordered partition
is justified because applying a cyclic permutation to the sets in the partition won’t change
the ordering of the edges. The fact that the n-set is written last is just a convention we have
adopted.

There is an obvious way to recover P from Pconv: the ith edge of P is the λ−1(i)th edge of
Pconv, so the first edge (in the figure) is the λ−1(1) = 3rd edge and so on. Thus, given a label λ,
we have established a bijective correspondence

{Polygons in ML labeled by λ}� {Convex polygons in MλL} (2.1)

P↔ Pconv.

In fact, since perturbing the θi’s of P slightly ends up in a tiny perturbation of the resulting
Pconv, and conversely, we end up with

Lemma 2.1. Given an ordered partition λ of [n] into singletons, the subspace of ML consisting of
all polygons labeled by λ is homeomorphic to the space of convex polygons in MλL.

We now turn to the other class:

2. Polygons with parallel edges For polygons with parallel edges, we proceed the same way
as we did for the earlier polygons: arrange the edges in order of increasing angle and then
look at the resulting convex polygon. However, the problem here is that for each pair of angles
θi = θj, it is not clear which one should be placed first in the resulting ascending order. The
solution is to “glue” all such edges together, and consider them as constituting one edge.

For example, consider a polygon P that has 8 edges, of which edges 1, 3 and 7 are parallel,
and edges 2 and 4 are parallel, with the rest of the edges all being in different directions. Then
we think of the convex polygon Pconv obtained from this polygon as one with 5 edges, with one
of the edges consisting of the original edges 1, 3 and 7 glued together, and another consisting
of the original 2 and 4 glued together. Fig. 2.3 makes this clear.

The label for such a polygon again consists of an admissible partition, but now the sets are
not all singletons. Parallel edges all end up in the same set in such a partition. The construction
of the partition, however, is more or less the same as in the first case: starting with the least
angle, proceed counterclockwise and place edges with different angles in different sets of the
partition (see Fig. 2.3b). So, for P, we have the partition ({5}{2, 4}{6}{1, 3, 7}{8}). This is
the label for P.



CHAPTER 2. A REGULAR CELL STRUCTURE 12

1 2
3

4

5

6

7

8

(a) The polygon P. Observe
that the edges 1,3 and 7 are pa-
rallel, as are 2 and 4. No two of
edges 5,6 and 8 are parallel to
each other, nor is any of them
parallel to any of the rest.

1

2

3

4

5

6

7

8

(b) The edges of P drawn
originating from the same
point. Arranged in incre-
asing order of angle, they
are {5}, {2, 4}, {6}, {1, 3, 7}
and {8}. Within a set, the
ordering of the edges does
not matter. The label for P is
({5}{2, 4}{6}{1, 3, 7}{8}).

1

2

3

4

5

6

7

8

(c) The polygon Pconv. We can
think of it as a polygon with
five sides, so that Pconv ∈MλL,
where λL = (l5, l4 + l2, l6, l1 +
l7 + l3, l8).

Figure 2.3: Labeling a polygon with parallel edges

In general, if we end up with an admissible partition λ = (I1 I2 . . . Ik) consisting of k subsets
of [n], then we can think of the resulting polygon as having k edges and residing in MλL, where

λL = (l̃1, l̃2, . . . , l̃k), with l̃j = ∑
i∈Ij

li.
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Fig. 2.3c shows how this is done for P.
As before, we can recover our original polygon using λ and the resulting convex polygon.

For the ith edge of the polygon, suppose the set Ij in λ contains i. Then this edge points in the
direction that the jth edge of the convex polygon points, and has length li. For example, for P,
4 lies in the set I2 of λ. So the fourth edge of P has length l4 and points in the direction that
the second edge of Pconv points. So, similar to the polygons with no parallel edges, we have a
bijection and, in fact, a homeomorphism:

Lemma 2.2. Given an admissible partition λ of [n] into k blocks, the subspace of ML consisting of
all polygons labeled by λ is homeomorphic to the space of convex k-gons in MλL.

We recover Lemma 2.1 when k = n.

2.2 The cells

In this section, we come to the meat of this chapter: describing the cells of the complex.
Essentially, a cell is formed by polygons having the same label. The next few results make this
precise.
Denote by Mconv

L the set of all convex (in the sense of Definition 2.1) polygons in ML.

Lemma 2.3. [Pan12, Lemma 1.2]

(1) Mconv
L is an open subset of ML homeomorphic to the open (n− 3)-dimensional ball.

(2) The closure Mconv
L is homeomorphic to the closed (n− 3)-dimensional ball.

Proof. (1) The proof proceeds by induction on n, the number of components of L. We first
analyze the case n = 3, because it is instructive.

For n = 3, there are two possible polygons (L is generic), of which one is non-convex
(Fig. 2.4a) and one is convex (Fig. 2.4b). So Mconv

L is just a point.

l1
l2

l3

(a) The non-convex triangle

l1 l2

l3

(b) The convex triangle

Figure 2.4: The two possible triangles for n = 3

For n = 4, consider the map that sends a polygon to θ1, the angle made by the first edge
with the horizontal. The image of this function is either a proper subset of the interval (−π, π],
or is the whole circle. In the former case, since ML is compact, this function has a maximum
and a minimum. Since L is generic, the image is not just a point, so these are distinct. Let a1 be
the minimum value of this function. In the latter case (when the image is a circle), let a1 be
−π. For a particular polygon to be convex, none of the interior angles can be greater than π, so
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in particular θi < θi+1 < θi + π for all 1 ≤ i < n and also 0 = θn − π < θ1 + π < θn = π. So
on Mconv

L , we must have a1 < θ1 < 0. However, this is a necessary condition, not a sufficient
one. We must also ensure that the triangle formed by the last three vertices is convex, as shown
in Fig. 2.5.

(a) Not a convex 4-gon (b) A convex 4-gon

Figure 2.5: That θ1 < 0 is a necessary condition, not sufficient: the triangle formed by the
second and third edge with the dashed line must also be convex.

So far, we have ascertained that a convex 4-gon must have its first angle between a1 and 0,
and must be in such a position so as to ensure that the triangle formed by the last three vertices
is also convex. However, even these conditions are not sufficient. It is possible that the triangle
is convex but the second angle is less than θ1 (Fig. 2.6a).

(a) θ1 > b1 (b) θ1 = b1 (c) θ1 < b1

Figure 2.6: The triangle formed by the last three vertices may be convex, but the 4-gon itself is
convex only when θ1 < b1.

So we need to ask: what is the greatest value of θ1 for which one is guaranteed to have a
convex 4-gon? Consider Fig. 2.6b, where the first and second sides are parallel. Call the value
of θ1 for this polygon b1. At any θ1 greater than b1, we cannot have a convex 4-gon (Fig. 2.6a).
At any θ1 strictly between a1 and b1, we have exactly one convex 4-gon (Fig. 2.6c). We therefore
have a bijection

Mconv
L → (a1, b1)

P 7→ θ1

which is a homeomorphism. The proof for n = 4 is thus complete.
Now suppose that, for some n ≥ 4, the space Mconv

L is homeomorphic to In−3, the product
of n− 3 open intervals. We need to show that, for n + 1, the space Mconv

L is homeomorphic to
In−2, the product of n− 2 open intervals. We proceed exactly as we did for n = 4. Let a1 be the
minimum possible value of θ1, and let b1 < 0 be the value of θ1 for which −→u2 = −→u3 = . . . = −−→un−2.
Then, for each value of θ1 between a1 and b1, the space Mconv

L for the last n vertices is In−3, and
conversely, for each convex (n + 1)-gon, the first angle must lie between a1 and b1, and the
n-gon of the last n vertices, P′, must also be convex. In short, we have a homeomorphism

Mconv
L → (a1, b1)× In−3 ' In−2

P 7→ (θ1, P′),
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and the proof is complete, because the product of k open intervals is homeomorphic to the open
k-ball (for k > 0).
(2) The proof for the second statement goes precisely the same as the first, except that each
instance of the open interval (a1, b1) is replaced by the closed interval [a1, b1]. (For example,
the 4-gon in Fig. 2.6b lies in the closure of Mconv

L , because it can be approximated by polygons
of the type shown in Fig. 2.6c.)

Lemma 2.4. [Pan12, Lemma 2.3] Given an ordered partition λ of the set [n] into n nonempty
blocks, the subset of ML of all polygons labeled by λ is an open (n− 3)-ball.

Proof. By Lemma 2.1, the space of polygons labeled by λ is homeomorphic to the space Mconv
λL ,

which by Lemma 2.3 (1) is homeomorphic to an open (n− 3)-ball.

Lemma 2.5. [Pan12, Lemma 2.4] Given an admissible partition λ of the set [n] into k nonempty
blocks, the subset of ML of all polygons labeled by λ is an open (k− 3)-ball.

Proof. By Lemma 2.2, the space of polygons labeled by λ is homeomorphic to the space Mconv
λL

of convex k-gons in MλL, which by Lemma 2.3 (1) is homeomorphic to an open (k− 3)-ball.

The upshot of the above results is that each admissible partition of [n] into k blocks gives us
a label, and that each such label corresponds to an open k-ball in ML. Since each polygon is
assigned a unique label, the union of these balls is the whole ML (note that not all of these
“open” balls are open in ML, only the ones of dimension n− 3).

Definition 2.5. A regular CW complex is a CW complex in which the attaching maps are all
injective.

(a) Not regular (b) Regular

Figure 2.7: Examples of regular and non-regular cell complexes.

Example 2.2. The cell complex obtained by attaching a 1-cell to a 0-cell is not regular, because
the attaching map takes the boundary of the 1-cell (which is S0) to a single point, hence it is
not an injection (Fig. 2.7a). The cell complex consisting of two 1-cells and two 0-cells, with
each 1-cell having both 0-cells in its boundary, is regular (Fig. 2.7b).

The next theorem, the main result of this chapter, states that the (k− 3)-balls of Lemma 2.5
are in fact the cells of a regular CW complex on ML. To state it precisely, we clarify some
terminology. An open cell is the set of all polygons having the same label. It is an open ball, and
its closure is a closed ball, which we will call a closed cell. For a cell C, either closed or open, its
label λ(C) is defined to be the label of its interior points.
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Definition 2.6. A label λ is said to refine or be finer than a label λ′ if λ is a refinement of
λ′ as a partition (that is, each set of λ is contained in a set of λ′) and if the ordering of λ is
inherited from that of λ′. Since our partitions are cyclically ordered and we always require the
set containing n to be last in an ordered partition, a refinement of such a partition may contain
a subset of the n-set as the first set. The next example illustrates this.

Example 2.3. Let λ = ({1, 2}{4}{3, 5}). The label ({1}{2}{4}{3, 5}) refines λ, as does
({2}{1}{4}{3, 5}), while the label ({4}{1}{2}{3, 5}) does not refine λ, because the set {4}
must appear after all subsets of {1, 2}.
The label ({1, 2}{4}{3}{5}) refines λ, as does ({1, 2}{4}{5}{3}) but, according to our con-
vention, the latter is written as ({3}{1, 2}{4}{5}). So it is possible for a label to refine another
while having a subset of the n-set as its first set.

Theorem 2.6. [Pan12, Theorem 2.6] The moduli space ML admits a regular CW complex structure
KL. Its complete combinatorial description is as follows:

(1) The k-cells are labeled by admissible partitions of the set [n] into (k + 3) nonempty parts.

(2) A closed cell C belongs to the boundary of some closed cell C′ if and only if the partition λ(C′)
is finer than λ(C).

Proof. As we’ve already seen, polygons sharing a label (a partition of [n] into k parts) form an
open (k− 3)-ball, so (1) follows. One can infer from the proof of Lemma 2.3 that a polygon P
belongs to the boundary of a closed cell C if and only if it is obtained by some subset of the
edges (which are not parallel in C) becoming parallel in P. This is precisely the assertion that
the label P is refined by λ(C), and (2) follows.

The attaching maps of the CW complex follow immediately: a k-gon in the boundary of a cell
C maps to the (necessarily unique) j-gon (where j < k) obtained by gluing together the edges
which have become parallel in the k-gon. Conversely, given such a j-gon in the (k− 1)-skeleton
of the complex, there is a unique k-gon that maps to it, namely the one obtained by inserting
vertices in the j-gon to ensure that the resulting polygon has the label λ(C). The regularity of
the complex is now evident.

In general, we will often identify a cell in the complex KL with its label, and use both interchan-
geably.

Example 2.4. Let L = (1, 1, 1, 2). As we know (Example 1.8), ML in this case is a circle. The
0-cells for KL are given by admissible partitions of [4] into 3 sets. These are:

1. ({1, 2}{3}{4})

2. ({1}{2, 3}{4})

3. ({1, 3}{2}{4})

4. ({3}{1, 2}{4})

5. ({2, 3}{1}{4})
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({2}{1, 3}{4})

({2, 3}{1}{4})

({3}{1, 2}{4})

({1, 3}{2}{4})

({1}{2, 3}{4})

({1, 2}{3}{4})

({2}{3}{1}{4})({3}{2}{1}{4})

({3}{1}{2}{4})

({1}{3}{2}{4}) ({1}{2}{3}{4})

({2}{1}{3}{4})

Figure 2.8: KL for when ML is a circle.

6. ({2}{1, 3}{4})

The 1-cells are given by admissible partitions of [4] into singletons. These are:

1. ({1}{2}{3}{4})

2. ({1}{3}{2}{4})

3. ({2}{1}{3}{4})

4. ({2}{3}{1}{4})

5. ({3}{1}{2}{4})

6. ({3}{2}{1}{4})

A 1-cell contains in its boundary all 0-cells it refines. For example, the boundary of the 1-cell
({1}{2}{3}{4}) consists of the 0-cells ({1, 2}{3}{4}) and ({1}{2, 3}{4}). Fig. 2.8 illustrates
the cellular decomposition of ML.

Example 2.5. Let L = (1, 2, 2, 2). Here ML is a disjoint union of circles (Example 1.9), and the
short subsets are the singletons and all sets of cardinality two containing 1. We do not list all
admissible partitions here, but just refer to Fig. 2.9, which shows the cellular decomposition.

Example 2.6. Let L = (1, 1, 1, 1, 1). In this case ML is a surface of genus 4 (Theorem 1.9). The
top-dimensional cells are labeled by admissible partitions of [5] into singletons. There are
exactly 4! = 24 of these. Since any two-element subset is short, each top-dimensional cell
refines five admissible partitions, and hence is a pentagon. We conclude that KL consists of 24
pentagons patched together.
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(2, 3, 14)

(2, 13, 4)

(12, 3, 4)

(1, 2, 3, 4)

(2, 3, 1, 4)

(2, 1, 3, 4)

(3, 2, 14)

(13, 2, 4)

(3, 12, 4)

(3, 2, 1, 4)

(1, 3, 2, 4)

(3, 1, 2, 4)

Figure 2.9: KL for when ML is a disjoint union of circles. We have omitted the braces in the
labels, writing elements of a set contiguously.

2.3 Permutohedra

As promised, we have delivered a CW complex on ML that can be combinatorially described.
But we can take this further. This section introduces a type of object called a permutohedron
that will be used in the next section to complete our task.

Definition 2.7. The permutohedron Πn(n ≥ 2) is defined as the convex hull of all points in
Rn that are obtained by permuting the coordinates of the point (1, 2, . . . , n).

Example 2.7. The permutohedron Π2 is the convex hull of (1, 2) and (2, 1) in R2. It is just the
line segment joining the two points.

Example 2.8. The permutohedron Π3 is the convex hull of the points (1, 2, 3), (1, 3, 2), (2, 1, 3),
(2, 3, 1), (3, 1, 2) and (3, 2, 1) inR3. In other words, it is a hexagon lying on the plane x+ y+ z =

6 with the aforementioned points as vertices. The vertices of this hexagon can be identified
with elements of S3, the symmetric group on 3 letters. The edges can be identified with ordered
partitions of the set {1, 2, 3} into two sets. These are depicted in Fig. 2.10.

The similarity between Fig. 2.8 and Fig. 2.10 is not coincidental, as we will soon see.

Example 2.9. The permutohedron Π4 is a three-dimensional polyhedron with 24 vertices. We
do not depict it here, but pictures abound on the internet. The reader may visualize it as a
truncated octahedron: take an octahedron and remove a square pyramid from around each
vertex (of which there are six) such that no two such square pyramids intersect.
The vertices of Π4 correspond to the elements of S4, the edges (of which there are 36) to
partitions of {1, 2, 3, 4} into three parts, and the (8 hexagonal and 6 square) faces to partitions
into two parts.

Definition 2.8. A polytope is the convex hull of finitely many points in Rd.

Following [Pan12], we summarize here some facts about permutohedra. We provide no
proofs but trust that the above examples illuminate matters considerably:
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Π3

(1, 2, 3)

(1, 3, 2)

(3, 1, 2)

(3, 2, 1)

(2, 3, 1)

(2, 1, 3)

(1, 23)(13, 2)

(3, 12)

(23, 1) (2, 13)

(12, 3)

Figure 2.10: The permutohedron Π3 is a 2-dimensional polytope whose boundary is a hexagon.

1. Πn is an (n− 1)-dimensional polytope.

2. The k-dimensional faces of Πn are labeled by ordered partitions of [n] into (n − k)
nonempty parts. In particular, the vertices are labeled by elements of Sn. (The term
labeled by is used rather suggestively, because we are immediately going to associate these
with the labels we have already defined for cells of ML)

3. A face F′ of Πn is contained in (the boundary of) a face F if and only if the label of F′ is
finer than the label of F. Refinement here is as described in Definition 2.6.

4. A face of Πn is the Cartesian product of permutohedra of smaller dimensions. (For
example, each face of Π3 is a line segment (Π2); each face of Π4 is a line segment (Π2),
a hexagon (Π3) or a square (Π2 ×Π2).)

Before we can connect permutohedra to the ideas developed in the previous section, we need
to talk about face posets.

2.4 Face posets and dual complexes

This section describes how the faces of the complex KL can be described in terms of permutohe-
dra. This description naturally leads us to consider the dual cell structure K∗L, and we discuss
that briefly. But first, some definitions.

Definition 2.9. The face poset of a regular CW complex is the poset (P,≺) obtained by
ordering its cells by inclusion: α ≺ β if and only if α is contained in the boundary of β.

Since we can draw a Hasse diagram of any face poset, the Hasse diagram for the face poset of
the complex KL of Fig. 2.8 is depicted in Fig. 2.11.
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({1}{2}{3}) ({2}{1}{3}) ({1}{3}{2}) ({2}{3}{1}) ({3}{1}{2}) ({3}{2}{1})

({1, 2}{3}) ({1}{2, 3}) ({2}{1, 3}) ({1, 3}{2}) ({2, 3}{1}) ({3}{1, 2})

Figure 2.11: The Hasse diagram of the face poset for the cell complex KL for L = (1, 1, 1, 2).
Since the set containing 4 is always a singleton, we have omitted it from all labels.

We will need some ideas and facts from the theory of polytopes, and we source most of these
from G. Ziegler’s ([Zie95]).

Definition 2.10. Two polytopes are said to be combinatorially equivalent if their face posets
are isomorphic; that is, there is an order-preserving bijection between their face sets.

Definition 2.11. Two polytopes are said to be combinatorially dual if their face posets are
anti-isomorphic; that is, there is an order-reversing bijection between their face sets. A polytope
Q that is combinatorially dual to the polytope P is said to be the dual of P and is denoted by
P∗ (we say “the” dual, but it is determined only up to combinatorial equivalence).

It can be shown that the dual of a polytope always exists (for example, using the construction
of a polar polytope outlined in [Zie95]).

Polytopes have a unique face of maximum dimension (the polytope itself), and a unique
(−1)-dimensional face (that is, the empty face), so that the face poset of a polytope becomes a
lattice, called the face lattice. The maximum and minimum dimensional faces are denoted by 1̂
and 0̂ respectively. For each face F of such a lattice, the interval [0̂, F] is isomorphic to the face
lattice of F.

Definition 2.12. For each face F of the polytope P, the interval [F, 1̂] is isomorphic to the face
lattice of a polytope, called the face figure of F, and denoted by P/F. It is called a vertex
(respectively, edge) figure if F is a vertex (respectively, edge).

If the polytope P is dual to the polytope Q with the face F mapping to G under the anti-
isomorphism, then G is the face figure P/F of F. In general,

dim(P/F) = dim(P)− dim(F)− 1.

Example 2.10. For a regular polyhedron, the vertex figure may be constructed by cutting off a
small slice containing the vertex (that is, taking a hyperplane that passes through the polytope
with the given vertex on one side of the hyperplane and all other vertices on the other side) and
looking at the exposed hypersurface. Take an octahedron, for example. Cut off a small square
pyramid containing a vertex. The exposed surface is a square. This is the vertex figure of the
vertex we just cut off. As described above, the vertex figure can also be obtained by going to the
dual polyhedron (the cube) and looking at the corresponding codimension-1 face. Again, this is
a square.
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The notion of a face figure can be extended to posets of CW complexes, but now, since we do
not necessary have lattices, the resulting face figures could be objects that do not have a CW
decomposition at all.

Definition 2.13. For a cell C of a CW complex K, an object (not necessarily a CW complex)
having the same face poset as the interval [C, 1̂) (or [C, 1̂] if 1̂ exists) is called the face figure of
C. Analogous definitions hold for vertex figure and edge figure.

Using the vocabulary developed in the previous and current sections, we are ready to state our
result. Recall that KL is the regular cell decomposition of ML.

Proposition 2.7. [Pan12, Proposition 2.7]

(1) The vertex figure of any vertex v of KL is combinatorially dual to the Cartesian product of
three permutohedra.

(2) The face figure of any k-dimensional cell is combinatorially dual to the Cartesian product of
(k + 3) permutohedra.

Proof. (1) By Theorem 2.6, we know that the label of a 0-dimensional cell F is a partition of
[n] into three sets, say A, B and C, with cardinalities a, b and c respectively. Consider the
interval [F, 1̂). Any cell in this interval has a label which consists of a partition of A followed
by a partition of B followed by a partition of C. Thus, it follows that [F, 1̂) is isomorphic to
the product of the posets of cyclically ordered partitions of A, B and C. The poset of cyclically
ordered partitions of A, however, is combinatorially dual to the face poset of Πa, and similarly
for B and C, so the result follows.
(2) is just an extension of (1) to the case when the label has more than 3 parts.

Example 2.11. For the KL of Fig. 2.8, the [F, 1̂) for an arbitrary 0-cell is shown in Fig. 2.12, as
are the actual vertex figure and the product of permutohedra it is dual to.

(a) The vertex figure (b) The poset of the vertex figure (c) Π2 ×Π1 ×Π1

Figure 2.12: The vertex figure of an arbitrary vertex of KL for ML = S1 is combinatorially dual
to the product Π2 ×Π1 ×Π1 of three permutohedra.

With this result, we have described completely the combinatorial structure of ML.



Chapter 3

Discrete Morse theory

3.1 A primer on discrete Morse theory

This section serves as a brief introduction to discrete Morse theory. It closely follows R. Forman’s
treatment in [For02].

Discrete Morse theory is a technique for analyzing the topology of a CW complex by
defining a special type of function on it, called a discrete Morse function. The reasoning for this
terminology is sound: the “discrete” is because we do not assign a continuous set of values
to each point in the space, but only a discrete set of values to the cells in the complex; the
“Morse theory” part is justified because, similar to classical Morse theory, we have notions of
critical points and gradient paths which can be used to state discrete versions of the Morse
inequalities. More will become clear as definitions and examples are presented. We will, unless
mentioned otherwise, always assume that all spaces are manifolds and all complexes are regular
CW complexes.

Let K be a finite regular CW complex. For a cell α of K, α(p) indicates that it is a p-cell, and
both α(p) < β(p+1) and β(p+1) > α(p) indicate that α lies in the boundary of β.

Definition 3.1. A function
f : K→ R

is called a discrete Morse function if, for every α(p) ∈ K, the following hold:

1. s(α) :=
∣∣∣∣{β(p+1) > α

∣∣∣ f (β) ≤ f (α)
}∣∣∣∣ ≤ 1, and

2. i(α) :=
∣∣∣∣{γ(p−1) < α

∣∣∣ f (γ) ≥ f (α)
}∣∣∣∣ ≤ 1.

So, a discrete Morse function, in the words of Forman, “roughly speaking, assigns higher
numbers to higher dimensional [cells], with at most one exception, locally, at each [cell].” The
following lemma, which is a direct consequence of the definition, makes precise the “at most
one exception locally” , and is useful when one wants to show that a particular function is not a
discrete Morse function:

22
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Lemma 3.1. [For98, Lemma 2.5] Suppose p > 0. For each cell α(p) of K, at least one of the
inequalities in Definition 3.1 must be strict. In other words, s(α) + i(α) ≤ 1.

Proof. Suppose there is some α(p) for which neither inequality is strict. That is, there exists a
β(p+1) > α and a γ(p−1) < α such that f (β) ≤ f (α) and f (γ) ≥ f (α). But that means

f (γ) ≥ f (β). (3.1)

Now, since we are in a regular complex, there exists some α′(p) such that γ < α′ < β. Applying
condition 1 of the definition to γ, we see that f (α′) > f (γ). Applying condition 2 to β, we see
that f (α′) < f (β). But these inequalities contradict Eq. (3.1).

When both inequalities are strict (that is, when s(α) = i(α) = 0), we get an analog of the
critical points in classical Morse theory:

Definition 3.2. A cell α(p) is called a critical cell or a critical p-cell if the following hold:

1. f (β) > f (α) for all β(p+1) > α, and

2. f (γ) < f (α) for all γ(p−1) < α.

We now demonstrate some of the definitions introduced above with an example:

Example 3.1. Consider the regular complex KL when L = (1, 1, 1, 2). Recall that here ML is a
circle (Example 1.8). Fig. 3.1 shows KL.

(2, 13)

(23, 1)

(3, 12)

(13, 2)

(1, 23)

(12, 3)

(2, 3, 1)(3, 2, 1)

(3, 1, 2)

(1, 3, 2) (1, 2, 3)

(2, 1, 3)

Figure 3.1: KL for when ML is a circle. We omit the braces and 4-set in the cell labels.

Now, since a discrete Morse function assigns a number to each cell, we again show the cell
decomposition, but now we replace the cell labels by the value assigned to each cell.

The assignment of values shown in Fig. 3.2 would constitute a discrete Morse function but
for the fact that i((3, 2, 1)) = 2. To rectify this, we can just increase the value assigned to it.
Fig. 3.3 shows this modified function f , which is indeed a discrete Morse function.
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0
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1

1

0

1

51

4

1 5

1

Figure 3.2: A non-example of a discrete Morse function

0

3

1

1

0

1

52

4

1 5

1

Figure 3.3: The discrete Morse function f

What are the critical cells of f ? First, we look at all 1-cells β with i(β) = 0. These are
(3, 1, 2), (2, 3, 1) and (1, 2, 3).Next, we look at all 0-cells α with s(α) = 0. These are (3, 12), (2, 13)
and (1, 23). Thus we end up with three critical 0-cells and three critical 1-cells.

It is no coincidence that a circle is homotopy equivalent to a CW complex with three 0-cells and
three 1-cells.

Theorem 3.2. [For98, Corollary 3.5] Suppose K has a discrete Morse function. Then K is
homotopy equivalent to a CW complex with exactly one cell of dimension p for each critical p-cell.

A proof of this theorem may be looked up in R. Forman’s [For98], and a discussion about why
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the proof works is present in [For02]. The essential idea is that of an elementary collapse, which
we now illustrate.

Definition 3.3. For a discrete Morse function f : K → R, the level sub-complex K(c) is
defined to be the sub-complex containing all cells α such that f (α) ≤ c, and all the cells in their
boundaries. That is

K(c) =
⋃

f (α)≤c

∪γ≤αγ.

Some level sub-complexes of the discrete Morse function f in Fig. 3.3 are shown in Fig. 3.4.

01

1

0

1

1

1

(a) The level sub-complex K(1)

0

3

1

1

0

1

2

1

1

(b) The level sub-complex K(3)

0

3

1

1

0

1

2

4

1

1

(c) The level sub-complex K(4)

Figure 3.4: Some level sub-complexes for f on K.

Observe that, when we move from K(1) to K(3), we add two non-critical cells, and not just
any two cells: a pair α(p) and β(p+1) such that α < β and f (α) ≥ f (β). This is in general what
happens when f−1(a, b] has no critical cells: cells are added in pairs as above. Shrinking the
interval [a, b] if necessary, so that only one such pair (α, β) is present, we see that all other cells
in the boundary of β were already present in K(a), and all cells containing α in their boundary
have been assigned values greater than b (since f is a discrete Morse function), so that there is
a deformation retract that leads from K(b) to K(a). This sort of deformation retract, where a
pair of non-critical cells cancels out to give a space that is homotopy equivalent, is called an
elementary collapse. Thus we conclude that the non-critical cells do not contribute to homology.

On the other hand, when f−1(a, b] contains a critical p-cell, as is the case for f−1(3, 4],
then K(b) is homotopy equivalent to K(a) with a p-cell attached, a Fig. 3.4 illustrates. This
is because, since the cell is critical, all cells in its boundary are already present in K(a), and
all cells containing it are outside K(b), so that moving from K(a) to K(b) consists precisely of
attaching this single cell.

The discussion so far indicates that when non-critical cells can be paired subject to certain
conditions, then that pair can safely be removed from the complex. This is the idea we use to
construct a discrete Morse function on an arbitrary regular complex.

One consequence of Lemma 3.1 is that, for any cell α, exactly one of the following holds:

• s(α) = 1, in which case α lies in exactly one such pair
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• i(α) = 1, in which case α lies in exactly one such pair

• s(α) = i(α) = 0, in which case α is critical.

It appears that just describing the pairs that do not contribute to homology might be enough
for our purposes, and that is indeed true: we do not need the actual values assigned to the cells,
but only the pairs they are a part of.

Definition 3.4. A discrete vector field V on K is a collection of pairs (α(p), β(p+1)) where
α < β, such that each cell is in at most one pair of V.

Suppose there is a discrete Morse function f : K → R. The three alternatives listed above
ensure that if we pair the cells α(p) < β(p+1) whenever f (α) ≥ f (β), the resulting collection of
pairs is a discrete vector field, called the gradient vector field of f .

Is every discrete vector field the gradient vector field of some discrete Morse function? If so,
then we can do away with the function itself and just work with the vector field, for what we
really need is just the pairs. However, that is not the case. A discrete vector field just requires
that each cell be in at most one pair, so the collection{(

α
(p)
1 , β

(p+1)
1

)
,
(

α
(p)
2 , β

(p+1)
2

)}
is a vector field. However, if α1, α2 < β1, β2, then it is not the gradient vector field of any
discrete Morse function f , since we would require that such an f satisfy

f (α1) ≥ f (β1) > f (α2) ≥ f (β2) > f (α1), (3.2)

which is not possible. This motivates the following definition:

Definition 3.5. Given a discrete vector field V on K, a V-path is a sequence of cells

α
(p)
0 , β

(p+1)
0 , α

(p)
1 , β

(p+1)
1 , . . . , β

(p+1)
r , α

(p)
r+1 (3.3)

such that, for each 0 ≤ i ≤ r,

• αi+1 6= αi,

• (αi, βi) is a pair in V and

• βi > αi+1

We say such path is a closed path if α0 = αr+1.

As in Eq. (3.2), if Eq. (3.3) is a path of a gradient vector field, it must satisfy the condition

f (α0) ≥ f (β0) > f (α1) ≥ f (β1) > . . . ≥ f (βr) > f (αr+1). (3.4)

Clearly, this can happen only if the path is not closed. We therefore arrive at the following
result:
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Proposition 3.3. If V is the gradient vector field of some discrete Morse function, then there are
no closed V-paths.

It turns out that the converse is also true, that is, the existence of closed paths is the only
obstruction to a discrete vector field being a gradient vector field:

Theorem 3.4. [For02, Theorem 3.5] A discrete vector field is the gradient vector field of a discrete
Morse function if and only if there are no closed V-paths.

We will not prove the remaining direction here. It follows from the following theorem of graph
theory:

Theorem 3.5. [For02, Theorem 3.6] Let G be a directed graph. Then there is a real-valued
function of the vertices that is strictly decreasing along each directed path if and only if there are no
directed loops.

The Hasse diagram of any poset can be modeled as a directed graph thus: (here we consider
the face poset of K) draw a directed edge from β(p+1) to α(p) if and only if α < β. So, for the
cell decomposition shown in Fig. 3.1, the directed graph (hereafter called only graph) is as in
Fig. 3.5.

(1, 2, 3) (2, 1, 3) (1, 3, 2) (2, 3, 1) (3, 1, 2) (3, 2, 1)

(12, 3) (1, 23) (2, 13) (13, 2) (23, 1) (3, 12)

Figure 3.5: The Hasse diagram of the decomposition in Fig. 3.1 modeled as a directed graph.

Now, consider the gradient vector field of the function f shown in Fig. 3.3. The pairs for
this vector field are (3,2,1) & (23,1); (1,3,2) & (13,2); and (2,1,3) & (12,3). We indicate this in
the graph by reversing the corresponding edges. Fig. 3.6 shows this.

(1, 2, 3) (2, 1, 3) (1, 3, 2) (2, 3, 1) (3, 1, 2) (3, 2, 1)

(12, 3) (1, 23) (2, 13) (13, 2) (23, 1) (3, 12)

Figure 3.6: The directed graph for the discrete Morse function f .

Theorem 3.5 says that, once we do this for a discrete vector field, the resultant graph has
no directed loops if and only of it is the gradient vector field of a discrete Morse function. A
directed loop can be described as: a way to start from a node and keep following outbound
edges until you return to the node. As the reader can check, Fig. 3.6 has no directed loops, as
one would expect from a gradient vector field.
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We now incorporate some useful terminology from graph theory (where our graphs are always
finite):

Definition 3.6. A matching M on a graph G is a set of edges such that no two vertices of G
share an edge in M.

Definition 3.7. A matching on (the Hasse diagram of) the face poset of a regular cell complex
is acyclic if the directed graph obtained by directing matching edges upward and all other
edges downward has no directed cycles.

Thus a discrete Morse function on a regular cell complex is nothing but an acyclic matching on
its face poset.

Definition 3.8. A matching M on a graph G is called maximum (respectively, maximum
acyclic) if it contains the largest number of edges of any matching (respectively, acyclic
matching) of G. A matching M is called maximal (respectively, maximal acyclic) if, when a
new edge is added to M it no longer remains a matching (respectively, acyclic matching).

A graph may have multiple maximum matchings, but they must all have the same cardinality. A
maximum matching is always maximal, but the converse is not true.

When can we say that the graph has a maximum acyclic matching? One answer is provided
by the weak Morse inequalities, which hold true for discrete Morse functions.

For a discrete Morse function f , denote by mi the number of critical cells of dimension i. For
a field F, denote by βi the ith F-Betti number of K, that is,

βi = dim Hi(K;F).

Theorem 3.6. [For98](The weak Morse inequalities) For each 0 ≤ i ≤ n, where n is the highest
dimension of any cell of K,

mi ≥ βi.

Definition 3.9. Fix a field F. A discrete Morse function f for which the weak Morse inequalities
become equalities is called an F-perfect Morse function.

The weak Morse inequalities immediately give the following result:

Corollary 3.7. If a Morse function is perfect, then its gradient vector field is a maximum acyclic
matching.

Remark 3.1. There is a notion, in graph theory, of a perfect matching. This is not to be confused
with our notion of a perfect Morse function. We will have no occasion to use perfect matchings
in this thesis.



CHAPTER 3. DISCRETE MORSE THEORY 29

3.2 A perfect Morse function on K∗L

This section follows closely the construction described in [PZ15] by G. Panina and A. Zhukova.
We fix a generic length vector L = (l1, . . . , ln) and assume, as before, that l1 ≤ . . . ≤ ln. We now
describe the construction of a discrete Morse function on the cell complex K∗L, which is dual
to the regular cell complex KL on ML. Recall that the cells are labeled by cyclically ordered
admissible partitions and we may assume that the n-set occurs last.

Since the homology groups of ML are torsion-free (Theorem 1.4), we can extend the
definition of a perfect Morse function to when the coefficients take values in Z. The Morse
inequalities still hold, and we call Z-perfect functions simply perfect Morse functions. The
discrete Morse function that we now describe is, in this sense, perfect.

In what follows, we will often omit the phrase “is labeled by” and simply equate a cell with
its label. The following notation and definition will be heavily used in this and subsequent
chapters:

• The ellipsis “. . .” denotes any (possibly empty) ordered admissible collection of subsets of
[n] (that is, each subset in the collection is short).

• The asterisk “∗” denotes any (possibly empty) subset of [n]. By abuse of notation, it also
denotes the elements of such a set. For example, {3, ∗} is the same as {3} ∪ ∗.

• The letter N denotes the n-set (that is, the set containing n).

• The triangle H, with or without a subscript, denotes (a possibly empty) string of singletons
arranged in decreasing order. For example, H1 could represent the sequence {4}{2}{1}
but not the sequence {4}{1}{2} or the sequence {4}{1, 2}.

• The expression “k < I” indicates that k < i for each i ∈ I. Similarly, the expression “k < H”
indicates that k is less than the element in each singleton of H.

Definition 3.10. For k ∈ [n], a set I ⊂ [n] is called k-prelong if I itself is short, but I ∪ {k} is
long.

We can now proceed with the construction, which is divided into several steps:

Step 1: Pair together the cells

α = (. . . {1}I . . .) and β = (. . . {1} ∪ I . . .) (3.5)

if n /∈ I and {1} ∪ I is short (which must anyway hold true if the cell β is to exist at all).
Observe that the cell α lies in the boundary of β, so this is a valid pairing. Moreover, by

construction, no cell can be a part of more than one such pairing. The only possible paths at
this stage are of the form

α0, β0, α1, β1, . . . , αp, βp, αp+1, (3.6)

where each pair (αi, βi) is of the form described in Eq. (3.5).
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Claim 3.8. In the path described by Eq. (3.6) above, αp+1 cannot equal α0.

Proof. If p = 0, then the claim is true by the definition of a path. If p > 0, then, by the same
definition, we have that, for each 0 ≤ i ≤ p, the cell αi is distinct from αi+1. Therefore, if αi

is of the form (. . . {1}I . . .), then of necessity βi must be (. . . {1} ∪ I . . .), and since αi+1 is not
αi, it must be (. . . I{1} . . .) (since it has to be of the form described in Eq. (3.5)). Proceeding
thus, we see that as we traverse the path, the element 1 keeps moving to the right, entering and
exiting sets as necessary.

If αp+1 is to equal α0, then 1 must move into the n-set and reemerge on the left by a splitting
of the n-set, but that is forbidden by the rules of Step 1.

This claim has shown that there are no cycles at this stage. In other words, the discrete vector
field described by the pairing thus far is a discrete Morse function. We didn’t need to know this
right now (after all, what matters is that we have a discrete Morse function when all the steps
are completed), but the foregoing proof illustrates the point of the condition n /∈ I that was
imposed.

What are the unpaired cells at this stage? If an unpaired cell has 1 as a singleton, then the
Step 1 conditions ensure that the set following {1} must be either the n-set, or a 1-prelong
set. If 1 is not a singleton, and if 1 and n are in separate sets, then the 1-set can be split to
obtain a cell with 1 as a singleton followed by the rest of the 1-set, so the cell can be paired. We
conclude that the unpaired cells are of the types:

1. (. . . {1}{n, ∗}),

2. (. . . {1}(a 1-prelong set) . . .) and

3. (. . . {1, n, ∗}).

Clearly, any cells of the above types are also unpaired, so we have completely characterized the
unpaired cells at this stage.

Step 2: Pair together the cells

α = (. . . {2}I . . .) and β = (. . . {2} ∪ I . . .) (3.7)

if n /∈ I; {2} ∪ I is short, and α and β have not yet been paired.
Observe that the above conditions automatically ensure that 1 /∈ I. For if 1 were in I,

then since we have that α and β are unpaired, and since n /∈ I, we must have I = {1} by the
characterization at the end of Step 1. But then β = (. . . {1, 2} . . .) would be paired with the cell
(. . . {1}{2} . . .) in Step 1 itself, a contradiction.

As with step 1, we can give here also a characterization of the unpaired cells, and show that
the pairing process so far yields no closed paths. But there is not much to be gained from this
extra effort, and we postpone these tasks to the end of the construction.

The construction now proceeds similarly for n− 2 steps, with the kth step looking thus:
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Step k: Pair together the cells

α = (. . . {k}I . . .) and β = (. . . {k} ∪ I . . .) (3.8)

if n /∈ I; {k} ∪ I is short, and α and β have not yet been paired.
Analogously to the situation in Step 2, the conditions here ensure that all elements in I are

greater than k. For if not, and I is a singleton, then the same argument as in Step 2 can be used
to show that β is already paired; if I is not a singleton, then its least element, say j, can be
ejected from it to yield new cells

α′ = (. . . {k}
{

j
}

I′ . . .) and β′ = (. . .
{

j
}
{k} ∪ I′ . . .),

where I′ = I \
{

j
}

. Then it can be seen that (α, α′) and (β, β′) must have been paired no later
than Step j.

We illustrate this pairing procedure with a simple example.

Example 3.2. Let L = (1, 1, 1, 2). Then, as we have seen already, ML is a circle, and the face
poset of K∗L looks thus (as before, we dispense with set braces and write elements of a single
set contiguously; we further dispense with the 4-set because it is always singleton in this case):

(1, 2, 3) (2, 1, 3) (1, 3, 2) (2, 3, 1) (3, 1, 2) (3, 2, 1)

(12, 3) (1, 23) (2, 13) (13, 2) (23, 1) (3, 12)

Figure 3.7: The Hasse diagram of the dual face poset for L = (1, 1, 1, 2)

The pairing now proceeds as follows (recall that any two element subset of [4] not containing
the element 4 is short):
In Step 1, the following cells get paired:

• (1, 2, 3) and (12, 3)

• (2, 1, 3) and (2, 13)

• (1, 3, 2) and (13, 2)

• (3, 1, 2) and (3, 12)

In Step 2, the following cells get paired:

• (2, 3, 1) and (23, 1)

Thus the only unpaired cells are (1, 23) and (3, 2, 1). As discussed in the previous section, this
pairing can also be depicted as a matching on a directed graph, by making all edges in the face
poset point downward, and then reversing the directions of the matched edges (Fig. 3.8).

As the reader can verify, there are no cycles in this graph, hence the pairing yields a discrete
vector field which is in fact a discrete Morse function.
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(1, 2, 3) (2, 1, 3) (1, 3, 2) (2, 3, 1) (3, 1, 2) (3, 2, 1)

(12, 3) (1, 23) (2, 13) (13, 2) (23, 1) (3, 12)

Figure 3.8: Matching on the directed graph for L = (1, 1, 1, 2). The unpaired cells are enclosed
in boxes.

Similar to the example, the pairing construction always gives a discrete Morse function:

Proposition 3.9. [PZ15, Proposition 3.1] (1) Assume we have a gradient path of the discrete
vector field given by the pairing construction. Assume also that m < k, and a cell

α = (. . . {k, ∗} . . . {m, ∗} . . .)

belongs to the path (that is, the elements k and m belong to different sets and the set containing k
is somewhere to the left of the set containing m).

Then, during the path after the cell α, k always remains to the left of m. In other words, cells of
the following types do not occur in the gradient path after α:

• (. . . {k, m, ∗} . . .)

• (. . . {m, ∗} . . . {k, ∗} . . .)

(2) The introduced discrete vector field is a discrete Morse function.

Proof. (1) For a cell of either of the two types listed above to occur in the gradient path after α,
the cell of the first type must occur at some point, because the alternative—that m pass through
the n-set and reemerge on left of k—is forbidden. However, the cell having m and k in the same
set cannot occur, because for that to happen, k must enter the m-set, which is forbidden since
k > m.
(2) Suppose we have a closed path

α0, β0, α1, β1, . . . , αp, βp, αp+1,

with αp+1 = α0 and the αi’s unique for each 0 ≤ i ≤ p. Suppose

α0 = (. . . {k}I . . .) and β0 = (. . . {k} ∪ I . . .).

For αp (which by hypothesis is distinct from α0), there are three possibilities:

1. If αp gets paired at the kth step, then

αp = (. . . {k}J I . . .) and βp = (. . . {k} ∪ J I . . .),

in which case we would have
α0 = (. . . J{k}I . . .).
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2. If αp gets paired at the jth step for j > k, then

αp = (. . . {k}K . . .
{

j
}

J . . .) and βp = (. . . {k}K . . .
{

j
}
∪ J . . .),

where K is k-prelong, because this is the only way in which αp can remain unpaired after
the kth step. In this case we have

α0 = (. . . {k}I I′ . . .),

where K = I ∪ I′.

3. If αp gets paired at the jth step for j < k, then there are only two ways in which α0 can
remain unpaired after the jth step:

(a) αp = (. . . {k}I . . .
{

j
}

J K . . .) and βp = (. . . {k}I . . .
{

j
}
∪ J K . . .), where K is j-

prelong, in which case we have α0 = (. . . {k}I . . . J
{

j
}

K . . .).

(b) αp = (. . . {k}I . . .
{

j
}

J{n, ∗}) and βp = (. . . {k}I . . .
{

j
}
∪ J{n, ∗}), in which case

we have α0 = (. . . {k}I . . . J
{

j
}
{n, ∗}).

In case 1, there exists some m ∈ J such that m > k. Then, m is to the left of k in α0 but to the
right in αp, which is impossible by part (1). In case 2, there has to be some step at which the
set K gets formed. But at that step k can still be moved into some set, or the set containing k
can be split, so the cell would have been paired at the kth step itself. So this scenario is also not
possible.

In case 3(a), there exists m > j in J, but then m and j are not allowed to cross each other by
part (1). Similarly, case 3(b) is also not possible.

Another feature of Example 3.2 which holds in the general case is the type of unpaired cells
one is left with. Recall that the unpaired cells in the example were (3, 2, 1, 4) and (1, 23, 4): one
having a sequence of singletons going in the decreasing order, and the other having a singleton
which could have moved into the set following it but for the fact that it would have created a
long subset. The following theorem states that, in essence, these are the only types of unpaired
cells possible. Using the terminology of the previous section, we may call the unpaired cells
critical cells.

Theorem 3.10 (Theorem 4.1). [PZ15] The critical cells of the discrete Morse function described
so far are exactly cells of the following two types:

• Cells of type 1 labeled by
(H{n, ∗})

• Cells of type 2 labeled by
(H1{k}IH2{n, ∗})

where the following hold:

1. I is a k-prelong set,



CHAPTER 3. DISCRETE MORSE THEORY 34

2. k < I and

3. k < H1.

Proof. For any singleton in H in a cell of type 1, the set following it either contains an element
less than it, or contains n. So no singleton can be moved into a subsequent set to form a pair.
Moreover, in a pairing, the n-set cannot split, and that is the only non-singleton set. Hence a
cell of type 1 cannot be paired. The same reasons apply to cells of type 2 as well. In addition,
since I is k-prelong, k cannot move into I to give a pairing. So we only need to check that I
cannot split to give a pairing, but that is impossible since the resulting cell would be (where
I′ = I \

{
j
}
):

(H1{k}
{

j
}

I′H2{n, ∗}),

which would be paired not with the cell we began with, but with

(H1
{

k, j
}

I′H2{n, ∗}).

We have therefore shown that a cell of either of the above two types must be critical.
Conversely, suppose α is a critical cell. If α contains only singletons (other than the n-set),

then they must either all be in decreasing order (to prevent any two from merging), ensuring α

is of type 1, or there exists not more than one pair of singletons in the ascending order whose
union is a long subset. (Such a situation is indeed possible: consider, for L = (1, 2, 2, 2), the cell
(2, 3, 1, 4) is critical because {2, 3} is a long subset.) In the latter case, α is of type 2.

On the other hand, if α contains a non-singleton set I other than the n-set, it must be
preceded by a singleton {k} such that k < I, for otherwise I itself could split to give a pairing of

(. . .
{

j
}

I′ . . .) and α = (. . . I . . .),

where j is the least element of I and I′ = I \
{

j
}

. Moreover, I must be k-prelong, else k could
enter I to give a pairing of α with the resultant cell. If we can now show that α can contain not
more than two non-singleton sets, it would follow that α is of type 2. So suppose α contains L,
a non-singleton set which is distinct from both I and the n-set. The same conditions that apply
to I must also apply to L, that is, L is preceded by a singleton

{
k′
}

such that L′ := L ∪
{

k′
}

is
long. But then its complement is a short subset that contains I ∪ {k}, a long subset, which is
absurd.

Example 3.3. We can use this method to find a discrete Morse function on a sphere. Suppose
(L = 1, 1, . . . , 1, n− 1− ε). As we know (Example 1.8), in this case ML is the (n− 3)-sphere.
According to the theorem, the only critical cells of the discrete Morse function on this sphere
are:

• Type 1: ({n− 1} . . . {2}{1}{n}), since the only short subset containing n is the singleton.

• Type 2: ({1}{2, 3, . . . , n− 1}{n}), since the only long subset not containing n is [n− 1].

Thus we have one critical 0-cell and one critical (n− 3)-cell. Since the sphere has Betti number
1 precisely in dimensions 0 and n− 3, we conclude that we in fact have a perfect Morse function.
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In general, however the method above does not yield a perfect Morse function:

Example 3.4. Suppose L = (1, 1, 1, 1, 1). Then, as we know (Theorem 1.9), ML is diffeomorphic
to the orientable surface of genus 4. The following are all critical 0-cells of type 2:

• ({1}{2, 3}{4, 5})

• ({1}{2, 4}{3, 5})

• ({1}{3, 4}{2, 5})

• ({2}{3, 4}{1, 5})

Clearly, this Morse function is not perfect, and in fact, is quite far from being perfect.

We therefore need some way to reduce the number of critical cells if we wish to have a perfect
Morse function. This is done by a technique wherein certain paths between cells are identified
and then reversed. It is based on the following theorem, which is a discrete analog of the
“Cancellation Theorem” in classical Morse theory:

Theorem 3.11. [For02, Theorem 9.1] Suppose f is a discrete Morse function on K such that
β(p+1) and α(p) are critical, and there is exactly one gradient path from β to α. Then there is
another Morse function g on K with the same critical cells as f except that α and β are no longer
critical. Moreover, the gradient vector field associated to g is equal to the gradient vector field
associated to f except along the unique gradient path from β to α.

Proof. The hypotheses of the theorem imply that the directed graph of the Hasse diagram of K
has an acyclic matching, with a unique path between β(p+1) and α(p), say

β, α0, β0, . . . , αm, βm, α.

Then we “reverse” this matching, that is, we match α with βm, αm with βm−1 and so on, until
we match α0 with β. Since the path between β and α was unique, no cycles are introduced, and
now α and β are no longer unmatched.

The technique described in the proof is known as path reversal. We wish to apply this technique
to our current situation, but first we need a pair of critical cells that have a unique gradient
path between them.

Proposition 3.12. Suppose

β = (H1{k}IH2
{

n, j, ∗
}
) and α = (H1{k}IH2 ∪

{
j
}
{n, ∗})

are critical cells of type 2 (where H2 ∪
{

j
}

indicates that the set
{

j
}

is appended to H2 and then
moved to the appropriate position to ensure that H2 remains a descending sequence of singletons).

If I is j-prelong, then the cells are connected by exactly one gradient path.
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Proof. Clearly there is at least one path: j gets ejected (to the left) from the n-set and keeps
moving till α is reached. For another path to exist, I would have to split in β (for j cannot get
ejected to the right of the n-set: I being j-prelong would prevent it from passing through). If
that were the case, the least element of I, say i would have to enter I at some point in order to
obtain α. At that stage, k cannot be to the right of I (for then it can never re-emerge to the left),
nor can it be to the left of I (for then it would merge with i). Thus no such path exists.

Thus we have a pair of critical cells between which there is exactly one path. We seek to reverse
this path. However, since it is possible to create cycles when reversing more than one path
simultaneously, we impose some extra conditions.

Path Reversal Step: Reverse the path between the critical cells

β = (H1{k}IH2
{

n, j, ∗
}
) and α = (H1{k}I

{
j
}
H2{n, ∗})

if the following hold:

1. j > ∗,

2. j > H2 and

3. j > k.

These conditions ensure that we end up with a discrete vector field. Note that here we do not
impose the condition that I be j-prelong; the condition j > k is enough to ensure that j cannot
get ejected to the right of the n-set if it is to reappear to the right of k.

Thus we have a discrete vector field, with a reduced number of unpaired cells. As the next
results state, this is in fact a perfect Morse function, and so, in our situation at least, path
reversal does the job.

Proposition 3.13 (Proposition 6.3). [PZ15] The path reversal technique yields a discrete Morse
function.

Theorem 3.14 (Theorem 6.4). [PZ15] The resulting discrete Morse function is perfect.

Thus the proposition asserts that the final matching is acyclic, and the theorem that it is a
maximum matching.

We also describe here the critical cells that remain after the path reversal, because we will
need these later:

1. All cells of type 1, and

2. All cells (H1{k}IH2{n, ∗}) of type 2 (that is, k < I, k < H1 and I is k-prelong) such that,
in addition,

k > ∗ and k > H2.



Chapter 4

The Z2-action on ML

When ML is a manifold, there are no collinear configurations, so reflecting a polygon P about
the X-axis (which is an involution) yields a polygon Q that is necessarily distinct from P. In
other words, the group Z2 acts freely on ML. The orbit space (or quotient) of this action,
denoted by OL, is therefore a manifold, with π : ML → OL a covering map. This chapter is
devoted to the quotient manifold OL. The main questions we seek to answer are: does OL admit
a cell structure with a convenient combinatorial description, and, if so, can we profitably do
discrete Morse theory on it?

4.1 Z2-equivariance

The first question can be answered almost immediately. We start by introducing some notions
from [Str11] about group actions on a CW complex.

Definition 4.1. A map X → Y of CW complexes is called a cellular map if it restricts to a map
of k-skeleta Xk → Yk for each k. In particular, a cellular map takes k-cells to k-cells.

Definition 4.2. An action of a group G on a CW complex X is a cellular action (or G acts
cellularly) if g : X → X is a cellular map for each g ∈ G.

A cellular map that fixes a cell might not fix each point of the cell. For example, consider the
CW structure on the closed interval [0, 1] consisting of two 0-cells and one 1-cell (with obvious
attaching maps). Reflection about the point ½ is a cellular map that fixes the 1-cell, but not the
points of the 1-cell.

Definition 4.3. Given a group G acting on a CW complex X, X is called a G-CW complex if G
acts cellularly and if, whenever g ∈ G fixes a cell σ, it also fixes all points of σ.

The following proposition is a classical result of homotopy theory:

Proposition 4.1. [Geo07, Proposition 3.2.2] Let X be a G-CW complex and let π : X → X/G
be the quotient map onto the orbit space. Then X/G admits a CW structure whose cells are{

π(e)
∣∣ e is a cell of Y

}
.

37
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The next lemma will allow us to use the above results.

Lemma 4.2. ML is a Z2-CW complex.

Proof. Since the only non-trivial element of Z2 acts by reflection (which does not fix any cell),
we only have to check that reflection, which we denote by r, is a cellular map. Suppose P is a
convex polygon with the angles of its sides satisfying θ1(P) < . . . < θn(P). Reflection takes it to
a polygon Q = r(P) with θi(Q) = −θi(P) for all 1 ≤ i ≤ n− 1, and θn(Q) = θn(P). Thus the
angles of Q satisfy θn−1(Q) < . . . < θ1(Q) < θn(Q).

Now suppose P is any polygon without parallel edges, with angles satisfying θλ(1)(P) <

. . . < θλ(n)(P), for some permutation λ ∈ Sn, which is in fact the label of the (n− 3)-cell P
belongs to. Then reflection takes P to the polygon Q = r(P) whose angles satisfy θλ(n−1)(Q) <

. . . < θλ(1)(Q) < θλ(n)(Q).
Generalizing this to all polygons, we see that r maps a polygon with label (I1 . . . Ik), where

Ij ⊂ [n] and n ∈ Ik, to a polygon with label (Ik−1 . . . I1 Ik). Since this is true for all polygons
with that label, it is true for the cell itself, hence r maps cells to cells.

The description of the reflection r in terms of cell labels (enunciated in the preceding proof) is
an important one, and we reiterate it here (since we are deliberately blurring the distinction
between a cell and its label, we can also think of r as an involution on the set of admissible
partitions of [n]):

r : ML →ML

(I1 . . . Ik) 7→ (Ik−1 . . . I1 Ik).

Combining Proposition 4.1 and Lemma 4.2, we get

Theorem 4.3. OL has a CW structure whose k-cells are labeled by equivalence classes of admissible
partitions of [n] into k + 3 blocks, where two such partitions λ and λ′ are equivalent if λ′ = r(λ).
The cell (labeled by the equivalence class) λ = λ′ is contained in the boundary of σ if and only if λ

is refined by either σ or r(σ).

The last statement of the theorem makes sense because if λ refines σ, then r(λ) refines r(σ).
In fact r induces a poset isomorphism of KL with itself. We denote the CW complex on OL

described in Theorem 4.3 by CL, and its dual complex by C∗L. Some examples will illustrate the
theorem.

Example 4.1. Consider our running example L = (1, 1, 1, 2) with ML = S1. The reflection r
maps the cell ({1}{2, 3}{4}) to the cell ({2, 3}{1}{4}). The equivalence classes of 0-cells (with
braces removed) are:

1. (1, 23, 4) = (23, 1, 4)

2. (2, 13, 4) = (13, 2, 4)

3. (3, 12, 4) = (12, 3, 4)

The equivalence classes of 1-cells are:
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1. (1, 2, 3, 4) = (3, 2, 1, 4)

2. (2, 1, 3, 4) = (3, 1, 2, 4)

3. (1, 3, 2, 4) = (2, 3, 1, 4)

So OL = S1/Z2 = RP1 ' S1 has the cell structure shown in Fig. 4.1a.

(1, 23, 4)

(2, 13, 4)

(3, 12, 4)

(1, 2, 3, 4)

(1, 3, 2, 4)

(2, 1, 3, 4)

(a) L = (1, 1, 1, 2)

(2, 3, 14)

(2, 13, 4)

(12, 3, 4)

(1, 2, 3, 4)

(2, 3, 1, 4)

(2, 1, 3, 4)

(b) L = (1, 2, 2, 2)

Figure 4.1: The cell structure for OL is shown here, for two different values of L

Example 4.2. Let L = (1, 2, 2, 2). Here ML is a disjoint union of two circles. Reflection maps one
circle to the other. In Fig. 2.9, therefore, if one imagines a vertical line between the two circles,
each cell is mapped to its image across this line. The quotient is a circle and its cell structure is
shown in Fig. 4.1b.

The case n = 4 is not special: in general, when ML is a sphere, OL is the real projective space of
the same dimension, and when ML is a disjoint union of two tori, OL is a torus.

4.2 The Z2-homology of OL

To answer the second question posed at the beginning of this chapter, namely, whether discrete
Morse theory can be done on the quotient space, we need to first understand what a perfect
Morse function on this space is. For ML, Theorem 1.4 assures absence of torsion in the
Z-homology groups. For OL this is no longer true. For example, taking L = (1, 1, 1, 1, 3),
the space OL is RP2, whose Z-homology groups are Z, Z2 and 0 in dimensions 0, 1 and 2
respectively. So the Z-ranks of H1(RP2) and H2(RP2) are 0, while we know that there is no
cellular decomposition of RP2 that can be obtained without 1-cells or 2-cells. Hence there
cannot be a Z-perfect Morse function on OL.

Therefore, for the rest of this chapter, instead of considering Z-perfect Morse functions, we
look at Z2-perfect Morse functions (that is, discrete Morse functions with as many critical k-cells
as the Z2-rank of the kth Z2-homology group). Henceforth when we say perfect Morse function,
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this is what we mean. Observe that the Z2-homology groups of RP2 are Z2 in each dimension,
so there is some possibility of finding a perfect Morse function.

In order to show that a particular discrete Morse function is perfect (or not), we first need
to know the Z2-Betti numbers of OL. We use a couple of results from the paper [HK98], by J.-C.
Hausmann and A. Knutson, to derive what we need.

In [HK98], the polygon spaces Pol(L) and PolR(L) are defined for generic L, the former
being the space of polygons in R3 modulo SO(3), the latter being the space of polygons in R2

modulo O(2) (and therefore OL for us). It is shown that

Proposition 4.4. [HK98, Corollary 4.3] The Poincaré polynomial of Pol(L) is given by

PPol(L)(t) =
1

1− t2 ∑
J
(t2(|J|−1) − t2(n−|J|−1)) (4.1)

where the sum ranges over all short subsets J containing n.

Proposition 4.5. [HK98, Theorem 9.1] As Z2-vector spaces,

dim(Hk(OL;Z2)) = dim(H2k(Pol(L);Z2)) (4.2)

Therefore, using Eq. (4.1), Eq. (4.2) and Poincaré duality, the “Z2-Poincaré polynomial” of OL

(that is, a polynomial with coefficients the Z2-dimensions of the homology groups), is given by

P̃OL(t) =
1

1− t ∑
J
(t|J|−1 − tn−|J|−1)

Now suppose, for 0 ≤ k ≤ n− 3, the number of short subsets of cardinality k + 1 containing n
is denoted by ak. Then we can rewrite the above expression as

P̃OL(t) =
1

1− t

n−3

∑
k=0

ak(tk − tn−k−2) (4.3)

If 2k + 2 < n, then we have

tk − tn−k−2

1− t
=

tk

1− t
(1− tn−2k−2)

= tk(1 + t + t2 + . . . + tn−2k−3)

= tk + tk+1 + . . . + tn−k−3.

If 2k + 2 > n, then we have

tk − tn−k−2

1− t
= − tn−k−2

1− t
(1− t2k+2−n)

= −tn−k−2(1 + t + . . . + t2k+1−n)

= −(tn−k−2 + tn−k−1 + . . . + tk−1).
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So,

P̃OL(t) =
b n−2

2 c

∑
k=0

ak(tk + . . . + tn−3−k)−
n−3

∑
k=b n

2 c
ak(tn−k−2 + . . . + tk−1). (4.4)

Given 0 ≤ j ≤ n, the Z2-rank of the jth homology group has a contribution of ak for each k such
that k ≤ j ≤ n− k− 3, and a contribution of −ak for each k such that n− k− 2 ≤ j ≤ k− 1.
That is, ak contributes if and only if k ≤ j and k ≤ n− j− 3, and −ak contributes if and only if
k ≥ j + 1 and k ≥ n− j− 2. Define, for 0 ≤ j ≤ n− 3,

pj := min(j, n− j− 3)

qj := max(j + 1, n− j− 2)

Note that pj <
n
2 − 1 < qj. Also pj = pn−3−j and qj = qn−3−j. Let

β j(L) := dim(Hj(OL;Z2)). (4.5)

The preceding discussion now gives us

Theorem 4.6. The Z2−dimension of the jth homology group of OL is

β j(L) =
pj

∑
k=0

ak −
n−3

∑
k=qj

ak (4.6)

for all 0 ≤ j ≤ n− 3.

We immediately note that β0(L) = βn−3(L) = a0 = 1, so OL is always connected and (obviously)
Z2-orientable. Some examples will help us understand the computations involved in Eq. (4.6).

Example 4.3. Consider the length vector L for which ML is Sn−3, so the only short subset
containing n is the singleton, that is, a0 = 1 and ai = 0 for i > 0. Then the above expression
simplifies to

β j(L) = a0 = 1

for all 0 ≤ j ≤ n− 3, which agrees with the result that OL is RPn−3.

Example 4.4. Assume that ML is not connected, so that {n− 2, n− 1} is a long subset. Then
ak = (n−3

k ) = an−3−k, as we know. Fix a j. If j ≤ n− j− 3, then we also have j + 1 ≤ n− j− 2,
so pj = j and qj = n− j− 2, and Eq. (4.6) becomes

β j(L) =
j

∑
k=0

ak −
n−3

∑
k=n−j−2

ak.

Now if k < j, then n− 3− k > n− 3− j, so ak gets canceled out by −an−3−k, and similarly if
k > n− j− 3, so we get that

β j(L) = aj =

(
n− 3

j

)
.

A similar argument can be used to get the same value for j > n− j− 3, and therefore this
agrees with our result that OL is the (n− 3)-torus.
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Example 4.5. Assume n > 4, so that qj > 1 for all j. Consider the length vector L for which ML

is the product S1 × Sn−4, so the only short subsets containing n are the singleton and {1, n}
(Theorem 1.6), that is, a0 = 1, a1 = 1 and ai = 0 for i > 1. Then (5) gives us

β j(L) =

a0 = 1, j = 0, n− 3,

a0 + a1 = 2, otherwise.

4.3 Discrete Morse theory on C∗L

In this section, we answer the second question posed at the beginning of this chapter. We
describe a discrete Morse function on the CW complex C∗L which is dual to the cell structure
described in Section 4.1. The k-cells of this complex are labeled by equivalence classes of
admissible partitions of [n] into n− k blocks. Before we proceed, we point out an important
feature of the cells in KL (the complex for ML):

Definition 4.4. Let λ = (I1 . . . Ik) be a cyclically ordered partition of [n] (which, if admissible,
is a cell in KL). Let j be the greatest element outside the n-set (which is always assumed to be
Ik). Suppose j ∈ Il for some 1 ≤ l < k. Let i be the greatest element outside the j-set and the
n-set (in particular, i /∈ Il , Ik). Suppose i ∈ Im for some m such that 1 ≤ m < k and m 6= l.

Then λ is said to be of class (i, j) if m < l (that is, Im is to the left of Il), and of class (j, i)
otherwise. The class of λ is denoted by cl(λ).

Definition 4.5. A cell of class (i, j) is said to be ascending if i < j and descending otherwise.

Definition 4.6. If cl(λ) = (i, j) and cl(λ′) = (i′, j′) are two cells with i ≤ i′ and j ≤ j′, then λ′

is said to be higher than λ and λ is said to be lower than λ′.

Some examples will help explain these definitions.

Example 4.6. Let n = 7. We omit the braces for the sets in the partition.
α = (23, 156, 47) is of class (3, 6) (since 6 is the greatest element outside the 7-set, and 3 the
greatest element outside both the 7-set and the 6-set). Since 3 < 6, it is ascending.
β = (156, 23, 47) is of class (6, 3) and descending.
γ = (12, 34, 567) is of class (2, 4) and ascending.
δ = (13, 2, 4567) is of class (3, 2) and descending.
α is higher than both γ and δ. δ is lower than β. Of α and β, neither is higher or lower than the
other. Similarly, of γ and δ, neither is higher or lower than the other.

Observe in Example 4.6 that β = r(α), and that cl(β) is just cl(α) flipped. This is true in general:
reflection maps a cell of class (i, j) to one of class (j, i). In particular, it maps an ascending cell
to a descending cell and a descending cell to an ascending one. In fact, we have

Lemma 4.7. The cells of KL are partitioned into two sets: one with the ascending cells, and one
with the descending. Reflection establishes a bijection between these two sets:

{Ascending cells} r←→ {Descending cells}
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Each cell in the quotient complex CL is an equivalence class containing an ascending cell and a
descending cell (each the reflection of the other). So in CL it does not make sense to talk of
ascending or descending cells. But we can slightly modify the notion of class:

Definition 4.7. A cell λ in CL is said to be of class {i, j} if one of its preimages under the
quotient map (a cell in KL) is of class (i, j) (equivalently, of class (j, i)). As before, we denote
the class by cl(λ).

Clearly, the class
{

i, j
}

is equal to the class
{

j, i
}

. We also have to modify the notion of “higher”:

Definition 4.8. If cl(λ) =
{

i, j
}

and cl(λ′) =
{

i′, j′
}

are two cells with min(i, j) ≤ min(i′, j′)
and max(i, j) ≤ max(i′, j′), then λ

′
is said to be higher than λ and λ is said to be lower than

λ
′
.

We are now ready to begin our description of the discrete Morse function on C∗L (on which
too the notions we have defined above hold). The construction is a modified version of that
described in Section 3.2 and, in fact, begins as a discrete Morse function on K∗L which is then
“pushed down” to C∗L. Thus we first outline, stepwise, the pairing that happens in K∗L, which is
hereafter called the modified matching.

Step 1: Pair together the cells

α = (. . . {1}I . . .) and β = (. . . {1} ∪ I . . .) (4.7)

in K∗L if the following conditions hold:

1. n /∈ I,

2. {1} ∪ I is short,

3. α is ascending and

4. cl(α) = cl(β).

Observe that 1) this is the same as Step 1 of the earlier pairing, with two extra conditions, and
2) conditions 3 and 4 together imply that β must also be ascending.

The rest of the steps proceed similarly, with the two extra conditions imposed at each step:

Step k: Pair together the cells

α = (. . . {k}I . . .) and β = (. . . {k} ∪ I . . .) (4.8)

in K∗L if the following conditions hold:

1. n /∈ I,

2. {k} ∪ I is short,
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3. α and β have not yet been paired,

4. α is ascending and

5. cl(α) = cl(β).

After the (n− 2)-th step, we have the

Final step: If α and β have been paired in K∗L, then pair together α and β in C∗L (where α

denotes the image of α under the map π : K∗L → C∗L.)
Since we have paired only ascending cells in K∗L, any cell in C∗L can have at most one paired

preimage, so the final step indeed gives a matching on the face poset of the quotient. We claim
that this matching is acyclic, hence the pairing describes a discrete Morse function.

Lemma 4.8. If α is contained in the boundary of β, then α is higher than β.

Proof. Suppose cl(β) =
{

i, j
}

with i > j. Then, since each block of α is a subset of a block of β

(we are thinking of cells as admissible partitions now)—note that this is happening in the dual
complex—the largest element outside the n-set in α has to be greater than or equal to i, and
similarly the largest element outside the n- and i-sets has to be greater than or equal to j.

Lemma 4.9. If there is a gradient path

β0, α1, β1, . . . , αp, (4.9)

then αp is higher than β0.

Proof. Since we only pair cells of the same class, cl(αi) = cl(βi) for each 1 ≤ i ≤ p − 1.
Moreover, since αi+1 is contained in the boundary of βi for each i, it is higher than the latter by
the previous lemma. The result follows.

Theorem 4.10. The pairing on C∗L, as described in the final step above, gives a discrete Morse
function.

Proof. We need to show that the matching we have described is acyclic. So suppose there is a
path

α0, β0, α1, β1, . . . , αp (4.10)

with p > 1 and α0 = αp. Since α0 and β0 are paired, they are of the same class. By the
previous lemma, each cell in the path after β0 is higher than β0. But α0 = αp, so, in fact,
cl(α0) = cl(β0) = cl(α1) = . . . = cl(βp−1) = cl(αp).

We now “lift” this cycle to K∗L. Let α0 be the ascending cell such that π(α0) = α0. Let β0

the cell with which α0 is paired (in particular, π(β0) = β0). Next, suppose α1 is ascending
with π(α1) = α1. Note that cl(α0) = cl(β0) = cl(α1) = (i, j) for some i < j. If α1 is not in the
boundary of β0, then it must be in the boundary of r(β0) (for otherwise α1 would not be in the
boundary of β0). But since cl(r(β)) = (j, i), we have a cell of class (i, j) in the boundary of a
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cell of class (j, i), which is impossible. Hence α1 is in the boundary of β0. Continuing thus, we
obtain a path

α0, β0, α1, β1, . . . , αp (4.11)

with αi and βi ascending for each i (and, in particular, α0 = αp). Thus the cycle (4.10) in C∗L
lifts to the cycle (4.11) in K∗L. The matching on the ascending cells is, however, a subset of the
matching of Section 3.2, and is acyclic by Proposition 3.9. Hence the cycle in (4.10) cannot
exist.

The critical cells of this discrete Morse function correspond to the critical ascending cells of the
modified matching on K∗L we have just described. The next theorem gives an explicit description

Theorem 4.11. The critical cells of the discrete Morse function on C∗L are images, under π, of the
following types of ascending cells in KL:

1. Cells of type 1Q, labeled by
({i}JH{n, ∗})

where

• H < i < J

• {i} ∪ J is short

2. Cells of type 2Q, labeled by
(H1{k}IH2{n, ∗})

where

• I is a k-prelong set,

• k < I and

• k < H1.

Proof. A cell of type 1Q is of class (i, j), where j is the greatest element of J. In the usual
matching, it would be paired with the cell ({i} ∪ JH{n, ∗}), which is a descending cell. There-
fore, in the modified matching, a cell of type 1Q remains unpaired. A cell of type 2Q remains
unpaired even in the original matching, hence is a critical cell even for the modified matching.

Conversely, suppose an ascending cell αp of type (i, j) is unpaired. There can only be two
possibilities: 1) α is a critical cell even for the original matching, and 2) the original matching
would have paired α with a cell of a different class. If 1) holds, then α is of one of the two
types described in Theorem 3.10. However, a critical cell of type 1 can never be ascending,
hence α must be of type 2 (which is the same as type 2Q above). If 2) holds, then there are two
possibilities:

1. αp would have been paired with βp+1:
The only way the class of α can change is if the pairing involves i entering J. Hence
α = (. . . {i}J . . .) with j ∈ J and {i} ∪ J short. However, since α remained unpaired until
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the ith step, the elements less than i and outside the n-set must be in singletons and
arranged in descending order. Thus

α = ({i}JH{n, ∗})

and is of type 1Q. Observe that β is descending.

2. αp would have been paired with γp−1:
If γ were ascending, then using the argument just concluded, we would have α descending.
Hence γ is descending. Suppose γ = (. . . R . . . S . . .) is of class (r, s) with s < r. But then,
in any pairing involving a singleton in γ joining a set, the resulting cell would still be of
class (r, s), hence descending. So such a situation cannot arise.

Thus we have exhausted all possibilities for α.

Just as there were a lot of critical cells (far greater than the Betti numbers, that is) at the end of
the pairing process (and before path reversal) in Section 3.2, so there are a lot of critical cells
here. We single out three cases in which this is not true, that is, in which the Morse function we
have described is already perfect.

Example 4.7. Suppose ML is the sphere Sn−3. The only short subset containing n is the
singleton. So the only possible critical cell of type 2Q is ({1}{2, . . . , n− 1}{n}), which is an
(n− 3)-dimensional cell. The critical cells of type 1Q are of the form

({i}JH{n}).

Since H < i < J, such a cell is completely determined by i. So there is exactly one such critical
k-cell for each 1 ≤ k ≤ n− 4. Now OL is RPn, which has βk(L) = 1 for all 1 ≤ k ≤ n− 3.
Hence the Morse function is perfect.

Example 4.8. Assume n > 4. Suppose ML is S1× Sn−4. Then the only short subsets containing n
are the singleton and {1, n}. The only possible critical cells of type 2Q are ({2}{3, . . . , n− 1}{1}{n})
and ({2}{3, . . . , n− 1}{1, n}), the former of dimension (n− 4) and the latter, (n− 3).

There is one 0-dimensional cell of type 1Q: ({n− 2}{n− 1}{n− 3} . . . {1}{n}).
There is one (n− 4)-dimensional cell of type 1Q: ({3}{4, . . . , n− 1}{2}{1, n}).
For each 0 < k < n− 4, there are two k-dimensional cells of type 1Q: one with 1 in the

n-set, and one without.
Thus we have two critical cells in each dimension between 0 and (n− 3), and one each in

dimensions 0 and (n− 3). Looking at the calculation performed in Example 4.5, we see that
the Morse function is perfect.

Example 4.9. Suppose ML is the disjoint union of two tori, so {n− 2, n− 1} is a long subset.
Then OL is a torus. Since {n− 2, n− 1} is long, there are no critical cells of type 1Q. The only
critical cells of type 2Q are of the form

({n− 2}{n− 1}H{n, ∗}).

In dimension k (which requires (n− k) blocks), there are exactly ( n−3
n−3−k) = (n−3

k ) such cells,
which equals βk(L). So the Morse function is perfect.
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In conclusion, we state that the previous example, in some sense, is the “ideal” scenario. The
next few results explain what that means. Here we extensively use the fact that

ML is disconnected ⇐⇒ ML ' Tn−3 t Tn−3 ⇐⇒ {n− 2, n− 1} is long.

Proposition 4.12. ML is disconnected if and only if the boundary of every ascending cell in KL

(equivalently, K∗L) contains only ascending cells.

Proof. Suppose ML is disconnected. Then any ascending cell α looks like

α = (. . . {n− 2, ∗} . . .
{

n− 1, ∗′
}

. . .
{

n, ∗′′
}
)

since n, n− 1 and n− 2 can never be in the same set. So, if α′ is in the boundary of α, then,
since α refines α′, the blocks of α′ are formed by taking unions of blocks of α. In such blocks too
the (n− 2)-set must precede the (n− 1)-set, so α′ is also ascending.

Conversely, if {n− 2, n− 1} is short, then there exists a 0-cell

α = ({n− 2, n− 1, ∗}I
{

n, ∗′
}
)

which is descending and is contained in the boundary of the ascending cell

β = ({n− 2}{n− 1, ∗}I
{

n, ∗′
}
),

hence there is at least one ascending cell that contains a descending cell in its boundary.

Proposition 4.13. If ML is disconnected, then one connected component is made up entirely of
ascending cells, and the other entirely of descending cells.

Proof. For the purposes of this proof, the term walk refers to a walk in the face poset of KL

(considered as an undirected graph) in the graph-theoretic sense. That is,

α1, α2, . . . , αp

is a walk if, for each i, αi < αi+1 or αi > αi+1.
If ML is disconnected, so is its face poset. Hence, a walk can exist between two cells only

if they are in the same component. The converse is also true: given two cells α and β, there
exists a walk between α and some 0-cell α0 (for instance, by repeated refinement), and similarly
between β and some β0. It suffices to show that there is a walk between α0 and β0. But these
are points in the manifold, and are therefore connected by a path. Successively listing all cells
this path encounters gives a walk between α0 and β0.

Now suppose ML is disconnected. By the argument just concluded, it suffices to show that
there is always a walk between two ascending cells, and never one between an ascending cell
and a descending cell. By Proposition 4.12, every ascending cell contains an ascending 0-cell in
its boundary, and (analogously) every descending cell contains a descending 0-cell. Let α0 and
β0 be 0-cells such that α0 is ascending. Appealing to the reasoning in the preceding paragraph,
we need to show that:
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(1) If β0 is ascending, then there is a walk between α0 and β0.

(2) If β0 is descending, then there is no such walk.

For (1), let k < n− 2, and suppose

α0 = ({n− 2, k, ∗}
{

n− 1, ∗′
}{

n, ∗′′
}
).

Then

α0 =({n− 2, k, ∗}
{

n− 1, ∗′
}{

n, ∗′′
}
),

({n− 2, ∗}{k}
{

n− 1, ∗′
}{

n, ∗′′
}
),

({n− 2, ∗}
{

n− 1, k, ∗′
}{

n, ∗′′
}
),

({n− 2, ∗}
{

n− 1, ∗′
}
{k}
{

n, ∗′′
}
),

({n− 2, ∗}
{

n− 1, ∗′
}{

n, k, ∗′′
}
)

is a walk that takes k < n− 2 to any other block in the partition. Thus any element less than
n− 2 can be freely moved around. Since β0 is also ascending, we can thus construct a walk
from α0 to β0 by just moving the elements to their desired location, because at no point do any
two out of n− 2, n− 1 and n ever end up in the same set.

For (2), suppose there is such a walk. But since β0 is descending, there must be some cell in
the walk in which n− 2 and n− 1 are in the same set, which is impossible.

Thus the ascending cells form one torus, the descending cells the other torus, and the Z2-
involution is a poset isomorphism (apart from also being a diffeomorphism) between the
two.

Theorem 4.14. K∗L admits a Z2-equivariant perfect Morse function if and only if ML is discon-
nected.

Proof. Suppose ML is disconnected. Then the modified discrete Morse function on the ascending
cells has critical cells as described in Example 4.9: exactly (n−3

k ) ascending critical k-cells (apart
from the descending cells; these are still unmatched). Using the poset isomorphism between the
ascending cells and descending cells that we have obtained, this matching induces a discrete
Morse function on the descending cells (that is, we match α and β if r(α) and r(β) are matched).
By definition, this Morse function is Z2-equivariant. The number of critical cells is just twice
that of just the ascending cells: 2(n−3

k ) critical k-cells, which is the kth Betti number of ML. Thus
we have a Z2-equivariant perfect Morse function on K∗L. Note that this function is different
from the one described in Section 3.2: that one is also perfect, but not Z2-equivariant.

Conversely, suppose we have a Z2-equivariant perfect Morse function on K∗L. Then, if α is a
critical 0-cell, so is r(α). But r fixes no cells, hence these two cells are distinct. Since the Morse
function is perfect, H0(ML) has rank at least two, so ML is disconnected.



Chapter 5

Looking ahead

So far, we have described a regular cell structure on ML which has a combinatorial interpretation.
We have used this combinatorial interpretation and discrete Morse theory to construct a CW
complex which has exactly as many cells as the Betti numbers of ML. We have studied the
orbit space OL = ML/Z2, which is a manifold because reflection about the X-axis (which
generates the Z2-action) is free at the level of cells as well as individual points. On this quotient
manifold, we have described a cell structure whose existence is an immediate consequence of
the Z2-invariance of the cell structure on ML. Thus this cell structure also has a combinatorial
interpretation, which we have exploited to do discrete Morse theory on it, and obtain a discrete
Morse function which, in certain cases, is Z2-perfect.

In the final chapter, we discuss some topics on which work is ongoing, and some for which
there is scope for future work. Most of these arise as reasonable extensions of the results we
have described so far.

5.1 A minimal complex for ML

The fact that the homology of ML is torsion-free (Theorem 1.4) was proved by Farber and
Schütz in [FS07] using classical Morse and Morse-Smale theory. Theorem 3.14 uses this result
to show that the Morse function in Section 3.2 is perfect. Consequently, the resulting CW
complex is a minimal complex modeling the homotopy type of ML.

In light of the above discussion one can ask the question: can it be shown that the critical
cells that remain at the end of the process in Section 3.2 form a CW complex for ML with trivial
attaching maps? If this can be shown, then we would have an alternative proof of Theorem 1.4,
because the Betti numbers would be precisely the number of critical cells. The resulting proof
would therefore provide some combinatorial insights which the original proof doesn’t. In this
subsection we report on the progress we have made towards answering this question

In the discrete setting, the attaching maps of the CW complex are dependent only on the
gradient paths between critical cells of successive dimension. So the homology can be computed
as follows. Let Cp(K∗L) denote the free abelian group generated by critical p-cells. The boundary

49
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operator ∂ : Cp+1(K
∗
L)→ Cp(K∗L) is given by

∂(βp+1) = ∑
αp

cα,β · α

where
cα,β = ∑

γ∈Γ(β,α)
m(γ),

Γ(β, α) being the set of gradient paths from the boundary of β to α. The multiplicity m(γ) of a
gradient path is ±1, depending on whether, given γ, the orientation on β induces the chosen
orientation on α, or the opposite orientation. However, if we use Z2-coefficients, the task is
simplified: the boundary maps depend only on the parity of number of paths between any pair
of critical cells.

We now present, in detail, a characterization and the number of gradient paths between
critical cells βp+1 and αp. The analysis is split into four separate cases:

Case 1: α and β are both of type 1.

Lemma 5.1. Suppose β = (H{n, ∗}) and α = (H′{n, ∗′}). Then there is a gradient path between
β and α if and only if ∗′ ⊂ ∗. If this condition holds, then there are exactly two gradient paths.

Proof. Suppose ∗′ contains an element that ∗ doesn’t. Then, during a gradient path from β to α,
that element must enter the n-set at some point. But during a pairing, no element can enter the
n-set. So there are no gradient paths. Conversely, suppose ∗′ ⊂ ∗ holds. Then we must have
(omitting braces for singletons and writing ∗ as m,+)

β = (i1i2 . . . ik{n, m,+}) and α = (i1i2 . . . ij m ij+1 . . . ik{n,+}),

where i1 > i2 > . . . ij > m > ij+1 > . . . > ik. Then there are two gradient paths: m gets ejected
either forwards or backwards from the n-set and ends up between ij and ij+1 after successful
merges and splits. Clearly these are the only possible paths.

Case 2: β is of type 1 and α of type 2.
This case has been dealt with in [PZ15]:

Proposition 5.2. [PZ15, Proposition 5.2] There are no gradient paths from a critical cell of type 1
to a critical cell of type 2.

Case 3: β is of type 2 and α of type 1.

Lemma 5.3. Suppose ML is connected. Let β = (H1{k}IH2{n, ∗}) be a critical cell with the usual
inequalities. Then there is a gradient path from β to a critical cell α = (H′{n, ∗′}) if and only if I
has two elements and ∗ = ∗′. When these conditions hold, there are exactly two gradient paths
and H′ is obtained by splitting up the elements of I, inserting them in the appropriate positions in
H1 and then concatenating the result with k and H2.
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Proof. Suppose there is a gradient path between β and α. Then, since α is just one dimension
lower and must have only singletons outside the n-set, I cannot contain more than 2 elements.
However, since {n − 1, n − 2} is short (by assumption, ML is connected), I cannot contain
just one element. Hence |I| = 2. Further, the n-set cannot now split during the gradient path
because all join steps will create a non-singleton outside the n-set (hence at each split step that
non-singleton needs to be split). So ∗ = ∗′. Conversely, if these conditions hold, then there
are two paths from β to α: split I, and then keep doing the usual pairing and splitting till you
obtain H′ as described in the statement of the lemma. There are two paths because I can be
split in two ways.

When ML is not connected, it is possible a similar result exists, though we haven’t directed our
energies towards it yet.

Case 4: α and β are both of type 2.
This is work in progress; we hope that here too we get an even number of gradient paths.

A summary of the number of possible gradient paths is shown in Table 5.1.

β is of type α is of type Number of paths

1 1 0 or 2

1 2 0

2 1 0 or 2

2 2 Unknown

Table 5.1: Possible number of gradient paths from β to α when ML is connected.

5.2 Topology of OL

In Chapter 4, we presented some new ideas: a combinatorially-described cell structure on the
quotient OL, and a discrete Morse function on its dual complex. Central to the proofs that
this discrete Morse function is perfect in some cases is Theorem 4.6, which tells us the precise
ranks of the Z2-homology groups. Thus Theorem 4.6 performs the same function for OL as
Theorem 1.4 does for ML: it allows us to construct a minimal cell complex.

We ask, as we did in the previous section, whether it is possible to show that there is always
an even number of gradient paths between cells of successive dimension in the dual complex of
OL. If we can do this, then we would have an alternative proof of Theorem 4.6.

Before we can do that, however, we need to find a way to reduce the number of critical cells
we end up with at the end of the matching process on C∗L in Section 4.3. We are investigating
whether it is possible to employ a modified path reversal technique as described at the end of
Section 3.2 in order to do this.
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Other questions of a similar flavor include:

1. What are the integral Betti numbers of OL? This can be answered using the transfer
homomorphism; the covering map π : ML → OL induces an injective homomorphism in
rational cohomology whose image is the invariant subgroup (see, for example, [Hat02,
Proposition 3G.1]). Consequently, in our situation, we have

Hi(OL;Q) ' Hi(ML;Q)Z2 ∀i.

The complex K∗L respects the Z2 action and can be used to determine the invariant
subgroup.

2. Is there a way to construct a CW complex on OL whose cells and boundary maps have
combinatorial descriptions (as we have done), and which gives the Z-homology?

3. In [HK98] the authors compute the cohomology ring of OL with Z2-coefficients. What is
this ring when one considers Z-coefficients?

4. Is it possible to compute the cohomology ring of ML using the answers to the two questions
above, or otherwise?

A different line of inquiry concerns the results at the end of the previous chapter: when
ML has two connected components, one consists solely of ascending cells and the other solely
of descending cells. Call an ascending cell pure if it contains only ascending cells in its
boundary. Then the disconnected ML has all its ascending cells pure, and they form a connected
component.

For the sphere, the situation is slightly muddled. The pure ascending cells form a connected
subset of the sphere, as do the (analogously defined) pure descending cells, with the impure
cells of both kinds forming the part in between that deformation retracts onto the sphere of one
less dimension.

So the question is: what sort of subset do the pure ascending cells form in general? What
are its topological properties? In short, what does the ascending part “look like”?

5.3 Other directions

Finally, we come to a slightly different kind of question. Consider the following proposition,
whose proof is fairly straightforward:

Proposition 5.4. If L = (l1, . . . , ln) is a generic length vector such that ML is not empty and
l1 ≤ . . . ≤ ln, then the collection of short subsets of [n], denoted by SL, has the following properties:

(1) SL contains all singletons;

(2) If a set A is in SL, so are all of A’s subsets (so SL is actually an abstract simplicial complex);

(3) From every pair of complementary subsets of [n], SL contains exactly one; and
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(4) If a set A = {a1, a2, . . . , ak} is in SL so is any set B = {b1, b2, . . . , bk} where bi ≤ ai for all i.

Now, suppose there exists a collection S of subsets of [n]. Let i1 be an element of [n]
appearing in a maximal number of sets in S. Rename it 1. In [n] \ {i1}, let i2 be an element
appearing in a maximal number of sets in S. Rename it 2. We continue this process till we reach
a stage where i < j if and only if j appears in fewer or an equal number of sets in S as i. Then,
the above four conditions are necessary for S to be SL for some L. (Our guess is that they are
sufficient too, but we will not discuss that here.)

Now suppose there is a collection of subsets S which, after the rearrangement described in
the previous paragraph, satisfies the first three conditions above, but not the fourth. Then S

cannot be SL for any L, but it still defines a CW complex by the construction in Chapter 2.
Question: Is this CW complex homotopy equivalent to a moduli space of something? If so,
what?

Next, suppose we relax condition (3). Then what kind of complex do we end up with? If it
has sufficiently nice properties, can we answer the above question?
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