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Abstract

This thesis is divided into two parts, where we address problems from two topics

in enumerative combinatorics: hyperplane arrangements and pattern avoidance.

1. A hyperplane arrangement in Rn is a finite collection of affine hyperplanes. Its

regions are the connected components of the complement of these hyperplanes.

The collection of reflecting hyperplanes of a finite Coxeter group is called

a reflection arrangement and it appears in many subareas of combinatorics

and representation theory. We focus on the problem of counting regions of

reflection arrangements and their deformations. Inspired by the recent work

of Bernardi, we show that the notion of ‘sketches and moves’ can be used

to provide a uniform and explicit bijection between regions of (the Catalan

deformation of) a reflection arrangement and certain non-nesting partitions.

We then focus on interpreting the coefficients of the characteristic polynomials

of these arrangements. By a theorem of Zaslavsky, the number of regions of a

hyperplane arrangement is the sum of the absolute values of the coefficients

of its characteristic polynomial. We use the exponential formula to describe

a statistic on the non-nesting partitions we defined in such a way that the

distribution of this statistic is given by the characteristic polynomial.

Finally, we study similar questions for a sub-arrangement of type C arrange-

ment called the threshold arrangement and its Catalan and Shi deformations.

2. The study of pattern avoidance in linear permutations has been an active area

of research for almost half a century now, starting with the work of Knuth in

1973. More recently, the question of pattern avoidance in circular permutations

has gained significant attention. In 2002-03, Callan and Vella independently

characterized circular permutations avoiding a single permutation of size 4.

Building on their results, Domagalski et al. studied circular pattern avoidance

for multiple patterns of size 4. In the second part of this thesis, our main aim

is to study circular pattern avoidance of [4,k]-pairs, i.e., circular permutations

avoiding one pattern of size 4 and another of size k. We do this by using

well-studied combinatorial objects to represent circular permutations avoiding



a single pattern of size 4. In particular, we obtain upper bounds for the number

of Wilf equivalence classes of [4,k]-pairs. Moreover, we prove that the obtained

bound is tight when the pattern of size 4 in consideration is [1342]. Using ideas

from our general results, we also obtain a complete characterization of the

avoidance classes for [4, 5]-pairs.



CHENNAI
MATHEMATICAL
INSTITUTE Krishna Menon P

List of publications/preprints associated with the thesis

1. Priyavrat Deshpande and Krishna Menon. “A branch statistic for trees: inter-

preting coefficients of the characteristic polynomial of braid deformations”.

Enumer. Comb. Appl., 3(1): Paper No. S2R5, 2023.

2. Priyavrat Deshpande and Krishna Menon. “Sketches, moves and partitions:

counting regions of deformations of reflection arrangements”. arXiv:2308.16653,

2023.

3. Priyavrat Deshpande, Krishna Menon, and W. Sarkar. “Refinements of the

braid arrangement and two-parameter Fuss-Catalan numbers”. J. Algebraic

Combin., 57(3): 687-707, 2023.

4. Priyavrat Deshpande, Krishna Menon, and Anurag Singh. “A combinatorial

statistic for labeled threshold graphs”. Enumer. Comb. Appl., 1(3): Paper No.

S2R22, 2021.

5. Priyavrat Deshpande, Krishna Menon, and Anurag Singh. “Counting regions

of the boxed threshold arrangement”. J. Integer Seq., 24(5): Art. 21.5.7, 2021.

6. Krishna Menon and Anurag Singh. “Pattern avoidance and dominating com-

positions”. Enumer. Comb. Appl., 2(1): Paper No. S2R4, 2022.

7. Krishna Menon and Anurag Singh. “Pattern avoidance of [4,k]-pairs in circular

permutations”. Adv. in Appl. Math., 138: Paper No. 102346, 2022.

8. Krishna Menon and Anurag Singh. “Dyck paths, binary words, and grassman-

nian permutations avoiding an increasing pattern”. Ann. Comb., 2023.

9. Krishna Menon and Anurag Singh. “Subsequence frequency in binary words”.

Discrete Math., 347(5): Paper No. 113928, 2024.





Contents

Acknowledgements iv

Abstract vii

List of publications ix

Contents x

0 Introduction 1
0.1 Catalan Deformations of Reflection Arrangements . . . . . . . . . . . 5

0.2 Pattern Avoidance in Circular Permutations . . . . . . . . . . . . . . . 11

0.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I Hyperplane Arrangements 19

1 Preliminaries 21
1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Important results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Main question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Sketches, moves, and partitions 33
2.1 Sketches and moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Catalan deformation of type C . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Extended type C Catalan . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Catalan deformations of other types . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Type D Catalan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.2 Pointed type C Catalan . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.3 Type B Catalan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3.4 Type BC Catalan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Statistics on regions 67
3.1 Deformations of the braid arrangement . . . . . . . . . . . . . . . . . . 67

xi



3.1.1 Trees and exponential structures . . . . . . . . . . . . . . . . . . 68

3.1.2 A branch statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Catalan deformations of reflection arrangements . . . . . . . . . . . . 75

3.2.1 Simple examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.2 Statistics on symmetric partitions . . . . . . . . . . . . . . . . . 81

4 Threshold deformations 87
4.1 Sketches and moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1 Fubini arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.2 Threshold arrangement . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Fubini arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.2 Threshold arrangement . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Some deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 Catalan threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.2 Shi threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Future directions 107

II Pattern Avoidance 109

6 Background 111
6.1 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Circular permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Avoiding size 4 patterns in circular permutations 117
7.1 Avoiding [1342]: Binary words . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Avoiding [1324]: Circled compositions . . . . . . . . . . . . . . . . . . . 121

7.3 Avoiding [1432]: Grassmannian permutations . . . . . . . . . . . . . . . 126

8 Avoiding [4,k]-pairs in circular permutations 131
8.1 Subsequences in binary words: Avoiding [1342,k]-pairs . . . . . . . . . 131

8.1.1 Avoiding [1342] and a pattern of size 5 . . . . . . . . . . . . . . 140

8.2 Domination in circled compositions: Avoiding [1324,k]-pairs . . . . . 141

8.2.1 Avoiding [1324] and a pattern of size 5 . . . . . . . . . . . . . . 153

8.3 Patterns in Grassmannian permutations: Avoiding [1432,k]-pairs . . . 157

8.3.1 Avoiding [1432] and a pattern of size 5 . . . . . . . . . . . . . . 167

9 Future directions 169

Bibliography 173

xii



Chapter 0

Introduction

The first line of Chapter 1 of Stanley’s Enumerative Combinatorics [55] reads

“The basic problem of enumerative combinatorics is that of counting the

number of elements of a finite set.”

As one might guess, this encompasses a broad topic in mathematics that addresses

problems in diverse areas. Our goal for any such problem is to obtain a simple,

direct, and combinatorial solution. Failing to do so, or when a problem is too general

for such a solution to feasibly exist, we sometimes settle for answers involving

recursive formulas or expressions for generating functions.

As indicated by the title of this thesis, we will be dealing with two topics in

Enumerative Combinatorics: Hyperplane Arrangements and Pattern Avoidance.

Both topics have several enumerative questions which have received significant

attention over the past few decades.

This chapter contains an overview of the thesis.

Hyperplane Arrangements

A hyperplane arrangement A is a finite collection of affine hyperplanes (i.e., codimen-

sion 1 subspaces and their translates) in Rn. For example, an arrangement in R2 is

just a finite collection of lines. One natural question to ask is how many ‘pieces’ a

collection of lines breaks the plane into. In general, a region of an arrangement A is a

1



connected component of Rn \
⋃
A. Counting regions of arrangements is an active

area of research in enumerative combinatorics.

1

2

345

6

7

Figure 1: An arrangement in R2 with 7 regions.

One way to count regions is via a bijection. This approach involves finding a

combinatorially defined set whose elements are in bijection with the regions of the

given arrangement and are easier to count. Such a bijection usually sheds more light

on the regions of the arrangement. There are several classes of arrangements where

regions correspond to interesting combinatorial objects. For example, permutations,

trees, and Dyck paths all appear as regions of certain arrangements. Obtaining

bijections for regions of arrangements is an interesting problem in combinatorics

(see [6, 8, 20]).

Another way to obtain the number of regions of an arrangement A is from

its characteristic polynomial χA(t). The characteristic polynomial is a fundamental

combinatorial and topological invariant of the arrangement. Zaslavsky’s theorem

[60] says that the number of regions of A, denoted r(A), is the sum of the absolute

values of the coefficients of χA(t). Hence, if ci is the coefficient of ti in χA(t), then we

have r(A) =
∑

|ci|. One can now ask if there is a statistic on the regions that induces

this break-up. That is, is there a nice way to assign numbers to each region such that

for all i ⩾ 0, there are |ci| regions with i assigned to them? This question has been

addressed for various arrangements (see [18, 19, 33]).

In Part I of this thesis, we answer these questions for an interesting class of

arrangements called Catalan deformations of reflection arrangements. Let Φ be a (not

necessarily reduced) crystallographic root system and let Φ+ be a choice of pos-

itive roots (relevant definitions can be found in [31]). The reflection (or Coxeter)

arrangement A(Φ) corresponding to Φ consists of hyperplanes with the defining

equations

(α, x) = 0 for α ∈ Φ+.

2



Note that these are the same hyperplanes that are fixed by the Weyl group of Φ. Re-

flection arrangements appear in many subareas of combinatorics and representation

theory.

A deformation of an arrangement A is an arrangement each of whose hyperplanes

is parallel to some hyperplane in A. Our main focus is certain deformations of

reflection arrangements called Catalan deformations. For brevity, we sometimes write

‘type Φ Catalan arrangement’ or ‘Catalan arrangement of type Φ’. The type Φ

Catalan arrangement consists of hyperplanes with defining equations

(α, x) = −1, 0, 1 for α ∈ Φ+.

We show that the regions of these arrangements are in bijection with certain

labeled non-nesting partitions. We then use the exponential formula to describe a

statistic on these partitions such that distribution is given by the coefficients of the

characteristic polynomial. We also use similar ideas to tackle another interesting

class of arrangements called threshold deformations (see Chapter 4).

The results in Part I are from [16, 17], which are both joint work with Priyavrat

Deshpande. An overview of these results is given in Section 0.1.

Pattern Avoidance

Pattern avoidance is a relatively recent topic in combinatorics which has been

garnering a lot of attention. For a class of combinatorial objects, we first define what

it means for one object to be contained in another. When an object A contains an

object B, we usually refer to B as a pattern and say that A contains the pattern B. If an

object A does not contain the pattern B, we say that A avoids B. The usual question

in pattern avoidance is: Given a set of patterns, describe or count the objects that

avoid them.

Permutations are the most popular objects where pattern avoidance is studied.

We represent permutations in one-line notation. For n ⩾ m ⩾ 1, a permutation

σ = σ1 · · ·σn contains a permutation (or pattern) π = π1 · · ·πm if there exists a

subsequence 1 ⩽ h(1) < h(2) < · · · < h(m) ⩽ n such that for any 1 ⩽ i, j ⩽ m,

σh(i) < σh(j) if and only if πi < πj. In this case σh(1) · · ·σh(m) is said to be order

isomorphic to π. We say that the permutation σ avoids π if it does not contain π.

3



We will be dealing with pattern avoidance in circular permutations. A circular

permutation [π] is the set of all rotations of a permutation π = π1 · · ·πn, i.e.,

[π] = {π1 · · ·πn,π2 · · ·πnπ1, . . . ,πnπ1 · · ·πn−1}.

We say that a circular permutation [σ] contains a circular permutation (or pattern) [π]

if there exists a rotation σ′ of σ such that σ′ contains π linearly. If there is no rotation

of σ containing π, we say that [σ] avoids [π]. For instance, [14523] contains [1234]

because the permutation 23145 (which is a rotation of 14523) has the subsequence

2345 which is order isomorphic to 1234.

5
2

4

3

8
6

7

1 −→

32

1

4

5

Figure 2: The circular permutation [17683425] contains the pattern [12354].

The study of pattern avoidance in linear permutations has been an active area

of research for almost half a century now, starting with the work of Knuth in 1973

[36]. More recently, the question of pattern avoidance in circular permutations has

gained significant attention. In 2002-03, Callan [12] and Vella [58] independently

characterized circular permutations avoiding a single permutation of size 4. Building

on their results, Domagalski et al. [21] studied circular pattern avoidance for multiple

patterns of size 4. Other notions of pattern avoidance in circular permutations have

also been explored [26, 27, 38, 40].

In Part II of this thesis, we study avoidance of a pattern of size 4 along with

another pattern of arbitrary length. If the other pattern is of length k, we call this

‘avoidance of a [4,k]-pair’. These result are from [42], which is joint work with

Anurag Singh. An overview of these results is given in Section 0.2.
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0.1 Catalan Deformations of Reflection Arrangements

We use a fairly simple but effective method to obtain bijective proofs for the number

of regions of Catalan deformations. This method was used by Bernardi in [8, Section

8] to obtain bijections for the regions of several deformations of the braid arrange-

ment. This idea, that we call ‘sketches and moves’, is to consider an arrangement B

whose regions we wish to count as a sub-arrangement of an arrangement A. This is

done in such a way that the regions of A are well-understood and are usually total

orders on certain symbols. These total orders are what we call sketches. Since B ⊆ A,

the regions of B partition the regions of A and hence define an equivalence on

sketches. We define operations called moves on sketches to describe the equivalence

classes. In regions of A, moves correspond to crossing hyperplanes in A \ B (see

Figure 3).

Figure 3: Bold lines form B and the dotted lines form A \B. Equivalent A regions
can be connected by changing one A \B inequality at a time.

After obtaining a bijection using the idea described above, we give a combina-

torial interpretation to the coefficients of the characteristic polynomials of these

arrangements. The proofs of these interpretations use a result (Proposition 3.21) that

gives a relation between the exponential generating functions for the characteristic

polynomials and those for the number of regions. We only present these results for

the type C and type D Catalan deformations in this chapter.

5



Counting regions

The type D Catalan arrangement is a sub-arrangement of that of type C. Hence,

we are first going to study the regions of the type C Catalan arrangement and then

use the ‘sketches and moves’ idea mentioned above to study the type D Catalan

arrangement.

Type C Catalan

Fix n ⩾ 1. The type C Catalan arrangement Cn in Rn is the arrangement with

hyperplanes

2Xi = −1, 0, 1

Xi +Xj = −1, 0, 1

Xi −Xj = −1, 0, 1

for all 1 ⩽ i < j ⩽ n. Setting Xi = xi +
1
2 , we get that the regions of Cn correspond to

valid total orders on

{xi + s | i ∈ [n], s ∈ {0, 1}}∪ {−xi − s | i ∈ [n], s ∈ {0, 1}}

where [n] := {1, 2, . . . ,n}. A total order on these symbols is valid if there exists a point

in Rn that satisfies it.

Such orders will be represented by using the symbol α(s)
i for xi + s and α

(−s)
−i for

−xi − s for all i ∈ [n] and s ∈ {0, 1}. Let C(n) be the set

{α
(s)
i | i ∈ [n], s ∈ {0, 1}}∪ {α(s)

i | −i ∈ [n], s ∈ {−1, 0}}.

Hence, we use orders on the letters of C(n) to represent regions of Cn.

Example 0.1. The total order

x1 < −x2 − 1 < x1 + 1 < x2 < −x2 < −x1 − 1 < x2 + 1 < −x1

is represented as α
(0)
1 α

(−1)
−2 α

(1)
1 α

(0)
2 α

(0)
−2 α

(−1)
−1 α

(1)
2 α

(0)
−1.

6



Considering −xi as x−i, the letter α
(s)
i represents xi + s for any α

(s)
i ∈ C(n). For

any α
(s)
i ∈ C(n), we use α

(s)
i to represent the letter α

(−s)
−i , which we call the conjugate

of α(s)
i . We now describe which orders on C(n) correspond to regions of Cn.

Definition 0.2. A symmetric sketch is an order on the letters in C(n) such that the

following hold for any α
(s)
i ,α(t)

j ∈ C(n):

1. If α(s)
i appears before α

(t)
j , then α

(t)
j appears before α

(s)
i .

2. If α(s−1)
i appears before α

(t−1)
j , then α

(s)
i appears before α

(t)
j .

3. α
(s−1)
i appears before α

(s)
i .

Proposition 0.3 (Proposition 2.8). An order on the letters of C(n) corresponds to a region

of Cn if and only if it is a symmetric sketch.

It is not too difficult to count symmetric sketches. In fact, one can show that a

symmetric sketch corresponds to a pair consisting of a signed permutation and a

certain lattice path (see Proposition 2.13). This allows us to count the regions of the

type C Catalan arrangement.

Theorem 0.4. The number of symmetric sketches and hence regions of Cn is

2nn!
(
2n

n

)
.

We use a certain objects called labeled symmetric non-nesting partition to represent

symmetric sketches. We obtain a labeled symmetric non-nesting partition from a

symmetric sketch by joining the letters α
(0)
i and α

(1)
i and similarly α

(−1)
−i and α

(0)
−i

with arcs and replacing each letter in the sketch with its subscript. As can be seen

in Figure 4, such diagrams are symmetric and have arcs that are non-nesting. The

labels are also symmetric (with sign changes) about the center. Any such diagram

is a labeled symmetric non-nesting partition and these objects are in bijection with

symmetric sketches.

Example 0.5. To the symmetric sketch

α
(0)
3 α

(0)
2 α

(−1)
−1 α

(1)
3 α

(0)
1 α

(1)
2 |α

(−1)
−2 α

(0)
−1α

(−1)
−3 α

(1)
1 α

(0)
−2α

(0)
−3

we associate the labeled symmetric non-nesting partition in Figure 4.

7



3 2 −1 3 1 2 −2 −1 −3 1 −2 −3

Figure 4: Labeled symmetric non-nesting partition associated to the symmetric
sketch in Example 0.5.

Type D Catalan

Fix n ⩾ 2. The type D Catalan arrangement Dn in Rn has hyperplanes

Xi +Xj = −1, 0, 1

Xi −Xj = −1, 0, 1

for 1 ⩽ i < j ⩽ n. Figure 5 shows D2 as a sub-arrangement of C2. It also shows how

the regions of D2 partition the regions of C2.

We use the idea of moves to count the regions of Dn by considering it as a

sub-arrangement of Cn. The hyperplanes from Cn that are missing in Dn are

2Xi = −1, 0, 1

for all i ∈ [n]. We now describe the type D Catalan moves on symmetric sketches

(regions of Cn), which we call D moves. The D moves correspond to crossing exactly

one hyperplane in Cn that is not in Dn. Studying the correspondence between

sketches and regions of Cn, the D moves are:

1. Swapping the 2nth and (2n+ 1)th letter.

2. Swapping α
(0)
i and α

(−1)
−i if they are adjacent (along with α

(1)
i and α

(0)
−i ) for some

i ∈ [n].

To count the regions of Dn, we have to count the number of D equivalence classes

of symmetric sketches where two sketches are D equivalent if one can be obtained

from the other via a series of D moves. In Figure 5, the two labeled regions of C2 lie

in the same region of D2 and hence are D equivalent. They are related by swapping

of the fourth and fifth letters of their sketches, which is a D move.
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1 2 -2 -1

1 2 -2 -1

Figure 5: The arrangement C2 with the hyperplanes in D2 in bold. Two regions of
C2 are labeled with their symmetric labeled non-nesting partitions.

The fact about these moves that helps with the count is that a series of D moves

does not change the sketch too much. Hence we can list the sketches that are D

equivalent to a given sketch and this allows us to count the number of D equivalence

classes.

Theorem 0.6 (Theorem 2.30). The number of D equivalence classes on symmetric sketches

and hence the number of regions of Dn is

2n−1 · (2n− 2)!
(n− 1)!

· (3n− 2).

Although the number of regions of Dn (and other Catalan deformations) is

well-known, the bijective proofs presented in Section 2.3 seem to be new.
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Statistic on regions

Fix n ⩾ 1. We now describe a statistic on labeled symmetric non-nesting partitions

whose distribution is given by the coefficients of χCn(t).

Given a labeled symmetric non-nesting partition, we first break it up into a

‘bounded’ part and two ‘unbounded’ parts. This is done as indicated in Figure 6.

The bounded part is the interlinked piece of the non-nesting partition that crosses the

center of symmetry. The remaining part of the diagram consists of two non-nesting

partitions on each side of the bounded part. These arc diagrams are identical apart

from their labels which are negatives of one another. These form the unbounded

parts.

4 4 −3 −3 1 −2 1 2 −2 −1 2 −1 3 3 −4 −4

BoundedUnbounded Unbounded

Figure 6: Bounded and unbounded parts of a symmetric arc diagram.

We now focus on just the unbounded part that is on the right of the bounded part.

We break this unbounded part into compartments as follows: Ignore the signs of the

labels. Find the interlinked piece with the smallest label. That interlinked piece along

with all interlinked pieces to its left form the first compartment. Now delete the first

compartment, and repeat the same procedure to obtain the second compartment.

This process is repeated until the entire diagram is broken into compartments.

A positive compartment is one whose last element has a positive label. For example,

the labeled symmetric non-nesting partition in Figure 6 has two compartments only

one of which is positive.

Example 0.7. Suppose the arc diagram in Figure 7 is the unbounded part on the right

side of some symmetric non-nesting partition. This diagram has two compartments.

The first consists of the first interlinked piece and the second consists of the second

and third interlinked pieces. But only the first compartment is positive since its last

element has label 6 which is positive.
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−1 4 −1 −2 4 6 −2 6 8 8 −3 −3

Figure 7: The unbounded part of a symmetric non-nesting partition that has 1

positive compartment.

Using Proposition 3.21, properties of labeled symmetric non-nesting partitions,

and combinatorial operations on exponential generating functions, we get the fol-

lowing result.

Theorem 0.8 (Theorem 3.28). The absolute value of the coefficient of tj in χCn(t) is the

number of labeled symmetric non-nesting partitions with j positive compartments.

A similar statistic works for the type D Catalan arrangement. Recall that each

region of Dn corresponds to a D equivalence class (which is a collection of regions

of Cn). One can choose a region of Cn (equivalently, a labeled symmetric non-

nesting partition) from each D equivalence class to be its representative. We call

these representatives ‘type D labeled symmetric non-nesting partitions’. These

representatives can be chosen a such a way that the following result holds.

Theorem 0.9 (Theorem 3.30). The absolute value of the coefficient of tj in χDn
(t) is the

number of type D labeled symmetric non-nesting partitions with j positive compartments.

0.2 Pattern Avoidance in Circular Permutations

For any n ⩾ 1, we denote the set of all circular permutations of [n] := {1, 2, . . . ,n}

by [Sn]. For example, [S3] = {[123], [132]}. For a given set {[π1], . . . , [πk]} of circular

permutations, we say that [σ] avoids {[π1], . . . , [πk]} if [σ] avoids [πi] for each i ∈ [k]. For

simplicity, we use [π1, . . . ,πk] to denote this set of patterns. The set of permutations

in [Sn] that avoid [π1, . . . ,πk] is denoted by Avn[π1, . . . ,πk], i.e.,

Avn[π1, . . . ,πk] = {[σ] ∈ [Sn] : [σ] avoids [πi] for each 1 ⩽ i ⩽ k}.

Also, Av[π1, . . . ,πk] will denote the set of all circular permutations avoiding

[π1, . . . ,πk]. If [πi] contains [πj] for some distinct i, j ∈ [k], then omitting [πi] from the

11



sets of patterns does not affect the avoidance class. Hence, we can assume that the

permutations in any set of patterns avoid each other.

An important notion in the study of pattern avoidance is the Wilf equiva-

lence on sets of patterns. Two sets [π1, . . . ,πk] and [τ1, . . . , τℓ] of circular permu-

tations are called (circular) Wilf equivalent, denoted by [π1, . . . ,πk] ≡ [τ1, . . . , τℓ], if

#Avn[π1, . . . ,πk] = #Avn[τ1, . . . , τℓ] for each n ⩾ 1. Here, # stands for the cardinality

of a set. For [π] = [π1 · · ·πn], the trivial Wilf equivalences are those of the form

[π] ≡ [πr] ≡ [πc] ≡ [πrc]

where [πr] = [πn · · ·π1] is the reversal of [π], [πc] = [(n+ 1− π1) · · · (n+ 1− πn)] is the

complement of [π] and [πrc] = [(n+ 1− πn) · · · (n+ 1− π1)] is the reverse complement of

[π]. Similarly, we have trivial Wilf equivalences on sets of patterns. For example,

[1342, 12345] ≡ [1342r, 12345r] = [1243, 15432] is a trivial Wilf equivalence.

We study circular permutations avoiding two patterns {[σ], [τ]}, where [σ] is of size

4 and [τ] is of size k. For simplicity, we say that such pairs of patterns are [4,k]-pairs.

Observe that, using trivial Wilf equivalences among circular permutations of size 4,

it is enough to study those pairs where the pattern of size 4 is [1342], [1324], or [1432].

Avoiding [1342,k]-pairs

Our first collection of results involves the study of circular permutations avoiding

pairs [1342, τ] where [τ] ∈ Av[1342]. We show that the circular permutations avoiding

[1342] are in bijection with binary words, subject to equivalences given by

0a+11b ∼ 1b+10a for all a,b ⩾ 0.

We also show that pattern containment in the permutations corresponds to subse-

quence containment in the corresponding binary words. These results are the cyclic

analogue of the results in [46]. In this case, we obtain the exact number of Wilf

equivalence classes.

Theorem 0.10 (Theorem 8.10). For any k ⩾ 4, there are exactly ⌈k2⌉ Wilf equivalence

classes of [1342,k]-pairs.
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We also obtain closed form formulas for the sequence (#Avn[1342,σ])n⩾1 for

various [σ] ∈ Av[1342]. For example, using ιn and δn to denote the increasing

permutation 12 · · ·n and decreasing permutation n · · · 21 respectively, we have the

following result.

Theorem 0.11 (Proposition 8.11). For any k ⩾ 1, we have [1342, ιk+1] ≡ [1342, δk+1] and

for any n ⩾ k,

#Avn+1[1342, ιk+1] =

(
n− 1

k− 2

)
− (k− 1) +

k−2∑
i=0

(
n

i

)
.

Avoiding [1324,k]-pairs

Next, we focus on pairs of the form [1324,σ] where [σ] ∈ Av[1324]. To study avoidance

of such pairs, we first establish a bijection between the elements of Avn[1324] and

circled compositions of n (see Theorem 7.17).

Definition 0.12. A circled composition of n is a pair (a,C) where a = (a1, . . . ,ak) is a

composition of n with k parts, and C is a subset of [k] such that

1. both 1 and k are contained in C, and

2. for any i ∈ C, we have ai = 1.

A circled composition (a,C) is represented by writing the composition a and

circling all the terms of a whose indices are in C.

We also define a notion of pattern avoidance in circled compositions that co-

incides with pattern avoidance in the corresponding circular permutations (see

Definition 8.18 and Theorem 8.20). We then prove various Wilf equivalences among

circled compositions and therefore among [1324,k]-pairs. These equivalences can be

summarized as follows.

Theorem 0.13 (Theorem 8.32). Any circled composition of n is Wilf equivalent to a circled

composition of n of one of the following forms.

1. The circled composition 1
n

.
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2. A circled composition

1
k0

a1 a2 · · · ak 1
k1

ak+1 1
k2

where k0 ⩾ k2, a1 ⩾ a2 ⩾ · · · ⩾ ak ⩾ ak+1, and a1, . . . ,ak+1,k0,k2 ̸= 2.

3. A circled composition

1
k0

a1 a2 · · · ak 1
k2

where k0 ⩾ k2, k0,k2 ̸= 2, a1 ⩾ a2 ⩾ · · · ⩾ ak, and if k ⩾ 2, then a1, . . . ,ak ̸= 2.

As in the case of [1342], we have closed form formulas for the sequence

(#Avn[1324,σ])n⩾1 for various [σ] ∈ Av[1324]. For example, we have the following

result.

Theorem 0.14 (Proposition 8.33). For n ⩾ 2 and k ⩾ 1,

#Avn[1324, δk+2] =

k−1∑
i=0

(
n− 2+ i

2i

)
.

Avoiding [1432,k]-pairs

Our final set of results is about pairs of patterns of the form [1432,σ] for [σ] ∈ Av[1432].

We use the characterization of Av[1432] given in [58].

Definition 0.15. A Grassmannian permutation is a permutation which has at most one

descent.

Combining [58, Corollary 2.10] and [58, Proposition 3.6], we get the following

result.

Theorem 0.16 ([58]). Let [σ] ∈ [Sn] be a permutation written so that σ ends with n. Then

[σ] avoids [1432] if and only if σ is either a Grassmannian permutation or the inverse of a

Grassmannian permutation.

We represent both Grassmannian permutations as well as their inverses as binary

words starting with 0 and describe the analogue for pattern avoidance in such words.

Note that such words can be represented as compositions and we define B(n1,n2, . . .)
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to be the binary word 0n11n2 · · · . The number of runs of a binary word is the number

of parts of the corresponding composition. For a given binary word w, we use

[G(w)] to represent the corresponding Grassmannian permutation and [IG(w)] for

the corresponding inverse Grassmannian permutation.

We have the following result on Wilf equivalence among [1432,k]-pairs.

Theorem 0.17 (Theorem 8.56). Any pair [1432,σ] is Wilf equivalent to a pair [1432, τ]

where [τ] has one of the following forms:

1. [G(w)] where w = 0a1b0c where a ⩾ c.

2. [G(w)] where w is an alternating binary word starting with 0 having at least 4 runs.

3. [G(w)] where w = B(n1,n2, . . . ,nk, 1r) has at least 4 runs, r ⩾ 0, n1,nk ̸= 1, and

(nk, . . . ,n2,n1) ⩽lex (n1,n2, . . . ,nk). Here ⩽lex denotes the lexicographic order.

4. [IG(w)] where w = 0n11n2 · · · 1nk0m is not an alternating binary word, has at least 5

runs, m ⩾ 1, and (nk, . . . ,n2,n1) ⩽lex (n1,n2, . . . ,nk).

We also obtain formulas and generating functions for avoidance class sizes of

various [1432,k]-pairs. For example, we prove the following result.

Theorem 0.18 (Proposition 8.57). For any binary word w of length k, starting with 0,

having at least 5 runs, and ending with 1, we have for n ⩾ 5,

#Avn[1432, IG(w)] = 2n−1 − (n− 1) +

k−2∑
i=4

(
n− 1

i

)
.

In the specific case k = 5, using the results from the three types of avoidance

mentioned above, we are able to enumerative all avoidance classes for [4,k]-pairs

(see Table 9.1). This also gives us that there are exactly 14 Wilf equivalence classes of

[4, 5]-pairs.

0.3 Organization of the thesis

In this section we give an overview of the chapters that follow.

Part I

15



1. In Chapter 1, we cover the basic definitions and important results that we will

need in the topic of hyperplane arrangements. We also bijectively count the

regions as well as give combinatorial interpretations to the coefficients of the

characteristic polynomials for some not-too-complicated arrangements.

2. In Chapter 2, we first recall the ‘sketches and moves’ idea to bijectively count

regions of arrangements. We then use this idea to obtain non-nesting partitions

that correspond to the regions of Catalan deformations of reflection arrange-

ments. We also directly count these objects and hence obtain bijective proofs

for the number of regions of these arrangements.

3. In Chapter 3, we interpret the coefficients of the characteristic polynomials of

various arrangements by defining appropriate statistics on their regions. We

start with doing so for a large class of deformations of the braid arrangement,

which were studied in great detail by Bernardi [8]. We then do so for the Cata-

lan deformations studied in Chapter 2. We use combinatorial interpretations

of the exponential generating function of these characteristic polynomials to

define our statistics.

4. In Chapter 4, we use ideas similar to the ones in the previous chapters to

study another class of arrangements called deformations of the threshold

arrangement.

5. We end this part of the thesis with some directions for future research in

Chapter 5.

Part II

6. In Chapter 6, we define the notion of patterns in permutations and mention

a few basic results on permutation patterns. We then cover the basic defi-

nitions and background we will need to study pattern avoidance in circular

permutations.

7. In Chapter 7, we study avoidance of a single circular pattern of size 4. We

split our results into three sections based on the pattern being avoided. For

each case, we show that the circular permutations in the avoidance classes

can be represented using well-known combinatorial objects such as binary

words and compositions. We also reprove some results from [21] using these

representations.
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8. In Chapter 8, we use the representations developed in Chapter 7 to study

avoidance of [4,k]-pairs in circular permutations. Just as before, we split our

results into three sections based on the pattern of size 4. In each section we

use our general results to study the particular case of k = 5, i.e., avoidance of

[4, 5]-pairs.

9. Finally, we end with Chapter 9 where some directions for future research are

mentioned.
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Part I

Hyperplane Arrangements
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Chapter 1

Preliminaries

In this chapter, we will cover the basic definitions and results related to hyperplane

arrangements. The interested reader is referred to [54] for more information. We

also assume reader’s familiarity with the notion of posets, formal power series, and

related terminologies. The main reference for which is [55].

For any two integers a,b, we use [a,b] to denote the set {c ∈ Z | a ⩽ c ⩽ b}. For a

positive integer n, for brevity, we use [n] to denote [1,n].

1.1 Basic definitions

Definition 1.1 (Hyperplane arrangement). A hyperplane arrangement is a finite set of

affine hyperplanes in Fn, where F is a field. An affine hyperplane is a translate of a

codimension 1 subspace of Fn.

We sometimes write just ‘arrangement’ instead of ‘hyperplane arrangement’. We

will be mainly focused on when F = R.

Definition 1.2 (Region). A region of an arrangement A in Rn is a connected compo-

nent of Rn \
⋃

H∈A
H. The number of regions of A is denoted by r(A).

Definition 1.3 (Rank). The rank of an arrangement A, denoted by rank(A), is the

dimension of the space spanned by the normals to its hyperplanes.
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1

2

345

6

7

Figure 1.1: An arrangement in R2 with 7 regions.

Definition 1.4 (Bounded region). A region of an arrangement A is said to be bounded

if its intersection with the span of the normals of the hyperplanes in A is bounded.

The number of bounded regions of A is denoted by b(A).

Example 1.5. Figure 1.1 shows an arrangement in R2 with 7 regions. It has 1

bounded region, which is labeled 7.

Definition 1.6 (Intersection poset). The poset of non-empty intersections of hyper-

planes in an arrangement A, ordered by reverse inclusion, is called its intersection

poset. It is denoted by LA.

The ambient space of the arrangement (i.e. Rn) is an element of the intersection

poset. It is considered as the intersection of none of the hyperplanes.

Example 1.7. Note that the lines l1 and l3 in the second example of Figure 1.2 do

not intersect. Such empty intersections are not included in LA.

Arrangement A in R2 Hasse diagram of LA
l1

l3

l2

P

l1

l2

l3

P

Q

R2

l1 l2 l3

P

R2

l1 l2 l3

P Q

Figure 1.2: Examples of intersection posets.
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Definition 1.8 (Möbius function). For an arrangement A in Rn, its Möbius function

µ : LA → Z is given by

µ(x) =


1, if x = Rn

−
∑
y<x

µ(y), otherwise.

Definition 1.9 (Characteristic polynomial). The characteristic polynomial of an ar-

rangement A is the generating function of the Möbius values of LA weighted by

dimension, i.e.

χA(t) :=
∑
x∈LA

µ(x)tdim(x).

Example 1.10. The numbers next to elements of LA in Figure 1.3 are their Möbius

values.

A LA χA(t)

t2 − 3t+ 2

t2 − 3t+ 3

1

-1 -1 -1

2

1

-1 -1 -1

1 1 1

Figure 1.3: Examples of characteristic polynomials.

Definition 1.11 (Restriction). The restriction of an arrangement A to some x ∈ LA is

the arrangement Ax in x with hyperplanes {H∩ x | H ∈ A, x ⊈ H}.

Definition 1.12 (Face). A face of an arrangement A is a region of Ax for some x ∈ LA.

The dimension of a face is the dimension of its affine span.

The regions of an arrangement are themselves faces (regions of ARn
= A). In fact,

they are the maximum-dimensional faces.

Example 1.13. The numbers inside the circles in Figure 1.4 are the dimensions of the

faces.

23



0 0

0

2

1 1

1 1

11

1 1

1

2

2

2 2

2 2

Figure 1.4: Faces of an arrangement in R2.

Before going further we note some results on arrangements that are consequences

of basic Euclidean geometry.

• Any hyperplane H in Rn is a set of the form

{x ∈ Rn | PH(x) = 0}

where PH(x) = a1x1 + a2x2 + · · ·+ anxn + c for some constants a1, . . . ,an, c ∈ R.

We say that PH is a defining polynomial of H. It is unique up to multiplication by

a nonzero scalar.

• The regions of an arrangement A are precisely the non-empty intersections of

sets of the form

{x ∈ Rn | PH(x) > 0} or {x ∈ Rn | PH(x) < 0}

where we have one such set for each H ∈ A.

• The faces of an arrangement A are precisely the non-empty intersections of

sets of the form

{x ∈ Rn | PH(x) = 0} or {x ∈ Rn | PH(x) > 0} or {x ∈ Rn | PH(x) < 0}

where we have one such set for each H ∈ A.

We will focus on regions of arrangements and will not be dealing with faces.

Results on faces of arrangements can be found in [37] and the references therein.
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1.2 Important results

The first major theorem in the theory of arrangements was due to Zaslavsky in 1975

[60].

Theorem 1.14. Let A be an arrangement in Rn. The number of regions of A is given by

r(A) = (−1)nχA(−1)

and similarly, the number of bounded regions is given by

b(A) = (−1)rank(A)χA(1).

Remark 1.15. The above theorem can be proved by induction on the number of

hyperplanes in the arrangement using Deletion-Restriction arguments.

To apply combinatorial methods, we will be focused on certain “nice” arrange-

ments.

Definition 1.16 (Rational arrangement). An arrangement in Rn with every hy-

perplane H having a defining polynomial PH in Z[x1, . . . , xn] is called a rational

arrangement.

Even if PH ∈ Q[x1, . . . , xn], we can multiply it by an integer to obtain an integer-

coefficient defining polynomial for H, which explains the term ‘rational arrangement’.

Also, for such arrangements we can obtain related arrangements in vector spaces

over finite fields.

Definition 1.17 (Reduction mod q). Let A be a rational arrangement in Rn. For any

prime q, we obtain an arrangement Aq in Zn
q by reducing mod q the coefficients of

the defining polynomials of the hyperplanes in A.

We now have the vocabulary required to state a very convenient method to

compute the characteristic polynomials of rational arrangements. This method was

developed by Athanasiadis in 1996 [3].

Theorem 1.18 (The finite field method). Let A be a rational hyperplane arrangement in

Rn. For large primes q,

χA(q) = #(Zn
q \

⋃
H∈Aq

H).
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Note that a polynomial of degree n is determined by its value at n+ 1 points.

Hence, the finite field method converts the problem of calculating the characteristic

polynomial of rational arrangements to a counting problem. Combined with Za-

slavsky’s theorem, we get a nice method of getting the number of regions of rational

arrangements.

1.3 Main question

In this section, we discuss the main problem we will be addressing in the upcoming

chapters: ‘Interpreting coefficients of the characteristic polynomial’. To understand

what this means, we first state a nice property of the characteristic polynomial of an

arrangement.

Proposition 1.19. [54, Corollary 3.4] For any arrangment A in Rn, we have

χA(t) =

n∑
i=0

(−1)n−icit
i

where ci is a non-negative integer for all 0 ⩽ i ⩽ n.

Remark 1.20. The above result follows using the fact that every interval of the

intersection poset of an arrangement is a geometric lattice.

Combining this result with Zaslavsky’s theorem, we see that the coefficients of

the characteristic polynomial of an arrangement give a breakup of the number of its

regions. Precisely, we have

r(A) = (−1)nχA(−1) =

n∑
i=0

ci.

Hence, one could ask if there is a statistic on the regions whose distribution is given

by the coefficients of the characteristic polynomial. That is, one could ask for a nice

way to assign a number from [0,n] to each region of A such that there are precisely

ci regions that get assigned the number i for each i ∈ [0,n].

For the arrangements we study in this thesis, we first define certain combinatorial

objects that correspond to the regions of the arrangement and then define an

appropriate statistic on these objects. For most of this thesis, we focus on an

interesting class of arrangements called Catalan deformations of reflection arrangements.
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The Catalan arrangement of type A in Rn is given by

An = {xi − xj = −1, 0, 1 | 1 ⩽ i < j ⩽ n}.

This arrangement and its sub-arrangements have been studied in great detail (for

example, see [8]). It is well-known that the number of regions of An where x1 <

x2 < · · · < xn (also known as the dominant regions) is given by the Catalan number
1

n+1

(
2n
n

)
.

Using this, it is easy to see that

r(An) =
n!

n+ 1

(
2n

n

)
.

Let Φ be a (not necessarily reduced) crystallographic root system and let Φ+ be a

choice of positive roots (relevant definitions can be found in [31]). The reflection (or

Coxeter) arrangement A(Φ) corresponding to Φ consists of hyperplanes with the

defining equations

(α, x) = 0 for α ∈ Φ+.

Note that these are the same hyperplanes that are fixed by the Weyl group of Φ.

A deformation of an arrangement A is an arrangement each of whose hyperplanes

is parallel to some hyperplane in A. Our main focus is certain deformations of

reflection arrangements called Catalan deformations. For brevity, we sometimes write

Catalan arrangement of type Φ. We have already defined the Catalan arrangement

of type A above. The defining equations of Catalan arrangements of other types are

as follows:

• The Catalan arrangement of type B in Rn is given by

{xi = −1, 0, 1 | i ∈ [n]}∪ {xi + xj = −1, 0, 1 | 1 ⩽ i < j ⩽ n}∪An.

• The Catalan arrangement of type C in Rn is given by

{2xi = −1, 0, 1 | i ∈ [n]}∪ {xi + xj = −1, 0, 1 | 1 ⩽ i < j ⩽ n}∪An.
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• The Catalan arrangement of type D in Rn is given by

{xi + xj = −1, 0, 1 | 1 ⩽ i < j ⩽ n}∪An.

• The Catalan arrangement of type BC in Rn (defined in [5]) is the union of the

type B and type C Catalan arrangements in Rn.

In addition to these, we also consider the extended Catalan arrangements of type

C; consisting of hyperplanes of the form (α, x) = k for k ∈ [−m,m] for a fixed integer

m ⩾ 1.

1.4 Examples

Before moving on to Catalan deformations, we first interpret the coefficients of the

characteristic polynomials of some fairly simple arrangements. These arrangements

have nice combinatorial objects that correspond to their regions. We define an

appropriate statistic on these objects whose distribution is given by the characteristic

polynomial of the corresponding arrangement.

Boolean arrangement

The Boolean arrangement is one of the first examples one encounters when studying

hyperplane arrangements. The Boolean arrangement in Rn consists of the coordinate

hyperplanes, i.e.,

Bn = {xi = 0 | i ∈ [n]}.

Any region of Bn is of the form

RA := {(x1, x2, . . . , xn) ∈ Rn | xi > 0 for i ∈ A and xi < 0 for i ∈ [n] \A}

for some A ⊆ [n]. Note that RA is non-empty for any subset A of [n]. Hence, the

regions of Bn correspond to subsets of [n] and we have r(Bn) = 2n.
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To compute the characteristic polynomial, we use the finite field method (Theo-

rem 1.18). This tells us the for large primes q, we have

χBn
(q) = #{(x1, x2, . . . , xn) ∈ Zn

q | xi ̸= 0 for all i ∈ [n]}

= (q− 1)n.

This shows us that the characteristic polynomial of Bn is

χBn
(t) = (t− 1)n

=

n∑
i=0

(−1)n−i

(
n

i

)
ti.

The statistic ‘number of elements’ on the set of all subsets of [n] has distribution

given by the coefficients of χBn
(t). This is because the number of subsets of [n] with

i elements is
(
n
i

)
, which is the absolute value of the coefficient of ti in χBn

(t).

Grid arrangement

We now consider a deformation of the Boolean arrangement. Given a positive integer

m, we define the grid arrangement in Rn as

Bm,n = {xi = 0, 1, . . . ,m− 1 | i ∈ [n]}.

This is an arrangement with mn hyperplanes, each of which is parallel to some

coordinate hyperplane.

The regions of this arrangement are in bijection with tuples of the form

(c1, c2, . . . , cn) where ci ∈ [0,m] for each i ∈ [n]. Here, for each i ∈ [n], ci speci-

fies the inequalities for xi:

1. If ci = 0, we set xi < 0.

2. If ci ∈ [m− 1], we set xi < ci and xi > ci − 1.

3. If ci = m, we set xi > m− 1.

Hence, we have r(Bm,n) = (m+ 1)n.
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By Theorem 1.18, we have that for large primes q,

χ(Bm,n)(q) = #{(x1, x2, . . . , xn) ∈ Zn
q | xi ̸= 0, 1, . . . ,m− 1 for all i ∈ [n]}

= (q−m)n.

This shows that the characteristic polynomial of the grid arrangement is

χ(Bm,n)(t) = (t−m)n

=

n∑
i=0

(−1)n−i

(
n

i

)
mn−iti.

The statistic ‘number of 0s’ on the tuples we used to represent the regions has

distribution given by the coefficients of χ(Bm,n)(t). This is because there are precisely(
n
i

)
mn−i tuples where the number of 0s is exactly i.

Braid arrangement

The braid arrangement in Rn is given by

Bn = {xi − xj = 0 | 1 ⩽ i < j ⩽ n}.

Note that this is the reflection arrangement corresponding to the root system An−1.

Any region of Bn is of the form

{(x1, x2, . . . , xn) ∈ Rn | xσ(1) < xσ(2) < · · · < xσ(n)}

for some permutation σ of [n]. This is because validly choosing xi < xj or xi > xj

for all 1 ⩽ i < j ⩽ n gives a total order on the coordinates. So we see that there

is a bijection between the regions of Bn and the permutations of [n] and hence

r(Bn) = n!.

By Theorem 1.18, for large primes q, we have

χBn
(q) = #{(x1, x2, . . . , xn) ∈ Zn

q | xi ̸= xj for all distinct i, j ∈ [n]}

= q× (q− 1)× (q− 2)× (q− (n− 1)).
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This shows that the characteristic polynomial of the braid arrangement is χBn
(t) =∏n−1

i=0 (t− i).

It is not too difficult to prove that the coefficient of ti in
∏n−1

i=0 (t + i) is the

number of permutations on [n] that have i cycles (for example, see [55, Proposition

1.3.7]). Hence, the distribution of the statistic ‘number of cycles’ on the set of all

permutations of [n] is given by the coefficients of χBn
(t).
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Chapter 2

Sketches, moves, and partitions

In this chapter, we describe combinatorial objects (certain labeled non-nesting parti-

tions) that correspond to regions of the Catalan deformations of various types. The

idea we use the obtain these bijections, which we call ‘sketches and moves’, was

used by Bernardi [8, Section 8] to study deformations of the braid arrangement.

The results in this chapter are from [17, Sections 2–4], which is joint work with

Priyavrat Deshpande.

2.1 Sketches and moves

In his paper [8], Bernardi describes a method to count the regions of any deformation

of the braid arrangement using certain objects called boxed trees. He also obtains

explicit bijections with certain trees for several deformations. The general strategy

to establish the bijection is to consider an arrangement B whose regions we wish to

count as a sub-arrangement of an arrangement A whose regions are well-understood.

The regions of B then define an equivalence on the regions of A. This is done by

declaring two regions of A to be equivalent if they lie inside the same region of B.

Now counting the number of regions of B is the same as counting the number of

equivalence classes of this equivalence on the regions of A. This is usually done by

choosing a canonical representative for each equivalence class, which also gives a

bijection between the regions of B and certain regions of A.

In particular, a (transitive) deformation of the braid arrangement is a sub-

arrangement of the (extended or) m-Catalan arrangement (for some large m) in Rn,
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whose hyperplanes are

{xi − xj = k | 1 ⩽ i < j ⩽ n, k ∈ [−m,m]}.

The regions of these arrangements are known to correspond labeled (m+ 1)-ary

trees with n nodes (see [8, Section 8.1]). Using the idea mentioned above, one can

show that the regions a deformation correspond to certain trees. We should mention

that while he obtains direct combinatorial arguments to describe this bijection for

some transitive deformations (see [8, Section 8.2]), the proof for the general bijection

uses much stronger results (see [8, Section 8.3]).

Coming back to the general strategy, which we aim to generalize in order to

apply it to deformations of other types. It is clear that any two equivalent regions of

A have to be on the same side of each hyperplane of B. However, it turns out that

this equivalence is the transitive closure of a simpler relation. This follows from the

fact that one can reach a region in an arrangement from another by crossing exactly

one hyperplane at a time with respect to which the regions lie on opposite sides. We

now prove this result, for which we require the following definition.

Figure 2.1: Bold lines form B and the dotted lines form A \B. Equivalent A regions
can be connected by changing one A \B inequality at a time.

Definition 2.1. Let R be a region of an arrangement A. A determining set of R is a

sub-arrangement D ⊆ A such that the region of the arrangement D containing R,

denoted RD, is equal to R.
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Note that a region of A always has the entire arrangement A as a determining

set. Also, if a region R ′ is on the same side as a region R for each hyperplane in a

determining set of R, then we must have R = R ′.

Before going forward, we recall the explicit description of regions of an arrange-

ment mentioned in Chapter 1. First note that any hyperplane H in Rn is a set of the

form

{x ∈ Rn | PH(x) = 0}

where PH(x) = a1x1 + a2x2 + · · ·+ anxn + c for some constants a1, . . . ,an, c ∈ R. Also,

the regions of an arrangement A are precisely the non-empty intersections of sets of

the form

{x ∈ Rn | PH(x) > 0} or {x ∈ Rn | PH(x) < 0}

where we have one set for each H ∈ A. Hence, crossing exactly one hyperplane

H in an arrangement corresponds to changing the inequality chosen for H in this

description of the region.

Theorem 2.2. If D is a minimal determining set of a region R of an arrangement A, then

changing the inequality in the definition of R of exactly one H ∈ D, and keeping all other

inequalities of hyperplanes in A the same, describes a non-empty region of A.

Before proving this, we will see how it proves the fact mentioned above. Start

with two distinct regions R and R ′ of an arrangement A. We want to get from R to R ′

by crossing exactly one hyperplane at a time with respect to which the regions lie

on opposite sides.

1. Let D be a minimal determining set of R.

2. Since R ̸= R ′ there is some H ∈ D for which R ′ is on the opposite side as R.

3. Change the inequality corresponding to H in R, call this new region R ′′.

4. The number of hyperplanes in A for which R ′′ and R ′ lie on opposite sides is

less than that for R and R ′.

5. Repeat this process to get to R ′ by changing one inequality at a time.

Proof of Theorem 2.2. Let H ∈ D. Since D is a minimal determining set, E = D \ {H}

is not a determining set. So R is strictly contained in RE. This means that the

hyperplane H intersects RE and splits it into two open convex sets, one of which is R.
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So we can choose a point p ∈ H that lies inside RE and an n-ball centered at p

that does not touch any other hyperplanes of A (since A is finite). One half of the

ball lies in R and the other half lies in a region R ′ of A. Since R ′ can be reached from

R by just crossing the hyperplane H, we get the required result.

To sum up, we start with an arrangement B ⊆ A. We know the regions of A and

usually represent them by combinatorial objects we call ‘sketches’. We then define

‘moves’ on these sketches that correspond to changing exactly one inequality of a

hyperplane in A \ B. We define sketches to be equivalent if one can be obtained

from another through a series of moves. We then count the number of equivalence

classes to obtain the number of regions of B. Before using this method to study the

Catalan arrangements of various types, we first look at some simpler arrangements.

2.1.1 A simple example

Before using the ‘sketches and moves’ idea to study the Catalan arrangements of

various types, we first apply it to a simpler example: the type D arrangement which

is contained in the type C arrangement.

The type C arrangement. This arrangement in Rn is the set of reflecting

hyperplanes of the root system Cn. The defining equations of hyperplanes are

2xi = 0

xi + xj = 0

xi − xj = 0

for 1 ⩽ i < j ⩽ n. Though we could write xi = 0 for the first type of hyperplanes, we

think of them as xi + xi = 0 to define sketches.

We can write the hyperplanes of the type C arrangement as follows:

xi = xj, 1 ⩽ i < j ⩽ n

xi = −xj, i, j ∈ [n].

Hence, any region of the arrangement is given by a valid total order on

x1, . . . , xn,−x1, . . . ,−xn.
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A total order is said to be valid if there is some point in Rn that satisfies it. We will

represent xi by
+
i and −xi by

−
i for all i ∈ [n].

Example 2.3. The region −x2 < x3 < x1 < −x1 < −x3 < x2 is represented as
−
2

+
3

+
1

−
1

−
3

+
2.

It can be shown that words of the form

s1
i1

s2
i2 · · ·

sn
in

−sn
in · · ·

−s2
i2

−s1
i1

where {i1, . . . , in} = [n] are the ones that correspond to regions. Such orders are

the only ones that can correspond to regions since negatives reverse order. Also,

choosing n distinct negative numbers, it is easy to construct a point satisfying the

inequalities specified by such a word.

Hence the number of regions of the type C arrangement is 2nn!. We will call

such words sketches (which are basically signed permutations). We will draw a line

after the first n symbols to denote the reflection and call the part of the sketch before

the line its first half and similarly define the second half.

Example 2.4.
+
3

−
1

−
2

+
4 |

−
4

+
2

+
1

−
3 is a sketch.

The type D arrangement. This arrangement in Rn has the hyperplanes

xi + xj = 0

xi − xj = 0

for 1 ⩽ i < j ⩽ n. We use the ‘sketches and moves’ idea to count the regions of

this arrangement by considering it as a sub-arrangement of the type C arrangement.

We will define the moves that we can apply to the sketches (which represent

changing exactly one inequality corresponding to a hyperplane not in the type D

arrangement) and then choose a canonical representative from each equivalence

class. By Theorem 2.2, this gives a bijection between these canonical sketches and

the regions of the sub-arrangement.

The hyperplanes missing from missing from the type C arrangement are

2xi = 0

for all i ∈ [n]. Hence a type D move, which we call a D move, is swapping adjacent
+
i and

−
i for any i ∈ [n].
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Example 2.5.
+
4

+
1

−
3

+
2 |

−
2

+
3

−
1

−
4

D move−−−−−→
+
4

+
1

−
3

−
2 |

+
2

+
3

−
1

−
4

In a sketch the only such pair is the last term of the first half and the first term of

the second half. Hence D moves actually define an involution on the sketches. We

could also choose a canonical sketch in each type D region to be the one where the

first term of the second half is positive. Hence the number of regions of the type D

arrangement is 2n−1n!.

2.2 Catalan deformation of type C

In this section we reprove, with a modification inspired by [4], the results of [45]

about the regions of the type C Catalan arrangements.

Fix n ⩾ 1 throughout this section. The type C Catalan arrangement in Rn is the

arrangement with hyperplanes

2Xi = −1, 0, 1

Xi +Xj = −1, 0, 1

Xi −Xj = −1, 0, 1

for all 1 ⩽ i < j ⩽ n. In this case, instead of looking at this arrangement directly,

we will study the arrangement obtained by performing the translation Xi = xi +
1
2

for all i ∈ [n]. It is easy to see that this does not change the combinatorics of the

arrangement. The translated arrangement, which we call Cn, has hyperplanes

2xi = −2,−1, 0

xi + xj = −2,−1, 0

xi − xj = −1, 0, 1

(2.1)

for all 1 ⩽ i < j ⩽ n. The arrangement Cn consists of all hyperplanes of the form

xi + s = ±(xj + t) for i, j ∈ [n] and s, t ∈ {0, 1}. This shows that the regions of Cn are

given by valid total orders on

{xi + s | i ∈ [n], s ∈ {0, 1}}∪ {−xi − s | i ∈ [n], s ∈ {0, 1}}.
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Such orders will be represented by using the symbol α(s)
i for xi + s and α

(−s)
−i for

−xi − s for all i ∈ [n] and s ∈ {0, 1}. Let C(n) be the set

{α
(s)
i | i ∈ [n], s ∈ {0, 1}}∪ {α(s)

i | −i ∈ [n], s ∈ {−1, 0}}.

Hence, we use orders on the letters of C(n) to represent regions of Cn.

Example 2.6. The total order

x1 < −x2 − 1 < x1 + 1 < x2 < −x2 < −x1 − 1 < x2 + 1 < −x1

is represented as α
(0)
1 α

(−1)
−2 α

(1)
1 α

(0)
2 α

(0)
−2 α

(−1)
−1 α

(1)
2 α

(0)
−1.

Considering −xi as x−i, the letter α
(s)
i represents xi + s for any α

(s)
i ∈ C(n). For

any α
(s)
i ∈ C(n), we use α

(s)
i to represent the letter α

(−s)
−i , which we call the conjugate

of α(s)
i .

Definition 2.7. A symmetric sketch is an order on the letters in C(n) such that the

following hold for any α
(s)
i ,α(t)

j ∈ C(n):

1. If α(s)
i appears before α

(t)
j , then α

(t)
j appears before α

(s)
i .

2. If α(s−1)
i appears before α

(t−1)
j , then α

(s)
i appears before α

(t)
j .

3. α
(s−1)
i appears before α

(s)
i .

Proposition 2.8. An order on the letters of C(n) corresponds to a region of Cn if and only if

it is a symmetric sketch.

Proof. The idea of the proof is the same as that of [4, Lemma 5.2]. It is clear that any

order that corresponds to a region must satisfy the properties in Definition 2.7 and

hence be a symmetric sketch. For the converse, we show that there is a point in Rn

satisfying the inequalities given by a symmetric sketch.

We prove this using induction on n, the case n = 1 being clear. Let n ⩾ 2 and

w be a symmetric sketch. Without loss of generality, we can assume that the first

letter of w is α
(0)
n . Deleting the letters with subscript n and −n from w gives a

symmetric sketch w ′ in the letters C(n− 1). Using the induction hypothesis, we can

choose a point x ′ ∈ Rn−1 satisfying the inequalities given by w ′. Suppose the letter

before α
(1)
n in w is α

(s)
i and the letter after it is α

(t)
j . We choose xn ̸= −1 such that
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x ′i + s < xn + 1 < x ′j + t in such a way that xn + 1 is also in the correct position with

respect 0 specified by w. This is possible since x ′ satisfies w ′.

We show that (x ′1, . . . , x ′n−1, xn) satisfies the inequalities given by w. We only have

to check that xn and (xn + 1) are in the correct relative position with respect to the

other letters since property 1 of Definition 2.7 will then show that −xn and −xn − 1

are also in the correct relative position. By the choice of xn, we see that xn + 1 in

the correct position. We have to show that xn is less than ±x ′i and ±(x ′i + 1) for all

i ′ ∈ [n− 1]. If xn > x ′1, then xn + 1 > x ′1 + 1 and since xn + 1 satisfies the inequalities

specified by w, α(1)
1 must be before α

(1)
n in w. But by property 2 of Definition 2.7, this

means that α(0)
1 must be before α

(0)
n in w, which is a contradiction. The same logic

can be used to show that xn satisfies the other inequalities given by w.

We now derive some properties of symmetric sketches. A symmetric sketch has

4n letters, so we call the word made by the first 2n letters its first half. Similarly we

define its second half.

Lemma 2.9. The second half of a symmetric sketch is completely specified by its first half. In

fact, it is the ‘mirror’ of the first half, i.e., it is the reverse of the first half with each letter

replaced with its conjugate.

Proof. For any symmetric sketch, the letter α
(s)
i is in the first half if and only if the

letter α
(s)
i is in the second half. This property can be proved as follows: Suppose

there is a pair of conjugates in the first half of a symmetric sketch. Since conjugate

pairs partition C(n), this means that there is a pair of conjugates in the second half

as well. But this would contradict property 1 of a symmetric sketch in Definition 2.7.

Hence, the set of letters in the second half are the conjugates of the letters in the

first half. The order in which they appear is forced by property 1 of Definition 2.7,

that is, the conjugates appear in the opposite order as the corresponding letters in

the first half. So if the first half of a symmetric sketch is a1 · · ·a2n where ai ∈ C(n)

for all i ∈ [2n], the sketch is

a1 a2 · · · a2n a2n · · · a2 a1.
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We draw a vertical line between the 2nth and (2n+ 1)th letter in a symmetric

sketch to indicate both the mirroring and the change in sign (note that if the 2nth

letter is α
(s)
i , we have xi + s < 0 < −xi − s in the corresponding region).

Example 2.10. α
(−1)
−3 α

(0)
−3 α

(0)
1 α

(−1)
−2 α

(1)
1 α

(0)
2 | α

(0)
−2 α

(−1)
−1 α

(1)
2 α

(0)
−1 α

(0)
3 α

(1)
3 .

Similar to the convention used in [8], a letter in C(n) is called an α-letter if it is

of the form α
(0)
i or α

(−1)
−i where i ∈ [n]. The other letters are called β-letters. The

β-letter ‘corresponding’ to an α-letter is the one with the same subscript. Hence,

in a symmetric sketch, an α-letter always appears before its corresponding β-letter

by property 3 in Definition 2.7. The order in which the subscripts of the α-letters

appear is the same as the order in which the subscripts of the β-letters appear by

property 2 of Definition 2.7. The proof of the following lemma is very similar to that

of the previous lemma.

Lemma 2.11. The order in which the subscripts of the α-letters in a symmetric sketch appear

is of the form

i1 i2 · · · in − in · · · − i2 − i1

where {|i1|, . . . , |in|} = [n].

Using Lemmas 2.9 and 2.11, to specify the sketch, we only need to specify the

following:

1. The α,β-word corresponding to the first half.

2. The signed permutation given by the first n α-letters.

The α,β-word corresponding to the first half is a word of length 2n in the letters

{α,β} such that the ith letter is an α if and only if the ith letter of the symmetric

sketch is an α-letter.

There is at most one sketch corresponding to a pair of an α,β-word and a signed

permutation. This is because the signed permutation tells us, by Lemma 2.11, the

order in which the subscripts of the α-letters (and hence β-letters) appears. Using

this and the α,β-word, we can construct the first half and, by Lemma 2.9, the entire

sketch.
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Example 2.12. To the symmetric sketch

α
(−1)
−3 α

(0)
−3 α

(0)
1 α

(−1)
−2 α

(1)
1 α

(0)
2 | α

(0)
−2 α

(−1)
−1 α

(1)
2 α

(0)
−1 α

(0)
3 α

(1)
3

we associate the pair consisting of the following:

1. α,β-word: αβααβα.

2. Signed permutation: −3 1 − 2.

If we are given the α,β-word and signed permutation above, the unique sketch

corresponding to it is the one given above.

The next proposition characterizes the pairs of α,β-words and signed permuta-

tions that correspond to symmetric sketches.

Proposition 2.13. A pair consisting of

1. an α,β-word of length 2n such that any prefix of the word has at least as many

α-letters as β-letters and

2. any signed permutation

corresponds to a symmetric sketch and all symmetric sketches correspond to such pairs.

Proof. By property 3 of Definition 2.7, any α,β-word corresponding to the first half

of a sketch should have at least as many α-letters as β-letters in any prefix.

We now prove that given such a pair, there is a symmetric sketch corresponding to

it. If the given α,β-word is l1l2 · · · l2n and the given signed permutation is i1i2 · · · in,

we construct the symmetric sketch as follows:

1. Extend the α,β-word to the one of length 4n given by

l1 l2 · · · l2n l2n · · · l2 l1

where li = α if and only if li = β for all i ∈ [2n].
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2. Extend the signed permutation to the sequence of length 2n given by

i1 i2 · · · in − in · · · − i2 − i1.

3. Label the subscripts of the α-letters of the extended α,β-word in the order

given by the extended signed permutation and similarly label the β-letters.

If we show that the word constructed is a symmetric sketch, it is clear that it will

correspond to the given α,β-word and signed permutation. We have to check that

the constructed word satisfies the properties in Definition 2.7.

The way the word was constructed, we see that it is of the form

a1 a2 · · · a2n a2n · · · a2 a1

where ai ∈ C(n) for all i ∈ [2n]. Since the conjugate of the ith α is the (2n− i+ 1)th β

and vice-versa, the first half of the word cannot have a pair of conjugates. Hence

the word has all letters of C(n). This shows that property 1 of Definition 2.7 holds.

Property 2 is taken care of since, by construction, the subscripts of the α-letters

appear in the same order as those of the β-letters.

To show that property 3 holds, it suffices to show that any prefix of the word has

at least as many α-letters as β-letters. This is already true for the first half. To show

that this is true for the entire word, we consider α as +1 and β as −1. Hence, the

condition is that any prefix has a non-negative sum. Since any prefix of size greater

than 2n is of the form

l1 l2 · · · l2n l2n · · · lk

for some k ∈ [2n], the sum is l1 + · · ·+ lk−1 ⩾ 0. So property 3 holds as well and

hence the constructed word is a symmetric sketch.

We use this description to count symmetric sketches.

Lemma 2.14. The number of α,β-words of length 2n having at least as many α-letters as

β-letters in any prefix is
(
2n
n

)
.
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Proof. We consider these α,β-words as lattice paths. Using the step U = (1, 1) for α

and the step D = (1,−1) for β, we have to count those lattice paths with each step U

or D that start at the origin, have 2n steps, and never fall below the x-axis.

Using the reflection principle (for example, see [29]), we get that the number of

such lattice paths that end at (2n, 2k) for k ∈ [0,n] is given by(
2n

n+ k

)
−

(
2n

n+ k+ 1

)
.

The (telescoping) sum over k ∈ [0,n] gives the required result.

The above lemma and Proposition 2.13 immediately give the following.

Theorem 2.15. The number of symmetric sketches and hence regions of Cn is

2nn!
(
2n

n

)
.

In [4], Athanasiadis obtains bijections between several classes of non-nesting

partitions and regions of certain arrangements. We will mention the one for the

arrangement Cn, which gives a bijection between the α,β-words associated to sym-

metric sketches and certain non-nesting partitions.

Definition 2.16. A symmetric non-nesting partition is a partition of [−2n, 2n] \ {0} such

that the following hold:

1. Each block is of size 2.

2. If B = {a,b} is a block, so is −B = {−a,−b}.

3. If {a,b} is a block and c,d ∈ [−2n, 2n] \ {0} are such that a < c < d < b, then

{c,d} is not a block.

Remark 2.17. Partitions where each block is of size 2 are usually called matchings.

Also, non-nesting matchings (those matchings that satisfy condition 3 above) are

counted by the Catalan numbers (see [56, Exercise 64]). However, in Section 2.2.1,

we will be considering partitions with larger part sizes and hence we use the term

‘symmetric non-nesting partition’.

Symmetric non-nesting partitions are usually represented using arc-diagrams.

This is done by using 4n dots to represent the numbers in [−2n, 2n] \ {0} in order
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and joining dots in the same block using an arc. The properties of these partitions

imply that there are no nesting arcs and that the diagram is symmetric, which we

represent by drawing a line after 2n dots.

Example 2.18. The arc diagram associated to the symmetric non-nesting partition of

[−6, 6] \ {0}

{−6,−3}, {−5,−1}, {−4, 2}, {−2, 4}, {1, 5}, {3, 6}

is given in Figure 2.2.

Figure 2.2: The symmetric non-nesting partition of Example 2.18.

It can also be seen that there are exactly n pairs of blocks of the form {B,−B}

with no block containing both a number and its negative. Also, the first n blocks,

with blocks being read in order of the smallest element in it, do not have a pair of

the form {B,−B}. Hence, we can label the first n blocks with a signed permutation

and label the block −B with the negative of the label of B to obtain a labeling of

all blocks. We call such objects labeled symmetric non-nesting partitions. In the arc

diagram, the labeling is done by replacing the dots representing the elements in a

block with its label.

We can obtain a labeled symmetric non-nesting partition from a symmetric sketch

by joining the letters α
(0)
i and α

(1)
i and similarly α

(−1)
−i and α

(0)
−i with arcs and replacing

each letter in the sketch with its subscript. It can be shown that this construction is a

bijection between symmetric sketches and labeled symmetric non-nesting partitions.

In particular, the α,β-words associated with symmetric sketches are in bijection with

symmetric non-nesting partitions.

Example 2.19. To the symmetric sketch

α
(0)
3 α

(0)
2 α

(−1)
−1 α

(1)
3 α

(0)
1 α

(1)
2 |α

(−1)
−2 α

(0)
−1α

(−1)
−3 α

(1)
1 α

(0)
−2α

(0)
−3

we associate the labeled symmetric non-nesting partition in Figure 2.3.
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3 2 −1 3 1 2 −2 −1 −3 1 −2 −3

Figure 2.3: Arc diagram associated to the symmetric sketch in Example 2.19.

We now describe another way to represent the regions. We have already seen that

a sketch corresponds to a pair consisting of an α,β-word and a signed permutation.

We represent the α,β-word as a lattice path just as we did in the proof of Lemma 2.14.

We specify the signed permutation by labeling the first n up-steps of the lattice path.

Example 2.20. The lattice path associated to the symmetric sketch

α
(−1)
−3 α

(0)
−3 α

(0)
1 α

(−1)
−2 α

(1)
1 α

(0)
2 | α

(0)
−2 α

(−1)
−1 α

(1)
2 α

(0)
−1 α

(0)
3 α

(1)
3

is given in Figure 2.4.

−3 1

−2

Figure 2.4: Lattice path associated to the symmetric sketch in Example 2.20.

These representations for the regions of Cn also allow us to determine and count

which regions are bounded.

Theorem 2.21. The number of bounded regions of the arrangement Cn is

2nn!
(
2n− 1

n

)
.

Proof. First note that the arrangement Cn has rank n and is hence essential. From the

bijection defined above, it can be seen that the arc diagram associated to any region

R of Cn can be obtained by plotting a point (x1, . . . , xn) ∈ R on the real line. This is

done by marking xi and xi + 1 on the real line using i for all i ∈ [n] and then joining

them with an arc and similarly marking −xi − 1 and −xi using −i and joining them

with an arc.
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This can be used to show that a region of Cn is bounded if and only if the

arc diagram is ‘interlinked’. For example, Figure 2.3 shows an arc diagram that

is interlinked and Figure 2.5 shows one that is not. In terms of lattice paths, the

bounded regions are those whose corresponding lattice path never touches the x-axis

except at the origin.

−3 −3 1 −2 1 2 −2 −1 2 −1 3 3

Figure 2.5: Arc diagram associated to the symmetric sketch of Example 2.12.

This shows that the number of bounded regions of Cn is 2nn! times the number

of unlabeled lattice paths of length 2n that never touch the x-axis apart from at the

origin. Deleting the first step (which is necessarily an up-step) gives a bijection

between such paths and those of length 2n− 1 that never fall below the x-axis. Using

the same idea as in the proof of Lemma 2.14, it can be checked that the number of

such paths is
(
2n−1
n

)
. This proves the required result.

Remark 2.22. In [45], the authors study the type C Catalan arrangement directly, i.e.,

without using the translation Cn mentioned above. Hence, using the same logic, they

use orders on the letters

{α
(s)
i | i ∈ [−n,n] \ {0}, s ∈ {0, 1}}

to represent the regions of the type C Catalan arrangement. They claim that these

orders are those such that the following hold for any i, j ∈ [−n,n] \ {0} and s ∈ {0, 1}:

1. If α(0)
i appear before α

(0)
j , then α

(1)
i appears before α

(1)
j .

2. α
(0)
i appears before α

(1)
i .

3. If α(0)
i appears before α

(s)
j , then α

(0)
−j appears before α

(s)
−i .

Though this can be shown to be true, the method used in [45] to construct a point

satisfying the inequalities given by such an order does not seem to work in general.

We describe their method and then exhibit a case where it does not work.
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Let w = w1 · · ·w4n be an order satisfying the properties given above. Then

construct x = (x1, . . . , xn) ∈ Rn as follows: Let z0 = 0 (or pick z0 arbitrarily). Then

define zp for p = 1, 2, . . . , 4n in order as follows: If wp = α
(0)
i then set zp = zp−1 +

1
2n+1

and xi = zp, and if wp = α
(1)
i then set zp = xi + 1. Here we consider x−i = −xi for any

i ∈ [n]. Then x satisfies the inequalities given by w.

The following example shows that this method does not always work; in fact

x is not always well-defined. Consider the order w = α
(0)
−2α

(0)
1 α

(1)
−2α

(1)
1 α

(0)
−1α

(0)
2 α

(1)
−1α

(1)
2 .

Following the above procedure, we would get that x1 is both 2
5 as well as −1− 3

5 .

2.2.1 Extended type C Catalan

Fix m,n ⩾ 1. The type C m-Catalan arrangement in Rn has hyperplanes

2Xi = 0,±1,±2, . . . ,±m

Xi +Xj = 0,±1,±2, . . . ,±m

Xi −Xj = 0,±1,±2, . . . ,±m

for all 1 ⩽ i < j ⩽ n. We will study the arrangement obtained by performing the

translation Xi = xi +
m
2 for all i ∈ [n]. The translated arrangement, which we call

C
(m)
n , has hyperplanes

2xi = −2m,−2m+ 1, . . . , 0

xi + xj = −2m,−2m+ 1, . . . , 0

xi − xj = 0,±1,±2, . . . ,±m

for all 1 ⩽ i < j ⩽ n. Note that Cn = C
(1)
n . The regions of C(m)

n are given by valid total

orders on

{xi + s | i ∈ [n], s ∈ [0,m]}∪ {−xi − s | i ∈ [n], s ∈ [0,m]}.

Just as we did for Cn, such orders will be represented by using the symbol α(s)
i

for xi + s and α
(−s)
−i for −xi − s for all i ∈ [n] and s ∈ [0,m]. Let C(m)(n) be the set

{α
(s)
i | i ∈ [n], s ∈ [0,m]}∪ {α(s)

i | −i ∈ [n], s ∈ [−m, 0]}.
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For any α
(s)
i ∈ C(m)(n), α(s)

i represents α
(−s)
−i and is called the conjugate of α(i)

s . Letters

of the form α
(0)
i or α

(−m)
−i for any i ∈ [n] are called α-letters. The others are called

β-letters.

Definition 2.23. An order on the letters in C(m)(n) is called a symmetric m-sketch if

the following hold for all α(s)
i ,α(t)

j ∈ C(m)(n):

1. If α(s)
i appears before α

(t)
j , then α

(t)
j appears before α

(s)
i .

2. If α(s−1)
i appears before α

(t−1)
j , then α

(s)
i appears before α

(t)
j .

3. α
(s−1)
i appears before α

(s)
i .

The following result can be proved just as Proposition 2.8.

Proposition 2.24. An order on the letters in C(m)(n) corresponds to a region of C(m)
n if and

only if it is a symmetric m-sketch.

Similar to Lemma 2.11, it can be shown that the order in which the subscripts of

the α-letters appear in a symmetric m-sketch is of the form

i1 i2 · · · in − in · · · − i2 − i1

where {|i1|, . . . , |in|} = [n]. Just as in the case of symmetric sketches, we associate

an α,β-word and signed permutation to a symmetric m-sketch which completely

determines it.

Example 2.25. To the symmetric 2-sketch

α
(0)
2 α

(−2)
−1 α

(1)
2 α

(−1)
−1 α

(0)
1 α

(−2)
−2 | α

(2)
2 α

(0)
−1α

(1)
1 α

(−1)
−2 α

(2)
1 α

(0)
−2

we associate the pair consisting of the following:

1. α,β-word: ααββαα.

2. Signed permutation: 2 − 1.

The set of α,β-words associated to symmetric m-sketches for m > 1 does not seem

to have a simple characterization like those for symmetric sketches (see Proposition

2.13). However, looking at symmetric m-sketches as labeled non-nesting partitions

as done in [4], we see that such objects have already been counted bijectively (refer

[22]).
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Definition 2.26. A symmetric m-non-nesting partition is a partition of [−(m+ 1)n, (m+

1)n] \ {0} such that the following hold:

1. Each block is of size (m+ 1).

2. If B is a block, so is −B.

3. If a,b are in some block B, a < b and there is no number a < c < b such that

c ∈ B, then if a < c < d < b, c and d are not in the same block.

Just as we did for the m = 1 case, we can obtain a labeled symmetric m-non-

nesting partition from a symmetric m-sketch by joining the letters α
(0)
i ,α(1)

i , . . . ,α(m)
i

and similarly α
(−m)
−i ,α(−m+1)

−i , . . . ,α(0)
−i with arcs and labeling each such chain with the

subscript of the letters being joined.

Example 2.27. To the symmetric 2-sketch in Example 2.25, we associate the labeled

2-non-nesting partition of Figure 2.6.

2 −1 2 −1 1 −2 2 −1 1 −2 1 −2

Figure 2.6: A labeled 2-non-nesting partition

The number of various classes of non-nesting partitions have been counted

bijectively. In terms of [22] or [4], the symmetric m-non-nesting partitions defined

above are called type C partitions of size (m+ 1)n of type (m+ 1, . . . ,m+ 1) where

this is an n-tuple representing the size of the (nonzero) block pairs {B,−B}. The

number of such partitions is (
(m+ 1)n

n

)
.

Hence we get the following theorem.

Theorem 2.28. The number of symmetric m-sketches, which is the number of regions of

C
(m)
n is

2nn!
(
(m+ 1)n

n

)
.
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2.3 Catalan deformations of other types

We will now use ‘sketches and moves’, as in [8], to count the regions of Catalan

arrangements of other types. Depending on the context, we represent the regions of

arrangements using sketches, arc diagrams, or lattice paths and frequently make use

of the bijections identifying them. We usually use sketches to define moves and use

arc diagrams and lattice paths to count regions as well as bounded regions.

2.3.1 Type D Catalan

Fix n ⩾ 2. The type D Catalan arrangement in Rn has hyperplanes

Xi +Xj = −1, 0, 1

Xi −Xj = −1, 0, 1

for 1 ⩽ i < j ⩽ n. Translating this arrangement by setting Xi = xi +
1
2 for all i ∈ [n],

we get the arrangement Dn with hyperplanes

xi + xj = −2,−1, 0

xi − xj = −1, 0, 1

for 1 ⩽ i < j ⩽ n. Figure 2.7 shows D2 as a sub-arrangement of C2. It also shows how

the regions of D2 partition the regions of C2.

We use the idea of moves to count the regions of Dn by considering it as a

sub-arrangement of Cn. The hyperplanes from Cn that are missing in Dn are

2xi = −2,−1, 0

for all i ∈ [n]. Hence, the type D Catalan moves on symmetric sketches (regions of

Cn), which we call D moves, are as follows:

1. Swapping the 2nth and (2n+ 1)th letter.

2. Swapping the nth and (n+ 1)th α-letters if they are adjacent, along with the

nth and (n+ 1)th β-letters.
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1 2 -2 -1

1 2 -2 -1

Figure 2.7: The arrangement C2 with the hyperplanes in D2 in bold. Two regions of
C2 are labeled with their symmetric labeled non-nesting partition.

The first move covers the inequalities corresponding to the hyperplanes xi + 1 =

−xi − 1 and xi = −xi for all i ∈ [n] since the only conjugates that are adjacent, by

Lemma 2.9, are the 2nth and (2n+ 1)th letter.

The second move covers the inequalities corresponding to the hyperplanes

xi = −xi − 1 (equivalently, xi + 1 = −xi) for all i ∈ [n]. This is due to the fact that the

only way α
(0)
i and α

(−1)
−i as well as α

(1)
i and α

(0)
−i can be adjacent is, by Lemma 2.11,

when the nth and (n + 1)th α-letters are adjacent. Also, by Lemma 2.9, the nth

and (n+ 1)th α-letters are adjacent if and only if the nth and (n+ 1)th β-letters are

adjacent.
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Example 2.29. A series of D moves applied to a symmetric sketch is given below:

α
(−1)
−1 α

(0)
2 α

(−1)
−2 α

(0)
−1 | α

(0)
1 α

(1)
2 α

(0)
−2α

(1)
1

D move−−−−−→ α
(−1)
−1 α

(0)
2 α

(−1)
−2 α

(0)
1 | α

(0)
−1α

(1)
2 α

(0)
−2α

(1)
1

D move−−−−−→ α
(−1)
−1 α

(−1)
−2 α

(0)
2 α

(0)
1 | α

(0)
−1α

(0)
−2α

(1)
2 α

(1)
1

D move−−−−−→ α
(−1)
−1 α

(−1)
−2 α

(0)
2 α

(0)
−1 | α

(0)
1 α

(0)
−2α

(1)
2 α

(1)
1

To count the regions of Dn, we have to count the number of equivalence classes

of symmetric sketches where two sketches are equivalent if one can be obtained

from the other via a series of D moves. In Figure 2.7, the two labeled regions of C2

are adjacent and lie in the same region of D2. They are related by swapping of the

fourth and fifth letters of their sketches, which is a D move.

The fact about these moves that will help with the count is that a series of D

moves do not change the sketch too much. Hence we can list the sketches that are D

equivalent to a given sketch.

First, consider the case when the nth α-letter of the symmetric sketch is not in

the (2n− 1)th position. In this case, the nth α-letter is far enough from the 2nth letter

that a D move of the first kind (swapping the 2nth and (2n+ 1)th letter) will not

affect the letter after the nth α-letter. Hence it does not change whether the nth and

(n+ 1)th α-letters are adjacent.

Let w be a sketch where the nth α-letter is not in the (2n− 1)th position. The

number of sketches D equivalent to w is 4 when the nth and (n+ 1)th α-letters are

adjacent. They are illustrated below:

· · ·α(−1)
−i α

(0)
i · · ·α

(s)
j | α

(−s)
−j · · ·α

(0)
−iα

(1)
i · · ·

· · ·α(−1)
−i α

(0)
i · · ·α

(−s)
−j | α

(s)
j · · ·α

(0)
−iα

(1)
i · · ·

· · ·α(0)
i α

(−1)
−i · · ·α

(s)
j | α

(−s)
−j · · ·α

(1)
i α

(0)
−i · · ·

· · ·α(0)
i α

(−1)
−i · · ·α

(−s)
−j | α

(s)
j · · ·α

(1)
i α

(0)
−i · · ·

The number of sketches D equivalent to w is 2 when the nth and (n+ 1)th α-letter

are not adjacent. They are illustrated below:

· · ·α(s)
j | α

(−s)
−j · · · · · ·α

(−s)
−j | α

(s)
j · · ·
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Notice also that the equivalent sketches also satisfy the same properties (nth α-letter

not being in the (2n− 1)th position and whether the nth and (n+ 1)th α-letters are

adjacent).

In case the nth α-letter is in the (2n− 1)th position of the symmetric sketch, it can

be checked that it has exactly 4 equivalent sketches all of which also have the nth

α-letter in the (2n− 1)th position:

· · ·α(0)
i α

(1)
i | α

(−1)
−i α

(0)
−i · · ·

· · · α(0)
i α

(−1)
−i | α

(1)
i α

(0)
−i · · ·

· · ·α(−1)
−i α

(0)
i | α

(0)
−iα

(1)
i · · ·

· · · α(−1)
−i α

(0)
−i | α

(0)
i α

(1)
i · · ·

Figure 2.7 shows that each region of D2 contains exactly 2 or 4 regions of C2, as

expected from the above observations.

Theorem 2.30. The number of D equivalence classes on symmetric sketches and hence the

number of regions of Dn is

2n−1 · (2n− 2)!
(n− 1)!

· (3n− 2).

Proof. By the observations made above, the number of sketches equivalent to a given

sketch only depends on its α,β-word (see Proposition 2.13). So, we need to count the

number of α,β-words of length 2n with any prefix having at least as many α-letters

as β-letters that are of the following types:

1. The nth α-letter is not in the (2n− 1)th position and

(a) the letter after the nth α-letter is an α.

(b) the letter after the nth α-letter is a β.

2. The nth α-letter is in the (2n− 1)th position.

We first count the second type of α,β-words. If the nth α-letter is in the (2n− 1)th

position, the first (2n− 2) letters have (n− 1) α-letters and (n− 1) β-letters and hence

form a ballot sequence. This means that there is no restriction on the 2nth letter; it

can be α or β. So, the total number of such α,β-words is

2 · 1
n

(
2n− 2

n− 1

)
.
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The number of both the types 1(a) and 1(b) of α,β-words mentioned above are

the same. This is because changing the letter after the nth α-letter is an involution on

the set of α,β-word of length 2n with any prefix having at least as many α-letters as

β-letters. We have just counted such words that have the nth α-letter in the (2n− 1)th

position. Hence, using Lemma 2.14, we get that the number of words of type 1(a)

and 1(b) are both equal to

1

2
·
[(

2n

n

)
−

2

n

(
2n− 2

n− 1

)]
.

Combining the observations made above, we get that the number of regions of Dn is

2nn! ·

(
1

4
·

[
2

n

(
2n− 2

n− 1

)
+

1

2
·
[(

2n

n

)
−

2

n

(
2n− 2

n− 1

)]]
+

1

2
·

[
1

2
·
[(

2n

n

)
−

2

n

(
2n− 2

n− 1

)]])

which simplifies to the required formula.

Just as we did for Cn, we can describe and count which regions of Dn are

bounded.

Theorem 2.31. The number of bounded regions of Dn is

2n−1 · (2n− 3)!
(n− 2)!

· (3n− 4).

Proof. For n ⩾ 2, both Cn and Dn have rank n. Hence, a region of Dn is bounded

exactly when all the regions of Cn it contains are bounded.

We have already seen in Theorem 2.21 that a region of Cn is bounded exactly

when its corresponding lattice path does not touch the x-axis except at the origin.

Such regions are not closed under D moves. However, if we include regions whose

corresponding lattice paths touch the x-axis only at the origin and (2n, 0), this set of

regions, which we call S, is closed under the action of D moves because such lattice

paths are closed under the action of changing the 2nth step. Denote by SD the set of

equivalence classes that D moves partition S into, i.e., SD is the set of regions of Dn

that contain regions of S.

Just as in the proof of Theorem 2.30, one can check that the set S is closed under

the action of changing the letter after the nth α-letter. Also, note that the lattice paths

in S do not touch the x-axis at (2n− 2, 0), and hence the nth α-letter cannot be in
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the (2n− 1)th position. Using the above observations and the same method to count

regions of Dn as in the proof of Theorem 2.30, we get the number of regions in SD is

2nn! · 3
8

((
2n− 1

n

)
+

1

n

(
2n− 2

n− 1

))
.

It can also be checked that each unbounded region in S is D equivalent to exactly

one other region of S, and this region is bounded. This is because the lattice paths

corresponding to these unbounded regions touch the x-axis at (2n, 0). Hence, they

cannot have the nth and (n+ 1)th α-letters being adjacent and changing the 2nth

letter to an α gives a bounded region. Since the unbounded regions in S correspond

to Dyck paths of length (2n− 2) (by deleting the first and last step), we get that the

number of unbounded regions in SD is

2nn! · 1
n

(
2n− 2

n− 1

)
.

Combining the above results, we get that the number of bounded regions of Dn

is

2nn!
(
3

8

((
2n− 1

n

)
+

1

n

(
2n− 2

n− 1

))
−

1

n

(
2n− 2

n− 1

))
.

This simplifies to give our required result.

As mentioned earlier, we can choose a specific sketch from each D equivalence

class to represent the regions of Dn. It can be checked that symmetric sketches that

satisfy the following are in bijection with regions of Dn:

1. The last letter is a β-letter.

2. The nth α-letter must have a negative label if the letter following it is an α-letter

or the nth β-letter.

We will call such sketches type D sketches. They will be used in Section 3.2 to

interpret the coefficients of χDn
. Note that the type D sketches that correspond to

bounded regions of Dn are those, when converted to a lattice path, do not touch the

x-axis apart from at the origin.
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2.3.2 Pointed type C Catalan

The type B and type BC Catalan arrangements we are going to consider now are not

sub-arrangements of the type C Catalan arrangement. While it is possible to consider

these arrangements as sub-arrangements of the type C 2-Catalan arrangement (see

Section 2.2.1), this would add many extra hyperplanes. This would make defining

moves and counting equivalence classes difficult. Also, we do not have a simple

characterization of α,β-words associated to symmetric 2-sketches, as we do for

symmetric sketches (see Proposition 2.13).

We instead consider them as a sub-arrangements of the arrangement Pn in Rn

that has hyperplanes

xi = −
5

2
,−

3

2
,−1,−

1

2
, 0,

1

2
,
3

2

xi + xj = −2,−1, 0

xi − xj = −1, 0, 1

for all 1 ⩽ i < j ⩽ n. It can be checked that the regions of Pn are given by valid total

orders on

{xi + s | i ∈ [n], s ∈ {0, 1}}∪ {−xi − s | i ∈ [n], s ∈ {0, 1}}∪ {−3

2
,−

1

2
,
1

2
,
3

2
}.

Remark 2.32. The arrangement Pn is the arrangement Cn(λ) defined in [4, Equation

(4)] with λi = 2 for all i ∈ [n] and m = 2.

We now define sketches that represent such orders. Just as beofre, we represent

xi+ s as α(s)
i and −xi− s as α(−s)

−i for any i ∈ [n] and s ∈ {0, 1}. The numbers −3
2 ,−1

2 , 12 , 32
will be represented as α

(−1.5)
− , α(−0.5)

− , α(0.5)
+ , α(1.5)

+ respectively.

Example 2.33. The total order

−
3

2
< x2 < −x1 − 1 < −

1

2
< x1 < x2 + 1 < −x2 − 1 < −x1 <

1

2
< x1 + 1 < −x2 <

3

2

is represented as α
(−1.5)
− α

(0)
2 α

(−1)
−1 α

(−0.5)
− α

(0)
1 α

(1)
2 α

(−1)
−2 α

(0)
−1 α

(0.5)
+ α

(1)
1 α

(0)
−2 α

(1.5)
+ .

Set B(n) to be the set

{α
(s)
i | i ∈ [n], s ∈ {0, 1}}∪ {α(s)

i | −i ∈ [n], s ∈ {−1, 0}}∪ {α(−1.5)
− ,α(−0.5)

− ,α(0.5)
+ ,α(1.5)

+ }.
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We define pointed symmetric sketches to be the words in B(n) that correspond

to regions of Pn (this terminology will become clear soon). Denote by α
(s)
x the

letter α
(−s)
−x for any α

(s)
x ∈ B(n). We have the following characterization of pointed

symmetric sketches:

Proposition 2.34. A word in the letters B(n) is a pointed symmetric sketch if and only if

the following hold for any α
(s)
x ,α(t)

y ∈ B(n):

1. If α(s)
x appears before α

(t)
y then α

(t)
y appears before α

(s)
x .

2. If α(s−1)
x appears before α

(t−1)
y then α

(s)
x appears before α

(t)
y .

3. α
(s−1)
x appears before α

(s)
x .

4. Each letter of B(n) appears exactly once.

Just as was done in the proof of Proposition 2.8, we can inductively construct a

point in Rn satisfying the inequalities specified by a pointed sketch. Also, just as for

type C sketches, it can be shown that these sketches are symmetric about the center.

We also represent such sketches using arc diagrams in a similar manner. Note that

in this case we also inlcude an arc between α
(−0.5)
− and α

(0.5)
+ .

Example 2.35. To the pointed sketch given below, we associate the arc diagram in

Figure 2.8.

α
(−1.5)
− α

(0)
2 α

(−1)
−1 α

(−0.5)
− α

(0)
1 α

(1)
2 | α

(−1)
−2 α

(0)
−1 α

(0.5)
+ α

(1)
1 α

(0)
−2 α

(1.5)
+

− 2 −1 − 1 2 −2 −1 + 1 −2 +

Figure 2.8: Arc diagram associated to the pointed symmetric sketch in Example 2.35.

To a pointed symmetric sketch, we can associate a pointed α,β-word of length

(2n+ 2) and a signed permutation as follows:
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1. For the letters in the first half of the pointed sketch of the form α
(0)
i , α(−1)

−i or

α
(−1.5)
− , we write α and for the others we write β (α corresponds to ‘openers’ in

the arc diagram and β to ‘closers’). The β corresponding to α
(0.5)
− is pointed to.

2. The subscripts of the first n α-letters other than α
(−1.5)
− gives us the signed

permutation.

Example 2.36. To the pointed sketch in Example 2.35, we associate the following

pair:

1. Pointed α,β-word: αααβαβ.

2. Signed permutation: 2 − 1.

As was done for symmetric sketches, we can see that the method given above to

get a signed permutation does actually give a signed permutation. Also, such a pair

has at most one pointed sketch associated to it. We now characterize the pointed

α,β-words and signed permutations associated to pointed sketches.

Proposition 2.37. A pair consisting of

1. a pointed α,β-word of length (2n+ 2) satisfying the property that in any prefix, there

are at least as many α-letters as β-letters and that the number of α-letters before the

pointed β is (n+ 1), and

2. any signed permutation

corresponds to a pointed symmetric sketch and all pointed sketches correspond to such pairs.

Proof. Most of the proof is the same as that for type C sketches. The main difference

is pointing to the β-letter corresponding to α
(−0.5)
− . The property we have to take

care of is that there is no nesting in the arc joining α
(0.5)
− to α

(0.5)
+ . This is the same as

specifying when an arc drawn from a β-letter in the first half to its mirror image in

the second half does not cause any nesting.

· · · β · · · · · · α · · ·

Figure 2.9: Arc from β to its mirror image.
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Denote by Nα,b the number of α-letters before the β under consideration, Nα,a

the number of α-letters in the first half after the β and similarly define Nβ,b and

Nβ,a. The condition that we do not want an arc inside the one joining the β to its

mirror is given by

Nα,b ⩾ Nβ,b + 1+Nβ,a +Nα,a.

This is because of the symmetry of the arc diagram and the fact that we want any

β-letter between the pointed β and its mirror to have its corresponding α before the

pointed β. Similarly, the condition that we do not want the arc joining the β to its

mirror to be contained in any arc is given by

Nα,b ⩽ Nβ,b + 1+Nβ,a +Nα,a.

This is because of the symmetry of the arc diagram and the fact that we want any

α-letter before the pointed β to have its corresponding β before the mirror of the

pointed β.

Combining the above observations, we get

Nα,b = Nβ,b + 1+Nβ,a +Nα,a.

But this says that the number of α-letters before the pointed β should be equal to

the number of remaining letters in the first half. Since the total number of letters in

the first half is (2n+ 2), we get that the arc joining a β in the first half to its mirror

does not cause nesting problems if and only if the number of α-letters before it is

(n+ 1).

Just as we used lattice paths for symmetric sketches, we use pointed lattice paths

to represent pointed symmetric sketches. The one corresponding to the sketch in

Example 2.35 is given in Figure 2.10.
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2

−1

Figure 2.10: Pointed lattice path corresponding to the pointed sketch in Exam-
ple 2.35.

Theorem 2.38. The number of pointed symmetric sketches, which is the number of regions

of Pn, is

2nn!
(
2n+ 2

n

)
.

Proof. Since there is no condition on the signed permutations, we just have to count

the α,β-words of the form mentioned in Proposition 2.37. We show that these words

are in bijection with α,β-words of length (2n+ 2) with any prefix having at least as

many α-letters as β-letters that have at least (n+ 2) α-letters. This means that their

corresponding lattice paths do not end on the x-axis. This will prove the required

result since the number of such words, using Lemma 2.14 and the fact that Catalan

numbers count Dyck paths, is(
2n+ 2

n+ 1

)
−

1

n+ 2

(
2n+ 2

n+ 1

)
=

(
2n+ 2

n

)
.

Given a pointed α,β-word, we replace the pointed β-letter with an α-letter to

obtain an α,β-word of the type described above. Starting with an α,β-word with at

least (n+ 2) α-letters, changing the (n+ 2)th α-letter to a β and pointing to it gives a

pointed α,β-word. This gives us the required bijection.

Theorem 2.39. The number of bounded regions of Pn is

2nn!
(
2n+ 1

n+ 1

)
.

Proof. Just as for type C regions, the region corresponding to a pointed sketch is

bounded if and only if its arc diagram is interlinked. Also, the signed permutation

does not play a role in determining if a region is bounded. Note that in this case,

there is an arc joining a β-letter between the (n+ 1)th and (n+ 2)th α-letter to its
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mirror image. If the arc diagram obtained by deleting this arc from the pointed

β-letter is interlinked, then clearly so was the initial arc diagram. However, even if

the arc diagram consists of two interlinked pieces when the arc from the pointed β-

letter is removed (one on either side of the reflecting line), the corresponding region

would still be bounded. Examining the bijection between arc diagrams and lattice

paths, it can be checked that this means that pointed lattice paths corresponding to

bounded regions are those that never touch the x-axis after the origin except maybe

at (2n+ 2, 0).

Using the bijection mentioned in the proof of Theorem 2.38, we can see that the

pointed α,β-words corresponding to bounded regions are in bijection α,β-words

whose lattice paths never touch the x-axis after the origin. We have already counted

such paths in Theorem 2.21 and their number is(
2n+ 1

n+ 1

)
.

This gives the required result.

2.3.3 Type B Catalan

Fix n ⩾ 1. The type B Catalan arrangement in Rn has the hyperplanes

Xi = −1, 0, 1

Xi +Xj = −1, 0, 1

Xi −Xj = −1, 0, 1

for all 1 ⩽ i < j ⩽ n. Translating this arrangement by setting Xi = xi +
1
2 , we get the

arrangement Bn with hyperplanes

xi = −
3

2
,−

1

2
,
1

2

xi + xj = −2,−1, 0

xi − xj = −1, 0, 1
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for all 1 ⩽ i < j ⩽ n. We consider Bn as a sub-arrangement of Pn. The hyperplanes

missing from Pn are

xi = −
5

2
,−1, 0,

3

2

for all i ∈ [n]. Hence the moves on pointed sketches corresponding to changing one

of the inequalities associated to these hyperplanes are as follows:

1. Corresponding to xi = 0, xi = −1: Swapping to (2n+ 2)th and (2n+ 3)th letter

if they are not α(−0.5)
− and α

(0.5)
+ .

2. Corresponding to xi = −5
2 , xi = 3

2 : Swapping the pointed β, that is, α(−0.5)
− and

a β-letter immediately before or after it (and making the corresponding change

in the second half).

We can see that such moves change the pointed α,β-word associated to a sketch

by at most changing the last letter or changing which of the β-letters between the

(n+ 1)th and (n+ 2)th α-letter is pointed to. So if we force that the last letter of

the sketch has to be a β-letter and that the β-letter immediately after the (n+ 1)th

α-letter has to be pointed to, we get a canonical sketch in each equivalence class. We

will call such sketches type B sketches.

Theorem 2.40. The number of type B sketches, which is the number of regions of Bn, is

2nn!
(
2n

n

)
.

Proof. Since there is no condition on the signed permutation, we count the α,β-

words associated to type B sketches. From Proposition 2.37, we can see that the

α,β-words we need to count are those that satisfy the following properties:

1. Length of the word is (2n+ 2).

2. In any prefix, there are at least as many α-letters as β-letters.

3. The letter immediately after the (n+ 1)th α-letter is a β (pointed β).

4. The last letter is a β.
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We exhibit a bijection between these words and α,β-words of length 2n that

satisfy property 2. We already know, from Lemma 2.14, that the number of such

words is
(
2n
n

)
and so this will prove the required result.

If the (n+ 1)th α-letter is at the (2n+ 1)th position, deleting the last two letters

gives us an α,β-word of length 2n with n α-letters that satisfies property 2. If the

(n+ 1)th α-letter is not at the (2n+ 1)th position, we delete the β-letter after it as

well as the last letter of the word. This gives us an α,β-word of length 2n with more

than n α-letters that satisfies property 2. The process described gives us the required

bijection.

Theorem 2.41. The number of bounded regions of Bn is

2nn!
(
2n− 1

n

)
.

Proof. Both Bn and Pn have rank n. Hence a region of Bn if bounded if and only if

all regions of Pn that it contains are bounded.

In the proof of Theorem 2.39 we have characterized the pointed α,β-words

associated to bounded regions of Pn. These are the pointed lattice paths of length

(2n + 2) that satisfy the following properties (irrespective of the position of the

pointed β):

1. The step after the (n+ 1)th up-step is a down step (for there to exist a pointed

β).

2. The path never touches the x-axis after the origin expect maybe at (2n+ 2, 0).

We noted in Theorem 2.31 that lattice paths satisfying property 2 are closed

under action of changing the letter after the (n+ 1)th up-step as well as the action of

changing the last step. This shows that the regions of Pn that lie inside a region of

Bn are either all bounded or all unbounded. Hence the number of bounded regions

of Bn is just the number of type B sketches whose corresponding lattice path satify

property 1 and 2, which is

2nn! · 1
4
·
((

2n+ 1

n+ 1

)
+

1

n+ 1

(
2n

n

))
.

This simplifies to give the required result.
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2.3.4 Type BC Catalan

The type BC Catalan arrangement in Rn has hyperplanes

Xi = −1, 0, 1

2Xi = −1, 0, 1

Xi +Xj = −1, 0, 1

Xi −Xj = −1, 0, 1

for all 1 ⩽ i < j ⩽ n. Translating this arrangement by setting Xi = xi +
1
2 , we get the

arrangement BCn with hyperplanes

xi = −
3

2
,−1,−

1

2
, 0,

1

2

xi + xj = −2,−1, 0

xi − xj = −1, 0, 1

for all 1 ⩽ i < j ⩽ n. Again, we consider this arrangement as a sub-arrangement of

Pn. To define moves on pointed sketches, note that the hyperplanes missing from

Pn are

xi = −
5

2
,
3

2

for all i ∈ [n]. Hence, the moves on pointed sketches corresponding to changing the

inequalities associated to these hyperplanes are of the following form: Swapping the

pointed β, that is, α(−0.5)
− and a β-letter immediately before or after it (and making

the corresponding change in the second half).

We can see that such moves change the pointed α,β-word associated to a sketch

by at most changing which of the β-letters between the (n+ 1)th and (n+ 2)th α-letter

is pointed to. So if we force that the β-letter immediately after the (n+ 1)th α-letter

has to be pointed to, we get a canonical sketch in each equivalence class. We will

call such sketches type BC sketches.

Theorem 2.42. The number of type BC sketches, which is the number of regions of BCn, is

2n−1n!
(
2n+ 2

n+ 1

)
.
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Proof. Since there is no condition on the signed permutation for type BC sketches,

we count the number of α,β-words that satisfy the following properties:

1. Length of the word is (2n+ 2).

2. In any prefix, there are at least as many α-letters as β-letters.

3. The letter immediately after the (n+ 1)th α-letter is a β (pointed β).

Using the involution on the set of words satisfying properties 1 and 2 of changing

the letter immediately after the (n+ 1)th α-letter and the fact that there are
(
2n+2
n+1

)
words satisfying properties 1 and 2, we get that the number of words satisfying the

required properties is
1

2
·
(
2n+ 2

n+ 1

)
.

This gives the required result.

Theorem 2.43. The number of bounded regions of BCn is

2nn!
(
2n

n

)
.

Proof. The proof of this result is very similar to that of Theorem 2.41. Since type

BC sketches don’t have the condition that the 2nth letter should be a β-letter, the

number of bounded regions of BCn is

2nn! · 1
2
·
((

2n+ 1

n+ 1

)
+

1

n+ 1

(
2n

n

))
.

This simplifies to give the required result.
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Chapter 3

Statistics on regions

Recall that the ‘sketches and moves’ idea mentioned in the previous chapter was

first used by Bernardi [8, Section 8] to describe trees that correspond to regions of

certain braid deformations. In this chapter, we first describe statistics on these trees

whose distribution is given by the coefficients of the characteristic polynomial of the

corresponding arrangements. We then use similar ideas to describe statistics on the

objects corresponding to regions of Catalan deformations of reflection arrangements

mentioned in the previous chapter.

We obtain these statistics by giving combinatorial meaning to the exponential

generating functions of the characteristic polynomials of these arrangements. The

results in Section 3.1 are from [16] and those in Section 3.2 are from [17, Section 5],

which are both joint work with Priyavrat Deshpande.

3.1 Deformations of the braid arrangement

As mentioned in Chapter 1, the characteristic polynomial of an arrangement A in

Rn is of the form

χA(t) =

n∑
i=0

(−1)n−icit
i
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where ci is a non-negative integer for all 0 ⩽ i ⩽ n and Zaslavsky’s theorem tells us

that

r(A) = (−1)nχA(−1)

=

n∑
i=0

ci.

We now give combinatorial interpretations to the coefficients of the characteristic

polynomials of certain deformations of the braid arrangement.

For any finite set of integers S, we associate a deformation of the braid arrange-

ment AS(n) in Rn with hyperplanes

{xi − xj = k | k ∈ S, 1 ⩽ i < j ⩽ n}.

Important examples of such arrangements are the Catalan, Shi, Linial and semiorder

arrangements. These correspond to S = {−1, 0, 1}, {0, 1}, {1}, and {−1, 1} respectively.

For any m ⩾ 1, the extended Catalan arrangement, or m-Catalan arrangement,

in Rn is AS(n) where S = {−m, . . . ,m}. Similarly, the extended Shi, Linial, and

semiorder arrangements correspond to S = {−m+ 1, . . . ,m}, {−m+ 1, . . . ,m} \ {0}, and

{−m, . . . ,m} \ {0} respectively.

We now recall results from [8] about trees that correspond to regions of such

arrangements and also some results from [57].

3.1.1 Trees and exponential structures

A tree is a graph with no cycles. A rooted tree is a tree with a distinguished vertex

called the root. We will draw rooted trees with their root at the bottom. Children of

a vertex v in a rooted tree are those vertices w that are adjacent to v and such that

the unique path from the root to w passes through v. Similarly, we can define the

parent of a vertex v to be the vertex w for which v is the child of w. Any non-root

vertex has a unique parent. All the vertices that have at least one child are called

nodes and those that do not are called leaves.

A rooted plane tree is a rooted tree with a specified ordering for the children of

each node. When drawing a rooted plane tree, the children of any node will be

ordered from left to right. The left siblings of a vertex v are the vertices that are also
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children of the parent of v but are to the left of v. We denote the number of left

siblings of v as lsib(v).

Definition 3.1. An (m+ 1)-ary tree is a rooted plane tree where each node has exactly

(m+ 1) children. We will denote by T(m)(n) the set of all (m+ 1)-ary trees with n

nodes labeled with distinct elements from [n].

For trees in T(m)(n), we will denote the node having label i ∈ [n] by just i.

Definition 3.2. If a node i in a tree T ∈ T(m)(n) has at least one child that is a node,

the cadet of i is the rightmost such child, which we denote by cadet(i).

Example 3.3. Figure 3.1 shows an element of T(1)(4) where

• 4 is the root,

• lsib(2) = 0, lsib(3) = 0, lsib(1) = 1,

• cadet(4) = 2, and cadet(2) = 1.

Definition 3.4. For any finite set of integers S with m = max{|s| | s ∈ S}, define TS(n)

to be the set of trees in T(m)(n), such that if cadet(i) = j:

• lsib(j) /∈ S∪ {0} ⇒ i < j.

• − lsib(j) /∈ S ⇒ i > j.

4

2

3 1

Figure 3.1: A tree in T{0,1}(4)

Definition 3.5. A finite set of integers S is said to be transitive if for any s, t /∈ S,

• st > 0 ⇒ s+ t /∈ S.

• s > 0 and t ⩽ 0 ⇒ s− t /∈ S and t− s /∈ S.
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Example 3.6. For any m ⩾ 1, the sets {−m, . . . ,m}, {−m+ 1, . . . ,m}, {−m, . . . ,m} \ {0},

and {−m+ 1, . . . ,m} \ {0} are all transitive.

Recall that for any finite set of integers S, we defined the arrangement AS(n) as

the deformation of the braid arrangement in Rn with hyperplanes

{xi − xj = k | k ∈ S, 1 ⩽ i < j ⩽ n}.

We can now state the result for arrangements AS(n) where S is transitive. Though

Bernardi [8] derived results for more general deformations, we will only be focused

on these.

Theorem 3.7. [8, Theorem 3.8] For any transitive set of integers S, the regions of the

arrangement AS(n) are in bijection with the trees in TS(n).

Before looking at the characteristic polynomials of such arrangements, we recall

a few results from [57]. Suppose that c : N→N is a function and for each n, j ∈N,

we define

cj(n) =
∑

{B1,...,Bj}∈Πn

c(|B1|) · · · c(|Bj|)

where Πn is the set of partitions of [n]. Define for each n ∈N,

h(n) =

n∑
j=0

cj(n).

From [57, Example 5.2.2], we know that in such a situation,

∑
n,j⩾0

cj(n)t
jx

n

n!
=

∑
n⩾0

h(n)
xn

n!

t

.

Informally, we consider h(n) to be the number of “structures” that can be placed on

an n-set where each structure can be uniquely broken up into a disjoint union of

“connected sub-structures”. Here c(n) denotes the number of connected structures

on an n-set and cj(n) denotes the number of structures on an n-set with exactly j

connected sub-structures. We will call such structures exponential structures.

We now consider the characteristic polynomials of arrangements of the form

AS(n). For a fixed set S, the sequence of arrangements (AS(1),AS(2), . . .) forms what

is called an exponential sequence of arrangements (ESA).
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Definition 3.8. [54, Definition 5.14] A sequence of arrangements (A1,A2, . . .) is called

an ESA if

• An is a braid deformation in Rn.

• For any k-subset I of [n], the arrangement

AI
n = {H ∈ An | H is of the form xi − xj = s for some i, j ∈ I}

satisfies L(AI
n)

∼= L(Ak) (isomorphic as posets).

The result on ESAs that we will need is the following.

Theorem 3.9. [54, Theorem 5.17] If (A1,A2, . . .) is an ESA, then

∑
n⩾0

χAn
(t)

xn

n!
=

∑
n⩾0

(−1)nr(An)
xn

n!

−t

.

Remark 3.10. Proposition 3.21, which is a more general version of the above theorem,

is proved in the following section. We also note that this theorem is a special case of

[8, Theorem 5.2].

Using this result and the above discussion on exponential structures, we note that

interpreting the coefficients of the polynomial χAS(n)(t) is equivalent to defining a

notion of “connected structures” for trees in TS(n). We do this in the next subsection.

3.1.2 A branch statistic

A label set is a finite set of positive integers. For any label set V , we define T(m)(V) to

be the set of (m+ 1)-ary trees with |V | nodes labeled distinctly using V . Note that

T(m)([n]) = T(m)(n).

We now describe the method we use to break up a tree in T(m)(V) into “connected

sub-structures”, which we call branches.

Definition 3.11. The trunk of a tree in T(m)(V) is the path from the root to the leftmost

leaf. The nodes on the trunk of the tree break up the tree into sub-trees, which we

call twigs (see Figure 3.2).
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Let the nodes on the trunk of a tree be v1, v2, . . . , vk, where v1 is the root and

vi+1 is the leftmost child of vi for any i ∈ [k− 1]. If vi = max{v1, . . . , vk}, then the

first branch of the tree consists of the twigs corresponding to the nodes v1, . . . , vi.

If vj = max{vi+1, . . . , vk}, then the second branch of the tree consists of the twigs

corresponding to the nodes vi+1, . . . , vj. Continuing this way, we break up the tree

into branches.

Note that the number of branches of the tree is just the number of right-to-left

maxima of the sequence v1, v2, . . . , vk of nodes on the trunk, i.e., the number of vi

such that vi > vj for all j > i. We will call such vi the branch nodes of the trunk.

Example 3.12. The tree in Figure 3.2 has 3 twigs and 2 branches. The first branch

consists of just the first twig since 6 is the largest node in the trunk. The second

branch consists of the second and third twigs since 5 is larger than 4. Here 6 and 5

are the branch nodes.

6

234

5 71

8

Figure 3.2: A labeled 3-ary tree with twigs and branches specified.

We use the notation T
(m)
j (V) to denote the trees in T(m)(V) having j branches. To

prove that branches give trees an exponential structure, we have to prove that

|T
(m)
j (V)| =

∑
{B1,...,Bj}∈ΠV

|T
(m)
1 (B1)| · · · |T

(m)
1 (Bj)|. (3.1)

Hence, “connected” trees are those with exactly one branch, i.e., trees where the

last node of the trunk is the one with the largest label. Similarly, the connected

components associated to a given tree are the branches of the tree.
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Example 3.13. The connected components associated to the tree in Figure 3.2 are

given in Figure 3.3.

6

23

4

5

7

1

8

Figure 3.3: Connected components of the tree in Figure 3.2.

A collection of connected trees (with disjoint label sets) can be put together in

exactly one way to form a tree for which they form the branches. This is done as

follows: Find the largest label among those on the trunks of the connected trees. The

connected tree T1 with this label is made the first branch of the tree we are building.

Again, find the largest label among those on the trunks of the remaining connected

trees. The connected tree T2 with this label is made the second branch of the tree we

are building by gluing it to T1. This is done by deleting the leftmost leaf of T1 and

fixing the root of T2 in its position. This process is repeated to until all the connected

trees are glued together.

The observations above show that branches give the trees in T(m)(V) an exponen-

tial structure.

Example 3.14. The tree associated to the collection of connected trees in Figure 3.4 is

given in Figure 3.5.

Recall that for a finite set of integers S with m = max{|s| : s ∈ S}, the set TS(V), for

some label set V , is the set of trees in T(m)(V) such that if cadet(u) = v, then

• if lsib(v) /∈ S∪ {0}, we must have u < v, and

• if − lsib(v) /∈ S, we must have u > v.

We call this set of conditions “Condition S”.

We set TS :=
⋃
V

TS(V) where the union is over all label sets V . We now show that
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6

23

4

5

7

1

8

Figure 3.4: A collection of connected trees.

6

7

23
4

5
1

8

Figure 3.5: The tree associated to the collection of connected trees in Figure 3.4.

1. the connected components of any tree in TS are also in TS, and

2. trees that are built using connected trees in TS are also in TS.

We first note that statement 1 follows since the condition for a tree to be in TS is

a local condition. This is also because, if T ′ is a connected component of the tree T ,

the cadet of any node in T ′ (if it exists) is the same as its cadet when considered as a

node of T .

To prove statement 2, we only have to check that Condition S is satisfied for the

branch nodes of a tree built using connected trees in TS. If a branch node does not

have a cadet, Condition S is trivially satisfied. If a branch node u has a cadet v, we

consider two cases:

• If the cadet is not the first child, then Condition S is satisfied since it is satisfied

by the connected components of the tree.
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• If the cadet is the first child, then we must have u > v since u is a branch node.

This makes sure that Condition S is satisfied since we have lsib(v) = 0 and

hence lsib(v) ∈ S∪ {0}.

From the preceding, we get an equation analogous to (3.1) for the trees TS. This

shows that branches give the trees in TS an exponential structure. Hence, from the

discussion in Section 3.1.1, we get the following result.

Theorem 3.15. For a transitive set of integers S, the absolute value of the coefficient of tj in

χAS(n)(t) is the number of trees in TS(n) with j branches.

Example 3.16. When S = {0}, we obtain the braid arrangement. Here, T{0}(n) corre-

sponds to permutations of [n] and Theorem 3.15 states that the absolute value of the

coefficient of tj in χA{0}(n)
(t) is the number of permutations of [n] with j right-to-left

maxima. By [55, Corollary 1.3.11], this agrees with the fact that the coefficients are

the Stirling numbers of the first kind [54, Corollary 2.2].

Example 3.17. The Shi arrangement Sn in Rn is the deformation A{0,1}(n). The trees

in T{0,1}(n), called Shi trees, are those labeled binary trees where any right node has

a label less than that of its parent. The Shi trees for n = 3 are given in Figures 3.6

and 3.7. Counting the branches in these trees, we get χS3(t) = t3 − 6t2 + 9t, which

agrees with the known formula for the characteristic polynomial (for example, see

[3, Theorem 3.3]).

Remark 3.18. The Shi trees T{0,1}(n) are in bijection with Cayley trees on n+ 1 vertices.

Using a decomposition of Cayley trees, one can show that the coefficient of tj in

χSn(t) is the number of such Cayley trees where the vertex n+ 1 has degree j.

Example 3.19. The Linial arrangement Ln in Rn is the deformation A{1}(n). The

trees in T{1}(n), called Linial trees, are those Shi trees that also satisfy the property

that any left node whose sibling is a leaf has smaller label than that of its parent.

The Linial trees for n = 3 are given in Figure 3.7. Counting the branches in these

trees, we get χL3
(t) = t3 − 3t2 + 3t, which agrees with the known formula for the

characteristic polynomial (for example, see [3, Theorem 4.2]).

3.2 Catalan deformations of reflection arrangements

In this section, for each arrangement we have studied in Chapter 2, we first define a

statistic on the objects that we have seen correspond to its regions. We then show
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Figure 3.6: Shi trees for n = 3 that are not Linial.
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Figure 3.7: Linial trees for n = 3.
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that the distribution of this statistic is given by the coefficients of the characteristic

polynomial.

Just as in the previous section, we do this by giving combinatorial meaning

to the exponential generating functions for the characteristic polynomials of the

arrangements we have studied. To obtain these generating functions, we use [54,

Exercise 5.10], which we state and prove for convenience.

Definition 3.20. A sequence of arrangements (A1,A2, . . .) is called a Generalized

Exponential Sequence of Arrangements (GESA) if

• An is an arrangement in Rn such that every hyperplane is parallel to one of

the form xi = cxj for some c ∈ R.

• For any k-subset I of [n], the arrangement

AI
n = {H ∈ An | H is parallel to xi = cxj for some i, j ∈ I and some c ∈ R}

satisfies L(AI
n)

∼= L(Ak) (isomorphic as posets).

Note that all the arrangements we have studied are GESAs.

Proposition 3.21. [54, Exercise 5.10] Let (A1,A2, . . .) be a GESA, and define

F(x) =
∑
n⩾0

(−1)nr(An)
xn

n!

G(x) =
∑
n⩾0

(−1)rank(An)b(An)
xn

n!
.

Then, we have ∑
n⩾0

χAn
(t)

xn

n!
=

G(x)(t+1)/2

F(x)(t−1)/2
.

Proof. The idea of the proof is the same as that of [54, Theorem 5.17]. By Whitney’s

Theorem [54, Theorem 2.4], we have for all n,

χAn
(t) =

∑
B⊆A,

⋂
B̸=ϕ

(−1)#Btn−rank(B).

To each B ⊆ An, such that
⋂
B ̸= ϕ, we associate a graph G(B) on the vertex set [n]

where there is an edge between the vertices i and j if there is a hyperplane in B

parallel to a hyperplane of the form xi = cxj for some c ∈ R.
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Using [57, Corollary 5.1.6], we get

∑
n⩾0

χAn
(t)

xn

n!
= exp

∑
n⩾1

χ̃An
(t)

xn

n!

where for any n we define

χ̃An
(t) =

∑
B⊆A,

⋂
B̸=ϕ

G(B) connected

(−1)#Btn−rank(B).

Note that if G(B) is connected, then any point in
⋂
B is determined by any one

of its coordinates, say x1. This is because any path from the vertex 1 to a vertex i in

G(B) can be used to determine xi. This shows us that rank(B) is either n or n− 1.

Hence, ˜χAn
(t) = cnt+ dn for some cn,dn ∈ Z. Setting

exp
∑
n⩾1

cn
xn

n!
=

∑
n⩾0

bn
xn

n!

exp
∑
n⩾1

dn
xn

n!
=

∑
n⩾0

an
xn

n!

we get ∑
n⩾0

χAn
(t)

xn

n!
=

∑
n⩾0

bn
xn

n!

t∑
n⩾0

an
xn

n!

 .

Substituting t = 1 and t = −1 and using Theorem 1.14, we obtain expressions for

the exponential generating functions of {bn} and {cn} and this gives us the required

result.

Recall that in the previous section, we have seen how to interpret the generating

function equality ∑
n,j⩾0

cj(n)t
jx

n

n!
=

∑
n⩾0

h(n)
xn

n!

t

.

That is, we consider h(n) to be the number of “structures” that can be placed on

an n-set where each structure can be uniquely broken up into a disjoint union of

“connected sub-structures”. Here c1(n) denotes the number of connected structures

on an n-set and cj(n) denotes the number of structures on an n-set with exactly j

connected sub-structures. We called such structures exponential structures.
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In fact, in most of the computations below, we will be dealing with generating

functions of the form ∑
n⩾0

h(n)
xn

n!

 t+1
2

. (3.2)

We can interpret such a generating function as follows. Suppose that there are two

types of connected structures, say positive and negative connected structures. Also,

suppose that the number of positive connected structures on [n] is the same as the

number of negative ones, i.e., c1(n)/2. Then the coefficient of tj x
n

n! in the generating

function given above is the number of structures on [n] that have j positive connected

sub-structures.

Also, note that since the coefficients of the characteristic polynomial alternate in

sign, the distribution of any appropriate statistic we define would be

∑
n⩾0

χAn
(−t)

(−x)n

n!
.

3.2.1 Simple examples

Before defining statistics for the Catalan arrangements, we first do so for the reflection

arrangements we studied in Section 2.1.1. We also note that the following results

can be proved by directly looking at the coefficients of the characteristic polynomials

as done in Section 1.4.

The type C arrangement. We have seen that the regions of the type C arrangement

in Rn correspond to sketches (Section 2.1.1) of length 2n. We use the second half of

the sketch to represent the regions, and call them signed permutations on [n].

A statistic on signed permutations whose distribution is given by the coefficients

of the characteristic polynomial is given in [19, Section 2]. We define a similar

statistic. First break the signed permutation into compartments using right-to-left

minima as follows: Ignoring the signs, draw a line before the permutation and then

repeatedly draw a line immediately following the least number after the last line

drawn. This is repeated until a line is drawn at the end of the permutation. It can be

checked that compartments give signed permutations an exponential structure. A

positive compartment of a signed permutations is one where the last term is positive.
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Example 3.22. The signed permutation given by

+
3

+
1

−
6

−
7

−
5

+
2

−
4

is split into compartments as

|
+
3

+
1 |

−
6

−
7

−
5

+
2 |

−
4 |

and hence has 3 compartments, 2 of which are positive.

By the combinatorial interpretation of (3.2), the distribution of the statistic ‘num-

ber of positive compartments’ on signed permutations is given by

(
1

1− 2x

) t+1
2

.

Note that for the type C arrangement, in terms of Proposition 3.21, we have

F(x) =

(
1

1+ 2x

)
,

G(x) = 1.

Hence, we get that the distribution of the statistic ‘number of positive compartments’

on signed permutations is given by the coefficients of the characteristic polynomial.

The type D arrangement. From Section 2.1.1, we can see that the regions of the

type D arrangement in Rn correspond to signed permutations on [n] where the first

sign is positive. We will show that ‘number of positive compartments’ is a statistic

that works for this situation as well.

Given i ∈ [n] and a signed permutation σ of [n] \ {i}, the signed permutation

of [n] obtained by appending
−
i to the start of σ has the same number of positive

compartments as σ. This shows that the distribution of the statistic on signed

permutations whose first term is positive is

(1− x)

(
1

1− 2x

) t+1
2

.
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This agrees with the generating function for the characteristic polynomial we get

from Proposition 3.21 since we have

F(x) =

(
1+ x

1+ 2x

)
,

G(x) = 1+ x.

Note that the expression for G(x) is due to the fact that the type D arrangement in

R1 is empty.

3.2.2 Statistics on symmetric partitions

We start with defining a statistic for the extended type C Catalan arrangements.

Using Proposition 3.21, we then show that the generating function for the statistic

and the characteristic polynomials match.

Fix m ⩾ 1. We define a statistic on labeled symmetric non-nesting partitions

and show that its distribution is given by the characteristic polynomial. To do

this, we first recall some definitions and results about the type A extended Catalan

arrangement.

Definition 3.23. An m-non-nesting partition of size n is a partition of [(m+ 1)n] such

that the following hold:

1. Each block is of size (m+ 1).

2. If a,b are in the same block B and [a,b]∩B = {a,b}, then for any c,d such that

a < c < d < b, c and d are not in the same block.

Just as before, such partitions can be represented using arc diagrams.

Example 3.24. The arc diagram corresponding to the 2-non-nesting partition of size

3

{1, 2, 4}, {3, 5, 6}, {7, 8, 9}

is given in Figure 3.8.
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Figure 3.8: Arc diagram corresponding to the 2-non-nesting partition in Exam-
ple 3.24.

It is known (for example, see [4, Theorem 2.2]) that the number of m-non-nesting

partitions of size n is
1

mn+ 1

(
(m+ 1)n

n

)
.

These numbers are called the Fuss-Catalan numbers or generalized Catalan numbers.

Setting m = 1 gives us the usual Catalan numbers. Labeling the n blocks distinctly

using [n] gives us labeled m-non-nesting partitions. These objects correspond to the

regions of the type A m-Catalan arrangement in Rn whose hyperplanes are

xi − xj = 0,±1,±2, . . . ,±m

for all 1 ⩽ i < j ⩽ n (for example, see [8, Section 8.1]).

We now define a statistic on labeled non-nesting partitions similar to the one

defined in [16, Section 4]. The statistic defined in [16] is for labeled m-Dyck paths

but these objects are in bijection with labeled m-non-nesting partitions.

A labeled non-nesting partition can be broken up into interlinked pieces, say

P1,P2, . . . ,Pk. We group these pieces into compartments as follows. If the label 1 is

in the rth interlinked piece, then the interlinked pieces P1,P2, . . . ,Pr form the first

compartment. Let j be the smallest number in [n] \A where A is the set of labels

in first compartment. If j is in the sth interlinked piece then interlinked pieces

Pr+1,Pr+2, . . . ,Ps form the second compartment. Continuing this way, we break up a

labeled non-nesting partition into compartments.

Example 3.25. The labeled non-nesting partition in Figure 3.9 has 3 interlinked

pieces. The first compartment consists of just the first interlinked piece since it

contains the label 1. The smallest label in the rest of the diagram is 3 which is in the

last interlinked piece. Hence, this labeled non-nesting partition has 2 compartments.
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1 4 1 2 4 5 2 5 6 6 3 3

Figure 3.9: A labeled non-nesting partition with 3 interlinked pieces and 2 compart-
ments.

A non-nesting partition labeled with distinct integers (not necessarily of the

form [n]) can be broken up into compartments in the same way. Here the first

compartment consists of the interlinked pieces up to the one containing the smallest

label.

It can be checked that compartments give labeled non-nesting partitions an

exponential structure. This is because the order in which they appear can be

determined by their labels. A labeled non-nesting partition is said to be connected if

it has only one compartment.

We now define a similar statistic for labeled symmetric non-nesting partitions.

To a symmetric non-nesting partition we can associate a pair consisting of

1. an interlinked symmetric non-nesting partition, which we call the bounded part

and

2. a non-nesting partition, which we call the unbounded part.

This is easy to do using arc diagrams, as illustrated in the following example. The

terminology becomes clear when one considers the boundedness of the coordinates

in the region corresponding to a labeled symmetric non-nesting partition.

Example 3.26. To the symmetric 2-non-nesting partition in Figure 3.10 we associate

1. the interlinked symmetric 2-non-nesting partition marked A and

2. the 2-non-nesting partition marked B.

Here A is the bounded part and B is the unbounded part. We can obtain the original

arc diagram back from A and B by placing a copy of B on either side of A.
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A B

Figure 3.10: Break up of a symmetric 2-non-nesting partition.

This is a bijection between symmetric non-nesting partitions and such pairs.

Given a labeled symmetric non-nesting partition, we define the statistic using

just the unbounded part. Ignoring the signs, we break the unbounded part into

compartments just as we did for non-nesting partitions. A positive compartment is

one whose last element has a positive label.

Example 3.27. Suppose the arc diagram in Figure 3.11 is the unbounded part of some

symmetric non-nesting partition. Notice that ignoring the signs, this arc diagrams

breaks up into compartments just as Figure 3.9. But only the first compartment is

positive since its last element has label 6 which is positive.

−1 4 −1 −2 4 6 −2 6 8 8 −3 −3

Figure 3.11: The unbounded part of a symmetric non-nesting partition that has 1

positive compartment.

We claim that the statistic ‘number of positive compartments’ meets our require-

ments. To prove that the distribution of this statistic is given by the characteristic

polynomial, we apply Proposition 3.21 to the sequence of arrangements {C
(m)
n }. Using

the bijection between labeled symmetric m-non-nesting partitions and regions of

C
(m)
n , we note that those arc diagrams that are interlinked are the ones that corre-

spond to bounded regions. Hence, using the notations form Proposition 3.21, and

[57, Proposition 5.1.1], we have

F(−x) = G(−x) ·

∑
n⩾0

2nn!
mn+ 1

(
(m+ 1)n

n

)
xn

n!

 . (3.3)
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Note that rank(C(m)
n ) = n. This gives us

∑
n⩾0

χAn
(−t)

(−x)n

n!
= G(−x) ·

∑
n⩾0

2nn!
mn+ 1

(
(m+ 1)n

n

)
xn

n!

 t+1
2

.

Using the combinatorial interpretation of (3.2), we see that the right hand side of the

above equation is the generating function for the distribution of the statistic.

We also obtain corresponding statistics on symmetric sketches using the bijection

in Section 2.2.1. This gives us the following result.

Theorem 3.28. The absolute value of the coefficient of tj in χ
C
(m)
n

(t) is the number of

symmetric m-sketches of size n that have j positive compartments.

For the arrangements Dn, Pn, Bn, and BCn as well, the analogue of (3.3) holds.

That is, for each of these arrangements, using the notation of Proposition 3.21, we

have

F(−x) = G(−x) ·

∑
n⩾0

2nn!
n+ 1

(
2n

n

)
xn

n!

 .

This can be proved using the definitions of type D, pointed, type B, and type BC

sketches and the description of which sketches correspond to bounded regions.

There is a slight difference in the proof for the sequence of arrangements {Dn}.

The arrangement D1 is empty and hence

G(−x) = 1− x+
∑
n⩾2

b(Dn)
xn

n!
.

However, from the definition of type D sketches, we see that we must not allow

those symmetric non-nesting partitions where the bounded part is empty and the

first interlinked piece of the unbounded part is of size 1 with negative label. Hence,

we still get the required expression for F(−x).

Just as we did for the extended type C Catalan arrangements, we define pos-

itive compartments for the arc diagrams corresponding to the regions of these

arrangements, which gives corresponding statistics on the sketches.

Example 3.29. The arc diagram in Figure 3.12 corresponds to a pointed sketch with

2 positive compartments.
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−3 −3 −2 −2 − −1 − 1 −1 + 1 + 2 2 3 3

Figure 3.12: Arc diagram corresponding to a pointed sketch with 2 positive com-
partments.

The following result can be proved just as before.

Theorem 3.30. The absolute value of the coefficient of tj in χA(t) for A = Dn (respectively

Pn, Bn,BCn) is the number of type D (respectively pointed, type B, type BC) sketches of size

n that have j positive compartments.
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Chapter 4

Threshold deformations

The threshold arrangement in Rn consists of the hyperplanes xi + xj = 0 for 1 ⩽ i < j ⩽

n. The definition and some properties of this arrangement are given in [54, Exercise

5.25]. Although these are not reflection arrangements, they are of interest because

their regions correspond to certain labeled graphs called threshold graphs which have

been extensively studied (see [39]). In this section, we study this arrangement and

some of its deformations using similar techniques as in previous chapters.

The results in this chapter are form [17, Section 6], which is joint work with

Priyavrat Deshpande.

4.1 Sketches and moves

We use the sketches and moves idea to study the regions of the threshold arrange-

ment by considering it as a sub-arrangement of the type C arrangement (Section 2.2).

Before doing that, we first study the arrangement obtained by adding the coordinate

hyperplanes to the threshold arrangement.
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4.1.1 Fubini arrangement

We define the Fubini arrangement in Rn to be the one with hyperplanes

2xi = 0

xi + xj = 0

for all 1 ⩽ i < j ⩽ n. We name this arrangement the ‘Fubini arrangement’ since its

regions are counted by twice the Fubini numbers (defined below). The hyperplanes

missing from the type C arrangement are

xi − xj = 0

for all 1 ⩽ i < j ⩽ n. Hence a Fubini move, which we call an F move, is swapping

adjacent
+
i and

+
j as well as

−
j and

−
i for distinct i, j ∈ [n].

Example 4.1. We can use a series of F moves on a sketch as follows:

−
3

−
6

−
2

+
1

+
4

−
5 |

+
5

−
4

−
1

+
2

+
6

+
3 −→

−
6

−
3

−
2

+
1

+
4

−
5 |

+
5

−
4

−
1

+
2

+
3

+
6 −→

−
6

−
3

−
2

+
4

+
1

−
5 |

+
5

−
1

−
4

+
2

+
3

+
6

We define a block to be the set of absolute values in a maximal string of contiguous

terms in the second half of a sketch that have the same sign. The blocks of the initial

sketch in Example 4.1 are {5}, {1, 4}, {2, 3, 6} (these blocks appear in this order with the

first one being positive). It can be checked that F moves do not change the sequence

of signs (above the numbers) and that they can only be used to reorder the elements

in a block. Hence, each equivalence class has a unique sketch where the numbers in

each block appear in ascending order. The last sketch in Example 4.1 is the unique

such sketch in its equivalence class.

The number of such sketches is equal to the number of ways of choosing an

ordered partition of [n] (which correspond to the blocks of the sketch in order) and

then choosing a sign for the first block. Hence the number of regions of the Fubini

arrangement is 2 · a(n) where a(n) is the nth Fubini number, which is the number of

ordered partitions of [n] listed as A000670 in the OEIS [53].
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4.1.2 Threshold arrangement

The threshold arrangement in Rn has the hyperplanes

xi + xj = 0

for all 1 ⩽ i < j ⩽ n. The hyperplanes missing from the type C arrangement are

2xi = 0

xi − xj = 0

for all 1 ⩽ i < j ⩽ n. Hence the threshold moves, which we call T moves, are as

follows:

1. (D move) Swapping adjacent
+
i and

−
i for any i ∈ [n].

2. (F move) Swapping adjacent
+
i and

+
j as well as

−
j and

−
i for distinct i, j ∈ [n].

For any sketch, there is a T equivalent sketch for which the first block has more

than 1 element. This is because, if the sketch has first block of size 1, applying a D

move (swapping the nth and (n+ 1)th term), will result in a sketch where the first

block has size greater than 1 (first step in Example 4.2).

Example 4.2. We can use a series of T moves on a sketch as follows:

+
5

−
4

−
1

+
2

+
6

−
3 |

+
3

−
6

−
2

+
1

+
4

−
5

D move−−−−−→
+
5

−
4

−
1

+
2

+
6

+
3 |

−
3

−
6

−
2

+
1

+
4

−
5

F moves−−−−−→
+
5

−
4

−
1

+
6

+
3

+
2 |

−
2

−
3

−
6

+
1

+
4

−
5

To obtain a canonical sketch for each threshold region, we will need a small

lemma.

Lemma 4.3. Two T equivalent sketches that have their first block of size greater than 1 have

the same blocks which appear in the same order with the same signs.

Proof. Looking at what the T moves do to the sequence of signs (above the numbers),

we can see that they at most swap the nth and (n+ 1)th sign (D move). Hence, if

we require the first blocks to have size greater than 1, both the sketches have the

same number of blocks and the number of elements in the corresponding blocks are

the same. An F move can only reorder elements in the same block of a sketch. A D
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move changes the sign of the first element of the second half. So if there are k > 1

elements in the first block of a T equivalent sketch, then the set of absolute values of

the first k elements of the second half remains the same in all T equivalent sketches.

This gives us the required result.

Using the above lemma, we can see that for any sketch there is a unique T

equivalent sketch where the size of the first block is greater than 1 and the elements

of each block are in ascending order. The last sketch in Example 4.2 is the unique

such sketch in its equivalence class. Similar to the count for Fubini regions, we get

that the number of regions of the threshold arrangement is

2 · (a(n) −n · a(n− 1))

where, as before, a(n) is the nth Fubini number. The number of regions of the

threshold arrangement is listed as A005840 in the OEIS [53].

Remark 4.4. The regions of the threshold arrangement in Rn are known to be in

bijection with labeled threshold graphs on n vertices (see [54, Exercise 5.25]). Labeled

threshold graphs on n vertices are inductively constructed starting from the empty

graph. Vertices labeled 1, . . . ,n are added in a specified order. At each step, the

vertex added is either ‘dominant’ or ‘recessive’. A dominant vertex is one that is

adjacent to all vertices added before it and a recessive vertex is one that is isolated

from all vertices added before it. It is not difficult to see that the canonical sketches

described above are in bijection with threshold graphs.

4.2 Statistics

The characteristic polynomial of the threshold arrangement and a statistic on its

regions whose distribution is given by the characteristic polynomial has been studied

in [19]. This is done by directly looking at the coefficients of the characteristic

polynomial. In fact, even the coefficients of the characteristic polynomial of the

Fubini arrangement (Section 4.1.1) have already been combinatorially interpreted in

[19, Section 4.1]. This can be used to define an appropriate statistic on the regions

of the Fubini arrangement. Here, just as in Section 3.2, we use Proposition 3.21 to

combinatorially interpret the generating functions of the characteristic polynomials
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for the Fubini and threshold arrangements. Just as before, we will show that the

statistic ‘number of positive compartments’ works for our purposes.

4.2.1 Fubini arrangement

We will use the second half of the canonical sketches described in Section 4.1.1 to

represent the regions. We define blocks for signed permutations just as we did for

sketches. Hence, the regions of the Fubini arrangement in Rn correspond to signed

permutations on [n] where each block is increasing.

In this special class of signed permutations as well, compartments give them

an exponential structure. This is because there is no condition relating the signs

of the last element of a compartment and the first element of the compartment

following it. This is because the last element of a compartment is necessarily smaller

in absolute value than the element following it. Also, suppose we are given a signed

permutation such that each block is increasing. It can be checked that the signed

permutation obtained by changing all the signs also satisfies this property.

Using the above observations and the combinatorial interpretation of (3.2), we

get that (
ex

2− ex

) t+1
2

is the exponential generating function for signed permutations where each block

is increasing where t keeps track of the number of positive compartments. This

agrees with the generating function for the characteristic polynomial we get from

Proposition 3.21 since we have

F(x) =

(
1

2ex − 1

)
,

G(x) = 1.

4.2.2 Threshold arrangement

From Section 4.1.2, we can see that the regions of the threshold arrangement in Rn

correspond to signed permutations on [n] where each block is increasing and the

first block has size greater than 1. If such a permutation starts with
−
1, we instead use
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the signed permutation obtained by changing
−
1 to

+
1 to represent the region. Similar

to how we obtained the generating function for the statistic for type D from the one

for type C, we obtain our generating function from the one we have for the Fubini

arrangement.

Suppose that we are given i ∈ [n] and a signed permutation σ on [n] \ {i} whose

blocks are increasing. If i = 1 we construct the signed permutation on [n] obtained

by appending
−
1 to the front of σ. If i > 1, and the first element of σ is

±
j . We construct

the signed permutation on [n] obtained by appending
∓
i to the start of σ. In both

cases, it can be checked that the number of positive compartment of the new signed

permutation constructed is the same as that for σ.

This shows that the distribution of the statistic ‘number of positive compartments’

on the signed permutations that correspond to regions of the threshold arrangement

is

(1− x)

(
ex

2− ex

) t+1
2

.

This agrees with the generating function for the characteristic polynomial we get

from Proposition 3.21 since we have

F(x) =

(
1+ x

2ex − 1

)
,

G(x) = 1+ x.

4.3 Some deformations

Deformations of the threshold arrangement have not been as well-studied as those of

the braid arrangement. However, the finite field method has been used to compute

the characteristic polynomial for some deformations. In [50, 51], Seo computed the

characteristic polynomials of the so called Shi and Catalan threshold arrangements.

Expressions for the characteristic polynomials of more general deformations have

been computed in [7].

In this section, we use the sketches and moves technique to obtain certain non-

nesting partitions that are in bijection with the regions of the Catalan and Shi

threshold arrangements. We do this by considering these arrangements as sub-

arrangements of the type C Catalan arrangement (Section 2.2). Unfortunately, we
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were not able to directly count the non-nesting partitions we obtained since their

description is not as simple as the ones we have seen before.

Fix n ⩾ 2 throughout this section. Recall that we studied the type C Catalan

arrangement by considering a translation of it called Cn whose hyperplane are

given by (2.1) and whose regions correspond to symmetric sketches of size n (see

Definition 2.7). Symmetric sketches can also be viewed as labeled symmetric non-

nesting partitions (see Example 2.19).

4.3.1 Catalan threshold

The Catalan threshold arrangement in Rn consists of the hyperplanes

Xi +Xj = −1, 0, 1

for all 1 ⩽ i < j ⩽ n. The translated arrangement by setting Xi = xi +
1
2 , which we

call CTn, has hyperplanes

xi + xj = −2,−1, 0

for all 1 ⩽ i < j ⩽ n. We consider this arrangement as a sub-arrangement of Cn.

Using Bernardi’s idea of moves, we can define an equivalence on the symmetric

sketches such that two sketches are equivalent if they lie in the same region of CTn.

An α+ letter is an α-letter whose subscript is positive. We similarly define α−,β+

and β− letters. The ‘mod-value’ of a letter α
(s)
i is |i|.

The hyperplanes in Cn that are not in CTn are

2xi = −2,−1, 0

xi − xj = −1, 0, 1

where 1 ⩽ i < j ⩽ n. Changing the inequality corresponding to exactly one of these

hyperplanes is given by the following moves on a sketch, which we call CT moves.

(a) Swapping the 2nth and (2n+ 1)th letter.

±i ∓i
←→

∓i ±i
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This corresponds to changing the inequality corresponding to a hyperplane of

the form 2xi = −2 or 2xi = 0.

(b) Swapping the nth and (n+ 1)th α-letter if they are consecutive (along with the

nth and (n+ 1)th β).

−i i · · · · · · −i i

←→
i −i · · · · · · i −i

This corresponds to changing the inequality corresponding to a hyperplane of

the form 2xi = −1.

(c) Swapping consecutive α+ and β+ letters (along with their negatives).

i j

−j −i

←→
j i

−i −j

This corresponds to changing the inequality corresponding to a hyperplane of

the form xi − xj = 1.

(d) Swapping {α
(0)
i ,α(0)

j } as well as {α
(1)
i ,α(1)

j } if both pairs are consecutive (as well

as their negatives) where i, j ∈ [n] are distinct.

i j · · · i j

−j−i · · · −j−i

←→
j i · · · j i

−i−j · · · −i−j

This corresponds to changing the inequality corresponding to the hyperplane

xi − xj = 1.

Two sketches are in the same region of CTn if and only if they are related by a series

of CT moves. We call such sketches CT equivalent.
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Consider the sketches to be ordered in the lexicographic order induced by the

following order on the letters.

α
(0)
n ≻ · · · ≻ α

(0)
1 ≻ α

(−1)
−1 ≻ · · · ≻ α

(−1)
−n ≻ α

(1)
n ≻ · · · ≻ α

(1)
1 ≻ α

(0)
−1 ≻ · · · ≻ α

(0)
−n

In other words, the α-letters are greater than the β-letters and for letters of the same

type, the order is given by comparing the subscripts.

A sketch is called CT maximal if it is greater (in the lexicographic order) than all

sketches to which it is CT equivalent. Hence the regions of CTn are in bijection with

the CT maximal sketches.

Theorem 4.5. A symmetric sketch is CT maximal if and only if the following hold.

1. If a β-letter is followed by an α-letter, they should be of opposite signs and different

mod-values.

X Y

=⇒ X and Y of opposite sign
and different mod value.

2. If two α-letters and their corresponding β-letters are both consecutive and of the same

sign then the subscript of the first one should be greater.

a1 a2 · · · a1 a2

and a1,a2 same sign =⇒ a1 > a2.

3. If the nth and (n+ 1)th α-letters are consecutive, then so are the (n− 1)th and nth

with the nth α-letter being positive. In such a situation, if the (n− 1)th α-letter is

negative and the (n− 1)th and nth β-letters are consecutive, the (n− 1)th α-letter

should have a subscript greater than that of the (n+ 1)th α.

4. If the (2n− 1)th and (2n+ 1)th letters are both β-letters of the same sign and their

corresponding α-letters are consecutive, the subscript of the (2n− 1)th letter should be

greater than that of the (2n+ 1)th.

X Y · · · X −Y Y

and X, Y same sign =⇒ X > Y.
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Hence the regions of CTn are in bijection with sketches of the form described above.

Remark 4.6. The idea of ordering sketches and choosing the maximal sketch in each

region of CTn to represent it is the same one used by Bernardi [8] to study certain

deformations of the braid arrangement. In fact, [8, Lemma 8.13] shows that in this

case, any sketch that is locally maximal (greater than any sketch that can be obtained

by applying a single move) is maximal. Note that the sketches described in the

above theorem are precisely the 2-locally maximal sketches. That is, these are the

sketches that can neither be converted into a greater sketch by applying a single

CT move nor by applying two CT moves. It is clear that any CT maximal sketch is

2-locally maximal. The theorem states the converse is true as well.

Proof of Theorem 4.5. We first show that these conditions are required for a sketch to

be CT maximal.

1. The first condition is necessary since the CT moves of type (a) or (c) would

result in a greater sketch if it were false.

2. The second condition corresponds to CT moves of type (d).

3. The part about the nth α-letter being positive if the nth and (n+ 1)th α-letters

are consecutive is due to CT moves of type (c). Suppose the letter before the nth

α-letter is a β-letter. Then it can’t be positive since we have already seen that

condition (1) of the theorem statement must be satisfied. But if it is negative,

we can do the following to obtain a larger CT equivalent sketch:

-ii· · ·· · ·-ii-j
−→

i-i· · ·· · ·i-i-j
−→

i-i· · ·· · ·i-j-i

Hence the letter before the nth α-letter has to be an α-letter. Now, suppose

that the (n− 1)th α-letter is negative and the (n− 1)th and nth β-letters are

consecutive. Let the subscript of the (n− 1)th α-letter be −k and that of the

(n+ 1)th α-letter be −i for some k, i ∈ [n]. If −k < −i, we can do the following

to obtain a larger CT equivalent sketch:

-k i -i · · · · · · -k i -i
−→

-k -i i · · · · · · -k -i i
−→

-i -k i · · · · · · -i -k i
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Hence we must have −k > −i in this case.

4. Suppose the (2n− 1)th and (2n+ 1)th letters are both β-letters of the same sign

and their corresponding α-letters are consecutive but the subscript X of the

(2n− 1)th letter is less than the subscript Y of the (2n+ 1)th letter. We can do

the following to obtain a larger CT equivalent sketch:

X Y · · · X −Y Y
−→

X Y · · · X Y −Y
−→

Y X · · · Y X −X

We now have to prove that these conditions are sufficient for a sketch to be

CT maximal. Suppose w is a symmetric sketch that satisfies the four properties

mentioned in the statement of the theorem. Suppose there is a sketch w ′ which

is CT equivalent to w but larger in the lexicographic order. This means that if

w = w1 · · ·w4n and w ′ = w ′1 · · ·w ′4n, there is some p ∈ [4n] such that

wi = w ′i for i ∈ [p− 1] and wp ≺ w ′p.

The possible ways in which this can happen are listed below.

1. wp is a β+ letter and w ′p is an α+ letter.

2. wp is a β− letter and w ′p is an α− letter.

3. wp is a β+ letter and w ′p is an α− letter.

4. wp is a β− letter and w ′p is an α+ letter.

5. wp and w ′p are both α+ letters.

6. wp and w ′p are both α− letters.

7. wp is an α− letter and w ′p is an α+ letter.

The case of both wp and w ′p being β-letters is not possible since, by the properties

of a sketch, this would mean wp = w ′p. Since α− ≺ α+ we cannot have wp being an

α+ letter and w ′p being an α− letter. We will now show that each case leads to a

contradiction, which will complete the proof of the theorem.
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Before going forward, we formulate the meaning of w and w ′ being CT equivalent

in terms of sketches. Since they have to be in the same region of CTn, the inequalities

corresponding to the hyperplanes

xi + xj = −2,−1, 0

for all 1 ⩽ i < j ⩽ n are the same in both sketches. This means that the relationship

between the pairs of the form

{α
(1)
i ,α(−1)

−j }, {α
(1)
i ,α(0)

−j }, {α
(0)
i ,α(−1)

−j }, and {α
(0)
i ,α(0)

−j }

for any distinct i, j ∈ [n] are the same in both w and w ′. This can be written as

follows:

The relationship between letters of opposite sign and

different mod value have to be the same in both w and w ′.
(4.1)

Case 1: wp is a β+ letter and w ′p is an α+ letter.

In this case w and w ′ are of the form

w = w1 · · ·wp−1α
(1)
k · · ·

w ′ = w ′1 · · ·w ′p−1α
(0)
l · · ·

for some k, l ∈ [n]. Hence, α(0)
l appears after α

(1)
k in w. By (4.1), every letter between

α
(1)
k and α

(0)
l in w should be positive or one of α

(−1)
−l and α

(0)
−l . If all the letters are

positive, since α
(1)
k is a β+ letter and α

(0)
l is an α+ letter, there would be a consecutive

pair of the form β+α+ in w, which is a contradiction to property 1.

Now suppose α
(0)
−l is between α

(1)
k and α

(0)
l in w. It cannot be immediately before

α
(0)
l since this would contradict property 1. But if it is not immediately before α

(0)
l ,

since α
(0)
−l and α

(0)
l are negatives of each other, there should be some negative letter

between them. But this letter cannot be α
(−1)
−l (since this should be before α

(0)
−l ). This

is a contradiction to (4.1). Hence α
(0)
−l cannot be between α

(1)
k and α

(0)
l .

So we must have α
(−1)
−l between α

(1)
k and α

(0)
l in w. Again, α

(−1)
−l cannot be

immediately before α
(0)
l since this would contradict property 3. This means that

there is at least one letter between α
(−1)
−l and α

(0)
l and all such letters are positive. If

one of them is a β+ letter, since α
(0)
l is an α+ letter, there would be a consecutive
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pair of the form β+α+, which is a contradiction to property 1. Hence all the letters

between α
(−1)
−l and α

(0)
l are α+ letters. But this is impossible by Lemma 2.11.

Case 2: wp is a β− letter and w ′p is an α− letter.

In this case w and w ′ are of the form

w = w1 · · ·wp−1α
(0)
−k · · ·

w ′ = w ′1 · · ·w ′p−1α
(−1)
−l · · ·

for some k, l ∈ [n]. Hence, α(−1)
−l appears after α

(0)
−k in w. By (4.1), each letter between

α
(0)
−k and α

(−1)
−l in w has to be negative or one of α(0)

l and α
(1)
l . Just as before, all letters

between α
(0)
−k and α

(−1)
−l cannot be negative. The fact that α(1)

l cannot be between α
(0)
−k

and α
(−1)
−l also has a similar proof as in the last case.

So we must have α
(0)
l between α

(0)
−k and α

(−1)
−l . All the letters between α

(0)
l and

α
(−1)
−l have to be negative. There are no β− letters between them, otherwise there

would be consecutive letters of the form β−α−, which contradicts property 1. So if

there are letters between α
(0)
l and α

(−1)
−l they should all be α− letters, but this cannot

happen by Lemma 2.11. So α
(0)
l and α

(−1)
−l are consecutive. By property 3, the letter

before α
(0)
l should be an α-letter. And by (4.1), it is an α− letter. But since α

(0)
−k is a β−

letter and all letters between α
(0)
−k and α

(0)
l are negative, there will be a consecutive

pair of the form β−α−, which is a contradiction to property 1.

Case 3: wp is a β+ letter and w ′p is an α− letter.

In this case w and w ′ are of the form

w = w1 · · ·wp−1α
(1)
k · · ·

w ′ = w ′1 · · ·w ′p−1α
(−1)
−l · · ·

for some k, l ∈ [n]. If k ̸= l, this will contradict (4.1) since α
(1)
k will be before α

(−1)
−l in

w but not in w ′. So α
(−1)
−k appears after α

(1)
k in w and all letters between them are

negative by (4.1) (note that α(0)
k is before α

(1)
k ). Again, α(−1)

−k cannot be immediately

after α
(1)
k since this would contradict property 1 and if there were some letters

between α
(1)
k and α

(−1)
−k , at least one of them would be negative, which contradicts

(4.1).
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Case 4: wp is a β− letter and w ′p is an α+ letter.

Arriving at a contradiction in this case follows using the same method as in the

last case.

Case 5: wp and w ′p are both α+ letters.

In this case w and w ′ are of the form

w = w1 · · ·wp−1α
(0)
k · · ·

w ′ = w ′1 · · ·w ′p−1α
(0)
l · · ·

for some 1 ⩽ k < l ⩽ n. We split this case into two possibilities depending on

whether or not α(0)
l is before α

(1)
k .

Case 5(a): α(0)
l is before α

(1)
k in w.

In this case w and w ′ are of the form

w = w1 · · ·wp−1α
(0)
k · · ·α

(0)
l · · ·α

(1)
k · · ·α

(1)
l · · ·

w ′ = w ′1 · · ·w ′p−1α
(0)
l · · · .

By (4.1), each letter between α
(0)
k and α

(0)
l in w is positive or one of α

(−1)
−l or α

(0)
−l .

Just as in the Case 1, we can prove that α(−1)
−l and α

(0)
−l cannot between α

(0)
k and α

(0)
l .

Hence all the letters between α
(0)
k and α

(0)
l are positive. In fact, they all have to

be α-letters. Otherwise we would be a consecutive pair of the form β+α+, which

contradicts property 1.

Each letter between α
(1)
k and α

(1)
l is positive or one of α

(−1)
−k , α(−1)

−l , α(0)
−k or α

(0)
−l .

Neither α
(0)
−k nor α

(0)
−l can be between α

(1)
k and α

(1)
l , since this would mean that α(−1)

−k

or α
(−1)
−l is between α

(0)
k and α

(0)
l , which cannot happen since we have already seen

that there are only positive α-letters between them.

If α(−1)
−k were between α

(1)
k and α

(1)
l , it could not be immediately after α

(1)
k since

this would contradict property 1. If there were some letters between α
(1)
k and α

(−1)
−k ,

at least one of them would be a negative letter other than α
(−1)
−l , which contradicts

(4.1) (since α
(1)
l is after α

(−1)
−k ).
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So the only negative letter that can be between α
(1)
k and α

(1)
l is α(−1)

−l . First, suppose

that all letters between α
(1)
k and α

(1)
l are positive. Then all of them would have to be

β+ letters (otherwise there would be consecutive β+α+ which contradicts property

1). Then we would have that all letters between α
(0)
k and α

(0)
l are α+ letters and all

letters between α
(1)
k and α

(1)
l are β+ letters and repeated application of property 2

would give k > l, which is a contradiction.

Next, suppose α
(−1)
−l is between α

(1)
k and α

(1)
l . If α(−1)

−l is not immediately before

α
(1)
l , there will be some negative letter other than α

(−1)
−l between α

(1)
k and α

(1)
l , which

we have already shown is not possible. So α
(−1)
−l is immediately before α

(1)
l and

all the letters between α
(1)
k and α

(−1)
−l are positive and they have to all be β+ letters

(otherwise there would be a consecutive pair of the form β+α+). If α
(1)
k ′ is the β+

letter before α
(−1)
−l (k ′ could be k), then α

(0)
k ′ is the letter before α

(0)
l and hence we

get that the letters between α
(0)
k and α

(0)
k ′ are all α+ letters and their corresponding

β-letters are consecutive and so by property 2, k ⩾ k ′. But property 4 tells us that

k ′ > l. So we get k > l, which is a contradiction.

Case 5(b): α(0)
l is after α

(1)
k in w.

In this case w and w ′ are of the form

w = w1 · · ·wp−1α
(0)
k · · ·α

(1)
k · · ·α

(0)
l · · ·

w ′ = w ′1 · · ·w ′p−1α
(0)
l · · · .

By (4.1), each letter between α
(0)
k and α

(0)
l in w is positive or one of α(−1)

−l or α
(0)
−l . Just

as in Case 1, we can prove that α(−1)
−l and α

(0)
−l cannot between α

(0)
k and α

(0)
l . Hence

all the letters between α
(0)
k and α

(0)
l are positive. Since α

(1)
k is a β+ letter and α

(0)
l is

an α+ letter and all letters in between are positive, there is a consecutive pair of the

form β+α+, which is a contradiction to property 1.

Case 6: wp and w ′p are both α− letters.

In this case w and w ′ are of the form

w = w1 · · ·wp−1α
(−1)
−k · · ·

w ′ = w ′1 · · ·w ′p−1α
(−1)
−l · · ·
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for some 1 ⩽ l < k ⩽ n. We split this case into two possibilities depending on

whether or not α(−1)
−l is before α

(0)
−k.

Case 6(a): α(−1)
−l is before α

(0)
−k in w.

In this case w and w ′ are of the form

w = w1 · · ·wp−1α
(−1)
−k · · ·α

(−1)
−l · · ·α

(0)
−k · · ·α

(0)
−l · · ·

w ′ = w ′1 · · ·w ′p−1α
(−1)
−l · · · .

By (4.1), each letter between α
(−1)
−k and α

(−1)
−l is negative or one of α(0)

l or α(1)
l . If α(1)

l is

between α
(−1)
−k and α

(−1)
−l , it should not be immediately before α

(−1)
−l since this would

contradict property 1. But then there would be some positive letter other than α
(0)
l

between α
(−1)
−l and α

(1)
l which would contradict (4.1).

First, suppose α
(0)
l is between α

(−1)
−k and α

(−1)
−l . Just as before, using property 1

and Lemma 2.11, we can show that α(0)
l has to be immediately before α

(−1)
−l . Also,

all the letters between α
(−1)
−k and α

(0)
l have to be negative by (4.1). By property 3,

the letter before α
(0)
l has to be an α-letter and hence here it is an α− letter. Hence,

the letters between α
(−1)
−k and α

(0)
l have to be α− letters since otherwise there be a

consecutive pair of the form β−α−.

By (4.1), each letter between α
(0)
−k and α

(0)
−l is negative or one of α(0)

k , α(0)
l , α(1)

k or

α
(1)
l . Now, α(1)

k cannot be between α
(0)
−k and α

(0)
−l since this would mean α

(0)
k is between

α
(−1)
−k and α

(−1)
−l , which we have already shown is not possible. We have already

assumed α
(0)
l is between α

(−1)
−k and α

(−1)
−l and hence it cannot also be between α

(0)
−k

and α
(0)
−l . If α(0)

k were between α
(0)
−k and α

(0)
−l , it could not have been immediately after

α
(0)
−k since this would contradict property 1. But then there would be some positive

letter other than α
(1)
l between α

(0)
−k and α

(0)
k (since α

(−1)
−l is before α

(0)
−k and hence α

(1)
l

is after α
(0)
k ), which is a contradiction to (4.1). This means that the only positive

letter between α
(0)
−k and α

(0)
−l is α

(1)
l which is between them since α

(0)
l is between α

(−1)
−k

and α
(−1)
−l . Since α

(0)
l and α

(−1)
−l are consecutive, so are α

(1)
l and α

(0)
−l . The letters

between α
(0)
−k and α

(1)
l are all negative and should be β− letters or else it would cause

a contradiction to property 1.

Hence, the situation in the case that α(0)
l is between α

(−1)
−k and α

(−1)
−l is the following:

There is a string of consecutive α− letters starting with α
(−1)
−k ending before α

(0)
l which

is immediately before α
(−1)
−l and the corresponding β-letters for all these α-letters
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are consecutive. If α(−1)
−k ′ is the α− letter immediately before α

(0)
l (k ′ could be k), then

property 3 gives that −k ′ > −l and property 2 gives that −k ⩾ −k ′ and hence we get

−k > −l, which is a contradiction.

Next, suppose that all the letters between α
(−1)
−k and α

(−1)
−l are negative. All of

them should be α− letters by property 1. It can be shown, just as before, that the

only possible positive letter between α
(0)
−k and α

(0)
−l is α

(0)
l . If α(0)

l is not between α
(0)
−k

and α
(0)
−l , property 2 leads to a contradiction just as in Case 5(a). If α(0)

l is between

α
(0)
−k and α

(0)
−l , it should be immediately before α

(0)
−l and again, following a method

similar to Case 5(a), this leads to a contradiction using property 4.

Case 6(b): α(−1)
−l is after α

(0)
−k in w.

In this case w and w ′ are of the form

w = w1 · · ·wp−1α
(−1)
−k · · ·α

(0)
−k · · ·α

(−1)
−l · · ·α

(0)
−l · · ·

w ′ = w ′1 · · ·w ′p−1α
(−1)
−l · · · .

By (4.1), each letter between α
(−1)
−k and α

(−1)
−l is negative or one of α(0)

l or α
(1)
l . Just as

before, α(1)
l cannot be between α

(−1)
−k and α

(−1)
−l . If α(0)

l is not between α
(−1)
−k and α

(−1)
−l ,

then all the letters between them are negative and there is a β− letter, namely α
(0)
−k,

between them and this would result in a consecutive pair of the form β−α−, which

contradicts property 1.

So α
(0)
l is the only positive letter between α

(−1)
−k and α

(−1)
−l . If α

(0)
l is before α

(0)
−k,

we would get a consecutive pair of the form β−α− between α
(0)
−k and α

(−1)
−l which

contradicts property 1. So α
(0)
l is between α

(0)
−k and α

(−1)
−l . If α(0)

l and α
(−1)
−l were not

consecutive, we would get a contradiction to property 1 if there were some β− letter

between them and if all were α− letters, this would contradict Lemma 2.11. So α
(0)
l

and α
(−1)
−l are consecutive, and by property 3, the letter before α

(0)
l should be an

α-letter and in this case an α− letter, say α
(−1)
−k ′ . But then we would get a consecutive

pair of the form β−α− between α
(0)
−k and α

(−1)
−k ′ which contradicts property 1.

Case 7: wp is a α− letter and w ′p is an α+ letter.
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In this case w and w ′ are of the form

w = w1 · · ·wp−1α
(−1)
−k · · ·

w ′ = w ′1 · · ·w ′p−1α
(0)
l · · ·

for some k, l ∈ [n]. If k ̸= l, we would get a contradiction to (4.1) since α
(−1)
−k is before

α
(0)
l is w but not in w ′. So α

(0)
k appears after α

(−1)
−k in w and each letter between

them is positive or α
(0)
−k. Just as before α

(0)
−k being between α

(−1)
−k and α

(0)
k would either

contradict property 1 or (4.1). So all letters between α
(−1)
−k and α

(0)
k are positive. If

there is some β+ letter between them, there will be a consecutive pair of the form

β+α+, which would contradict property 1. Hence, all letters between α
(−1)
−k and α

(0)
k

are α+ letters. But this contradicts Lemma 2.11.

4.3.2 Shi threshold

The Shi threshold arrangement in Rn consists of the hyperplanes

Xi +Xj = 0, 1

for all 1 ⩽ i < j ⩽ n. The translated arrangement by setting Xi = xi +
1
2 , which we

call STn, has hyperplanes

xi + xj = −1, 0

for all 1 ⩽ i < j ⩽ n. We use the same method as before to study the regions of this

arrangement by considering STn as a sub-arrangement of Cn.

The hypeplanes in Cn that are not in STn are

2xi = −2,−1, 0

xi + xj = −2

xi − xj = −1, 0, 1

where 1 ⩽ i < j ⩽ n. Changing the inequality corresponding to exactly one of

these hyperplanes are given by the CT moves as well as the move corresponding to

xi + xj = −2 where i ̸= j are in [n]: Swapping consecutive β+ and α− letters (along

with their negatives).
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i −j

j −i

←→
−j i

−i j

Two sketches are in the same region of STn if and only if they are related by a

series of such moves and we call such sketches ST equivalent. A sketch is called ST

maximal if it is greater (in the lexicographic order) than all sketches to which it is ST

equivalent. Hence the regions of STn are in bijection with the ST maximal sketches.

The following result can be proved just as Theorem 4.5.

Theorem 4.7. A symmetric sketch is ST maximal if and only if the following hold.

1. If a β-letter is followed by an α-letter, the β-letter should be negative and the α-letter

should be positive with different mod-values.

X Y

=⇒ X negative and Y positive
and different mod value.

2. If two α-letters and their corresponding β-letters are both consecutive and of the same

sign then the subscript of the first one should be greater.

a1 a2 · · · a1 a2

and a1,a2 same sign =⇒ a1 > a2.

3. If the nth and (n+ 1)th α-letters are consecutive, then so are the (n− 1)th and nth

with the nth α-letter being positive. In such a situation, if the (n− 1)th α-letter is

negative and the (n− 1)th and nth β-letters are consecutive, the (n− 1)th α-letter

should have a subscript greater than that of the (n+ 1)th α-letter.

4. If the (2n− 1)th and (2n+ 1)th letters are both negative β-letters and their correspond-

ing α-letters are consecutive, the subscript of the (2n− 1)th letter should be greater

than that of the (2n+ 1)th.

X Y · · · X −Y Y

and X, Y negative =⇒ X > Y.

Hence the regions of STn are in bijection with sketches of the form described above.
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Chapter 5

Future directions

Properties of coefficients. The main question we tackle in this thesis is to give

a combinatorial interpretation to these coefficients. One could also try to use this

interpretation to prove various properties satisfied by the coefficients. For example,

in [16, Section 4], for several deformations of the braid arrangement, we use this

method to prove that the coefficients of the characteristic polynomials form an

increasing sequence. It is known that for any arrangement A, the coefficients of

χA(t) are log-concave and hence unimodal (see [30]). For the arrangements we have

studied in this thesis, one could ask for a combinatorial proof of these facts using

the statistics we’ve defined.

Refinement to Möbius values. We noted that for any arrangement A in Rn, r(A) is

the sum of the absolute values of the coefficients of χA(t). This is a consequence of

the stronger result that r(A) is the sum of the absolute values of the Möbius values

of LA, that is,

r(A) =
∑
x∈LA

|µ(x)|.

Hence, one could ask for a statistic on the regions of A graded by elements of LA
instead of the numbers in [0,n]. Note that the absolute value of the coefficient of ti

in χA(t) is the sum of the absolute values of the Möbius values of the element of

rank i in LA. This means that the new statistic would be a refinement of the one

given by the coefficients of χA(t).

Geometric statistic. For any arrangement A, one can define a geometric statistic

gstat whose distribution is given by the coefficients of χA(t). We given an idea of

how this statistic is defined (see [33] for details): Select a point p in Rn that does
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not lie on any of the hyperplanes of A (this point should also satisfy some other

conditions, but they are not too restrictive). To each region R of A, find the point q

in the closure of R that is closest to the point p. If the dimension of the face of A that

contains q is i, then we set gstat(R) = i. Then the absolute value of the coefficient

of ti in χA(t) is the number of regions R such that gstat(R) = i.

For the arrangements we’ve studied in this thesis, one could check if the statistic

on regions we’ve defined coincides with a geometric statistic obtained using the

procedure mentioned above. If not, one could ask for a bijection on the regions of

the arrangement that proves that both statistics are equidistributed.
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Part II

Pattern Avoidance
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Chapter 6

Background

Pattern avoidance is a relatively recent topic in combinatorics which has been

garnering a lot of attention. For a class of combinatorial objects, we first define

what it means for one object to be contained in another. When an object A contains

an object B, we usually refer to B as a pattern and say that A contains the pattern

B. If an object A does not contain the pattern B, we say that A avoids B. The usual

question in pattern avoidance is: Given a pattern (or set of patterns), describe or

count the objects that avoid them.

6.1 Permutations

The most popular class of combinatorial objects for which pattern avoidance is

studied is permutations. For n ⩾ 1, let σ = σ1 · · ·σn be the one-line representation

of a permutation of the set [n]. For n ⩾ m ⩾ 1, a permutation σ = σ1 · · ·σn

contains a permutation (or pattern) π = π1 · · ·πm if there exists a subsequence

1 ⩽ h(1) < h(2) < · · · < h(m) ⩽ n such that for any i, j ∈ [m], σh(i) < σh(j) if and only

if πi < πj. In this case, σh(1) · · ·σh(m) is said to be order isomorphic to π.

Informally, σ contains π if it has a subsequence that ‘looks’ like π. A nice way to

see this is via permutation diagrams, where we represent a permutation σ of [n] in

Z2 by plotting (i,σi) for all i ∈ [n]. For example, Figure 6.1 shows one way in which

the permutation 425613 contains the pattern 132.

111



−→

Figure 6.1: Permutation diagrams showing that 425613 contains 132.

We say that the permutation σ avoids π if it does not contain π. We denote the set

of all permutations of [n] by Sn. We denote the set of permutations in Sn that avoid

π by Avn(π). For example, it is easy to see that Avn(21) contains only the increasing

permutation ιn := 12 · · ·n and Avn(12) contains only the decreasing permutation

δn := n · · · 21. As a non-trivial example, we study the permutations in Avn(312).

For any n ⩾ 0, we prove that #Avn(312) = 1
n+1

(
2n
n

)
, the Catalan numbers. We

first present a recursive proof. Let σ ∈ Avn(312) and suppose σj = 1 where j ∈ [n].

Writing σ = ρ 1 τ, we see that

• ρ is a permutation of [2, j] that avoids 312, and

• τ is a permutation of [j,n] that avoids 312.

One can also check that any permutation of this form avoids 312. This shows that

Avn(312) =

n∑
j=1

Avj−1(312)Avn−j(312).

Verifying the initial conditions, this shows that (Avn(312))n⩾0 is the sequence of

Catalan numbers.

We also mention a bijection between the permutations of Avn(312) and Dyck

paths length 2n. Starting with a Dyck path of length 2n, we label the up steps using

the numbers 1, 2, . . . ,n from left to right in order. We then label the down steps as

follows: For any down step, find the closest up step to its left that is at the same

height. Label the down step using the label of this up step. The permutation in

Avn(312) corresponding to this Dyck path is the one obtained by reading the labels

on the down steps from left to right.
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2 2 3 3
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Figure 6.2: The permutation in Av4(312) corresponding to this Dyck path is 2314.

One can prove that this is a bijection recursively. Note that the usual way to

show that Dyck paths satisfy the recursion for Catalan numbers is by finding the

first place it touches the x-axis. One can check that, under the map described above,

this recursion matches the one for 312-avoiding permutations mentioned above.

In fact, it is easy to see that #Avn(312) = #Avn(π) for all π ∈ {132, 213, 231, 312}

and n ⩾ 0. This is because these patterns can be obtained from one another via

symmetries of the square (symmetries of permutation diagrams). Similarly, one can

show that Avn(123) = Avn(321) for all n ⩾ 0.

It is well-known that for all patterns π of length 3, we have #Avn(π) =
1

n+1

(
2n
n

)
(for example, see [49, Section 1.12]). Since we have already proved this for π = 312,

it is only left to prove this for the pattern π = 123 (or equivalently 321). We leave this

as an exercise for the reader.

However, the situation already becomes quite complicated for patterns of length

4. For example, there is no known closed-form expression for #Avn(1324) (see [14]).

The study of pattern avoidance in permutations was initiated by Knuth [36], and

the work of Simion and Schmidt [52] was the first one to focus solely on enumerative

results. Since then, the topic of pattern avoidance has seen a strong growth in the

area of enumerative combinatorics because of its connections to algebraic geometry

(see, for example [23, 59]) and computer science (see, for example [36, 47]). For more

about pattern avoidance in permutations, see the books of Bóna [11], Kitaev [34], or

Sagan [49].

Pattern avoidance has also been studied in various other combinatorial objects.

This includes the study of pattern avoidance in binary trees [15, 48], rooted forests

[2, 24], Dyck paths [9], set partitions [25, 35, 41], and compositions [28]. In this thesis,

we will focus on pattern avoidance in circular permutations.
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6.2 Circular permutations

A circular permutation [π] is the set of all rotations of a permutation π = π1 · · ·πn, i.e.,

[π] = {π1 · · ·πn,π2 · · ·πnπ1, . . . ,πnπ1 · · ·πn−1}.

We make the convention of using the rotation starting with 1 to represent a circular

permutation. As in [21], we denote the set of all circular permutations of [n] by

[Sn]. For example, [S3] = {[123], [132]}. Observe that the cardinality of the set [Sn]

is (n− 1)!. We say that a circular permutation [σ] contains a circular permutation

(or pattern) [π] if there exists a rotation σ′ of σ such that σ′ contains π as usual

permutations. If there is no rotation of σ containing π, we say that [σ] avoids [π]. For

instance, [14523] contains [1234] because the permutation 23145 (which is a rotation

of 14523) has the subsequence 2345 which is order isomorphic to 1234.

5

2

4

3

8

6

7

1 −→

32

1

4

5

Figure 6.3: The pattern [12354] in the circular permutation [17683425].

Clearly, if [σ] contains [π] where [σ] ∈ [Sm] and [π] ∈ [Sn], then m ⩾ n. The set of

all elements of [Sn] avoiding a fixed pattern [π] is denoted by Avn[π], i.e.,

Avn[π] = {[σ] ∈ [Sn] | [σ] avoids [π]}.

Also, Av[π] will denote the set of all circular permutations avoiding [π].

Callan [12] and Vella [58] independently studied circular permutations avoiding

a fixed pattern of size 4. Gray, Lanning and Wang continued work in this direction

and studied other notions of pattern avoidance in circular permutations (see [26, 27]).

Very recently, Domagalski et al. [21] studied circular pattern avoidance for multiple

patterns of size 4. Vincular pattern avoidance (where one forces that a pattern must

have certain specified indices to be consecutive) in circular permutations has also

been studied by Li [38] as well as Mansour and Shattuck [40].
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For a given set {[π1], . . . , [πk]} of circular permutations, we say that [σ] avoids

{[π1], . . . , [πk]} if [σ] avoids [πi] for each i ∈ [k]. For simplicity, we use [π1, . . . ,πk]

to denote this set of patterns. Just as before, set of elements of [Sn] that avoid

[π1, . . . ,πk] is denoted by Avn[π1, . . . ,πk], i.e.,

Avn[π1, . . . ,πk] = {[σ] ∈ [Sn] | [σ] avoids [πi] for each i ∈ [k]}.

If [πi] contains [πj] for some distinct i, j ∈ [k], then omitting [πi] from the sets

of patterns does not affect the avoidance class. Hence, we can assume that the

permutations in any set of patterns avoid each other.

An important notion in the study of pattern avoidance is the Wilf equiva-

lence on sets of patterns. Two sets [π1, . . . ,πk] and [τ1, . . . , τℓ] of circular permu-

tations are called (circular) Wilf equivalent, denoted by [π1, . . . ,πk] ≡ [τ1, . . . , τℓ], if

#Avn[π1, . . . ,πk] = #Avn[τ1, . . . , τℓ] for each n ⩾ 1. For [π] = [π1 · · ·πn], the trivial Wilf

equivalences are those of the form

[π] ≡ [πr] ≡ [πc] ≡ [πrc]

where [πr] = [πn · · ·π1] is the reversal of [π], [πc] = [(n+ 1− π1) · · · (n+ 1− πn)] is the

complement of [π] and [πrc] = [(n+ 1− πn) · · · (n+ 1− π1)] is the reverse complement of

[π]. Similarly, we have trivial Wilf equivalences on sets of patterns. For example,

[1342, 12345] ≡ [1342r, 12345r] = [1243, 15432] is a trivial Wilf equivalence.

Motivated by the study of pattern avoidance of (3,k)-pairs in set partitions done

in [32], we study circular permutations avoiding two patterns {[σ], [τ]}, where [σ] is of

size 4 and [τ] is of size k. For simplicity, we say that such pairs of patterns are [4,k]-

pairs. Observe that, using trivial Wilf equivalences among circular permutations of

size 4, it is enough to study those pairs where the pattern of size 4 is [1342], [1324],

or [1432]. In the next chapter, we study avoidance of [4,k]-pairs and split our results

into three sections bases on the pattern of size 4. We also use these results to obtain

a complete characterization of Wilf equivalence and counts for avoidance classes of

[4, 5]-pairs.
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Chapter 7

Avoiding size 4 patterns in circular

permutations

In this chapter, we study avoidance of a single pattern of size 4 in circular permuta-

tions. We do this by using well-studied combinatorial objects to represent circular

permutations avoiding a single pattern of size 4. We use these objects to study

avoidance of [4,k]-pairs in the next chapter.

The results in this chapter are from [42], which is joint work with Anurag Singh.

7.1 Avoiding [1342]: Binary words

In this section, we obtain a convenient representation of the permutations in Av[1342]

by relating these cyclic permutations with the linear permutations in Av(213, 231).

Definition 7.1. A binary word is a finite sequence whose terms are in {0, 1}. A run

in a binary word w1w2 · · ·wn is a subsequence wiwi+1 · · ·wi+k of consecutive terms

such that

1. all terms are equal,

2. either i = 1 or wi−1 ̸= wi, and

3. either i+ k = n or wi+k+1 ̸= wi+k.

Hence, a run is a maximal subsequence of consecutive terms that are all equal.

117



Example 7.2. The binary word 000110100 is of length 9 and has 5 runs. This word

can be written more compactly as 03120102.

To the binary word w = w1w2 · · ·wn−1, we associate the permutation σ(w) =

σ1σ2 · · ·σn as follows:

• If w1 = 0, then set σ1 = 1, or else set σ1 = n.

• For any k ∈ [n − 2], if σ1, . . . ,σk are defined, then set σk+1 = min([n] \

{σ1, . . . ,σk}) if wk+1 = 0, or else set σk+1 = max([n] \ {σ1, . . . ,σk}).

• Set σn to be the unique number in [n] \ {σ1, . . . ,σn−1}.

Example 7.3. For the binary word w = 031012, we have σ(w) = 12384765. This

association may become clearer when the permutation is represented pictorially (see

Figure 7.1).

Figure 7.1: Permutation associated to the binary word 031012.

We have the following result from [12].

Theorem 7.4 ([12, Proposition 1]). For any n ⩾ 2, the set Avn(213, 231) consists of the

permutations of the form σ(w) where w is a binary word of length n− 1.

The following theorem can be obtained by studying the proof of [12, Theorem 1].

Theorem 7.5. For any n ⩾ 2, we have

Avn[1342] = {[σ] : σ ∈ Avn(213, 231)}.
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Proof. We first recall from [21, Lemma 3.3] that if [σ] ∈ [Sn] is written as σ = 1 ρ n τ,

then [σ] ∈ Avn[1342] if and only if

1. ρ, τ ∈ Av(213, 231),

2. max ρ < min τ, and

3. there is not both a descent in ρ and an ascent in τ.

Suppose [σ] ∈ Avn[1342] is expressed as above. If ρ has no descents, then σ is

already in the form of a permutation associated to a binary word. If ρ has a descent,

then by the third condition, τ is the decreasing permutation. Hence, cyclically

shifting σ to n τ 1 ρ gives a permutation associated to a binary word.

Similarly, if σ is a permutation associated to a binary word, it either starts with 1

or n. If it starts with 1, it is of the form 1 ρ n τ where

1. ρ is increasing,

2. max ρ < min τ, and

3. τ ∈ Av(213, 231).

If σ starts with n, it is of the form n τ 1 ρ where

1. τ is decreasing,

2. max ρ < min τ, and

3. ρ ∈ Av(213, 231).

In either case, we see that [σ] is in Avn[1342].

The above theorem tells us that the cyclic permutations in Avn[1342] are those

of the form [σ(w)] for some binary word w of length n− 1. We now describe when

such cyclic permutations are equal.

Theorem 7.6. For any two binary words w1,w2, we have [σ(w1)] = [σ(w2)] if and only if

1. w1 = w2, or
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2. w1 = 0a+11b and w2 = 1b+10a for some a,b ⩾ 0.

Proof. Since any permutation associated to a binary word of length n− 1 should

start with either 1 or n, there are at most two ways that a cyclic permutation can

be written in the form [σ(w)] for some binary word w. It can be checked that for

any a,b ⩾ 0, 0a+11b and 1b+10a have the same corresponding cyclic permutation. To

prove the result, we have to show that if w is a binary word with more than 2 runs,

then no other binary word has [σ(w)] as its corresponding cyclic permutation.

Let w = 0a1b0c · · · be a binary word of length (n− 1) starting with 0 which has

more than 2 runs, i.e., a,b, c ⩾ 1. Since σ(w) starts with 1, we have to show that the

cyclic shift of σ(w) that starts with n does not correspond to a binary word. To do

this we note that the cyclic shift of σ(w) starting with n starts as

n (n− 1) · · · (n− b+ 1) (a+ 1) · · · .

For this permutation to correspond to a binary word, we must have either a+ 1 =

n− b or a+ 1 = 1. Since a ⩾ 1, we cannot have a+ 1 = 1. Also, a+ 1 = n− b implies

that a+ b = n− 1 and hence that c = 0, which is false. A similar argument works if

the binary word w starts with 1.

We now prove some known results about Av[1342] using their binary word

representation described above.

Example 7.7. The three theorems mentioned immediately give [12, Theorem 2],

which states that for any n ⩾ 2,

#Avn[1342] = 2n−1 − (n− 1).

Definition 7.8. For a permutation σ = σ1σ2 · · ·σn of [n], the cyclic descent number of

[σ] is given by

cdes[σ] = #{i ∈ [n] : σi > σi+1}

where we take subscripts modulo n, that is, we consider n+ 1 to be 1.

Cyclic descents were introduced by Cellini [13] and have been studied by many

others. For example, see [1] and the references therein.
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As in [21], we use the notation

Dn([π1, . . . ,πk];q) =
∑

[σ]∈Avn[π1,...,πk]

qcdes[σ].

Example 7.9. From [21, Theorem 3.5], we know that

Dn([1342];q) = 2q(1+ q)n−2 −
q(1− qn−1)

1− q
.

We prove this using binary words.

For any binary word w = w1w2 · · ·wn−1, we have

cdes[σ(w)] = 1+ #{i ∈ {2, . . . ,n− 1} : wi = 1}. (7.1)

Here, the second term on the right-hand side counts all the descents in σ(w) having

index in {2, . . . ,n− 1}. If w1 = 1, then the index 1 is a descent for σ(w) but there is

no cyclic descent at index n. If w1 = 0, then the index 1 is not a descent for σ(w) but

there is a cyclic descent at index n. This proves the equality in (7.1).

Let Bn−1 be the set of binary words of length n− 1 and En−1 ⊆ Bn−1 be the set of

words {0n−1, 0n−21, . . . , 01n−2}. Using Theorem 7.6, we have,

Dn([1342];q) =
∑

w∈Bn−1

qcdes[σ(w)] −
∑

w∈En−1

qcdes[σ(w)].

This is because, for each w ∈ En−1 there is exactly one other word not in En−1 that

represented the same permutation in Avn[1342]. Using (7.1), it is straightforward to

verify that

∑
w∈Bn−1

qcdes[σ(w)] = 2q(1+ q)n−2 and
∑

w∈En−1

qcdes[σ(w)] =
q(1− qn−1)

1− q
.

7.2 Avoiding [1324]: Circled compositions

We now develop a convenient representation of the permutations in Av[1324]. We

first recall the following definition from [58].
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Definition 7.10. A run in a permutation σ : [n]→ [n] is a maximal interval T ⊆ [n]

such that σ restricted to T is increasing. A run T = [a,b] is contiguous if σ(b) − σ(a) =

b− a, i.e., σ maps T to an interval.

Combining [58, Theorem 2.4] and [58, Proposition 3.4], we get the following

result.

Theorem 7.11 ([58]). Let [σ] ∈ [Sn] be a permutation written so that σ = ρ 1 τ n. Then

[σ] avoids [1324] if and only if

1. τ is increasing, and

2. all runs in ρ are contiguous.

Lemma 7.12. Permutations in Sn that have all runs contiguous are in one-to-one corre-

spondence with compositions of n.

Proof. Let σ ∈ Sn be a permutations with all runs contiguous. Suppose its runs are

T1, . . . , Tk. We claim that the composition (#Tk, . . . , #T1) of n determines σ.

Note that since all runs are contiguous, 1 has to be the smallest number in σ(Tk).

Otherwise, if 1 ∈ σ(Ti) for i ̸= k, and Ti = [a,b], then since Ti is contiguous, we get

σ(b+ 1) > σ(b). This contradicts the fact the Ti is a run. Hence we get that

σ(n− i) = #Tk − i for all i ∈ [0, #Tk − 1].

Similarly, the smallest number in σ(Tk−1) is #Tk + 1, and we can obtain σ(i)

for i ∈ Tk−1. Continuing this way, we can determine σ using the composition

(#Tk, . . . , #T1).

It can be checked that this is indeed a bijection between compositions of n and

permutations of Sn with all runs contiguous.

Remark 7.13. In the above proof, we use the composition (#Tk, . . . , #T1) instead of its

reverse since, under the bijection, the terms of the composition correspond to the

numbers 1, 2, . . . ,n in order. That is the first term, #Tk, corresponds to the numbers

1, 2, . . . , #Tk, the second term, #Tk−1, corresponds to the numbers #Tk + 1, . . . , #Tk +

#Tk−1, and so on. We should also note that the permutations described in the

lemma above are the reverses of layered permutations. These permutations have been

extensively studied from the perspective of pattern avoidance (for example, see [10]).
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Example 7.14. The claim and bijection given in the above lemma might be more

clear when the permutation is represented pictorially. For example, the composition

(3, 1, 3, 2) corresponds to the permutation 895674123 (see Figure 7.2).

Figure 7.2: Permutation with contiguous runs associated to the composition
(3, 1, 3, 2).

Definition 7.15. A circled composition of n is a pair (a,C) where a = (a1, . . . ,ak) is a

composition of n with k parts and C is a subset of [k] such that

1. the elements 1 and k are contained in C, and

2. for any i ∈ C, we have ai = 1.

We represent a circled composition (a,C) as the composition a with the parts

with indices in C circled.

Example 7.16. The circled composition ((1, 1, 6, 1, 2, 1, 1, 1, 3, 1, 1), {1, 2, 6, 7, 8, 11}) of 19

is represented as

1 1 6 1 2 1 1 1 3 1 1

where we omit the brackets and commas for convenience. This can be written more

compactly as

1
2

6 1 2 1
3

3 1 1 .

Theorem 7.17. The circular permutations in Avn[1324] are in one-to-one correspondence

with circled compositions of n.
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Proof. From Theorem 7.11, we know that if a permutation [σ] ∈ Avn[1324] is written

so that σ = ρ 1 τ n, then

1. τ is increasing, and

2. all runs in ρ are contiguous.

Let the runs in ρ be T1, . . . , Tk. Just as in Lemma 7.12, we consider the composition

(#Tk, . . . , #T1). Since 1 τ n is increasing, we can obtain σ from (#Tk, . . . , #T1) by

specifying the number of elements in 1 τ n that are:

1. less than the elements of ρ(Tk),

2. greater than the elements of ρ(Ti) but less than those in ρ(Ti−1) for each i ∈ [2,k],

and

3. greater than the elements of ρ(T1).

This information can be represented as a circled composition by inserting m

circled 1s into (#Tk, . . . , #T1) before #Tk if there are m elements of 1 τ n less than the

elements of ρ(Tk). Similarly, we place m circled 1s into (#Tk, . . . , #T1) between #Ti and

#Ti−1 if there are m elements of 1 τ n greater than the elements of ρ(Ti) but less than

those in ρ(Ti−1) for each i ∈ [2,k]. Finally, we place m circled 1s into (#Tk, . . . , #T1)

after #T1 if there are m elements of 1 τ n greater than the elements of ρ(T1).

Note that this is a circled composition since 1 is less than the elements of ρ(Tk)

and n is greater than the elements of ρ(T1). Hence the first and last numbers are

circled.

It can be checked that this is indeed a bijection between permutations of Avn[1324]

and circled compositions of n.

Example 7.18. Just as before, the bijection in the above theorem might be more

clear when the permutation is represented pictorially. For example, the circled

composition

1
2

2 1 1
2

3 1

corresponds to the circular permutation [8 9 10 5 3 4 1 2 6 7 11] ∈ Av11[1342] (see

Figure 7.3).
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Figure 7.3: Permutation in Av11[1324] corresponding to the circled composition in
Example 7.18. The numbers corresponding to circled parts of the composition are

colored black.

We know reprove results about Av[1324] using circled compositions. We define

for any n ⩾ 0, the nth Fibonacci number, Fn, as the number of compositions of n into

1s and 2s, where we set F0 = 1. Hence we have F0 = F1 = 1 and for n ⩾ 2,

Fn = Fn−1 + Fn−2.

Note that the index of the Fibonacci numbers is different from the usual convention.

Example 7.19. Theorem 7.17 also reflects [12, Theorem 1], which states that for any

n ⩾ 2,

#Avn[1324] = F2n−4.

This is because the number of circled compositions of n, say u(n), satisfies the

recurrence

u(n) = u(n− 1) +

n−2∑
i=1

u(n− i)

with initial conditions u(2) = 1. This is obtained by deleting the term before the last

1 . A combinatorial proof that this implies u(n) = F2n−4 is given in the proof of [12,

Theorem 1].

Example 7.20. There are (
n+ i− 2

2i

)
=

(
n+ i− 2

n− i− 2

)
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circled compositions of n with i uncircled parts (see the proof of Proposition 8.33).

It can also be checked that the permutation corresponding to a circled compositions

with i uncircled numbers has i+ 1 cyclic descents. Hence, we get

Dn([1324];q) =
n−1∑
i=1

(
n+ i− 3

n− i− 1

)
qi,

recovering [21, Theorem 3.2].

7.3 Avoiding [1432]: Grassmannian permutations

Just as in Section 7.1, we use binary words to represent the permutations in Av[1432].

The binary words we use in this section actually represent certain special permu-

tations called Grassmannian permutations (and their inverses). This representation

is the same as the one presented in [58], where subsets of [n] are used instead of

binary words of length n.

Definition 7.21. A Grassmannian permutation is a permutation which has at most

one descent. An inverse Grassmannian permutation is a permutation whose inverse is

Grassmannian.

Combining [58, Corollary 2.10] and [58, Proposition 3.6], we get the following

result.

Theorem 7.22 ([58]). Let [σ] ∈ [Sn] be a permutation written so that σ ends with n. Then

[σ] avoids [1432] if and only if σ is either Grassmannian or inverse Grassmannian.

Note that the identity permutation is the only Grassmannian permutation with

no descents. The non-identity permutations σ ∈ Sn that are Grassmannian and

end with n are in bijection with binary words of length n that start with 0 and

have at least 3 runs (see Definition 7.1). From such a permutation σ, we obtain the

corresponding binary word w1w2 · · ·wn by setting for each i ∈ [n], wi = 0 if and only

if n− i+ 1 is after the descent of σ.

Example 7.23. The binary word corresponding to the Grassmannian permutation

12356478 ∈ S8 is 0212013. This permutation is shown pictorially in Figure 7.4, where

the dashed line represents the descent. To obtain the binary word associated to such

a permutation:
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1. read the blue dots in the picture from top to bottom,

2. write 0 if the dot is to the right of the dashed line, and

3. write 1 if the dot is to the left of the dashed line.

Figure 7.4: Grassmannian permutation associated to the binary word 0212013.

If w is a binary word starting with 0 and having at least 3 runs, we denote the

corresponding Grassmannian permutation by G(w).

Similarly, the non-identity permutations σ ∈ Sn that are inverse Grassmannian

and end with n are in bijection with binary words of length n that start with 0 and

have at least 3 runs. The bijection we will use associates the inverse of G(w), which

we denote by IG(w), to such a binary word w.

Example 7.24. For w = 0210213, the permutation IG(w) is the inverse of the permuta-

tion 12364578 ∈ S8. Hence, IG(w) = 12356478. This permutation is shown pictorially

in Figure 7.5, where the dashed line represents the descent in the inverse of the

permutation. To obtain the binary word associated to such a permutation:

1. read the blue dots in the picture from right to left,

2. write 0 if the dot is above the dashed line, and

3. write 1 if the dot is below the dashed line.
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Figure 7.5: Inverse Grassmannian permutation associated to the binary word
0210213.

Remark 7.25. From the way the bijections are defined it is natural to set G(w) =

IG(w) = ιn for any binary word w of length n starting with 0 and having at most

two runs.

Evidently, there are non-identity permutations that are Grassmannian as well as

inverse Grassmannian (see the examples above). We now characterize this overlap.

It can be checked that if the binary word w has either (2k− 1) or 2k runs for some

k ⩾ 2, then the permutation IG(w) has exactly (k− 1) descents. Hence IG(w) is a

Grassmannian permutation if and only if w has either 3 or 4 runs. Similarly, it can

be checked that G(w) is an inverse Grassmannian permutation if and only if w has

either 3 or 4 runs.

Using the above observations and examining the bijections, we get the following

result.

Lemma 7.26. For any binary words w and w ′ starting with 0 and having at least 3 runs,

G(w) = IG(w ′) if and only if

1. w = 0a1b0c and w ′ = 0a1c0b for some a,b, c ⩾ 1, or

2. w = 0a1b0c1d and w ′ = 0a1c0b1d for some a,b, c,d ⩾ 1.

Combining the above observations, we get that the permutations in Av[1432] are

those of the following mutually disjoint types:

1. Type I: The identity permutations.
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2. Type E: Permutations of the form [G(w)] (or [IG(w)]) where w is a binary word

starting with 0 and having either 3 or 4 runs.

3. Type G: Permutations of the form [G(w)] where w is a binary word starting

with 0 and having at least 5 runs.

4. Type IG: Permutations of the form [IG(w)] where w is a binary word starting

with 0 and having at least 5 runs.

Example 7.27. The above description reflects [12, Theorem 3] which states that for

any n ⩾ 1,

#Avn[1432] = 2n + 1− 2n−

(
n

3

)
.

This follows since the number of permutations of Avn[1432] of different types are

1. Type I: 1.

2. Type E:
(
n−1
2

)
+
(
n−1
3

)
=
(
n
3

)
.

3. Type G: 2n−1 − (1+
(
n−1
1

)
+
(
n−1
2

)
+
(
n−1
3

)
) = 2n−1 − (n+

(
n
3

)
).

4. Type IG: 2n−1 − (1+
(
n−1
1

)
+
(
n−1
2

)
+
(
n−1
3

)
) = 2n−1 − (n+

(
n
3

)
).

Example 7.28. From [21, Theorem 3.6], we know that

Dn([1432];q) = q+ (2n−1 −n)q2 +
∑
j⩾3

(
n

2j− 1

)
qj. (7.2)

We now prove this using the above characterization of Av[1432]. It is straightforward

to verify that

cdes[ιn] = 1 and cdes[G(w)] = 2

for any binary word w of length n starting with 0 and having at least 3 runs. Since

there are (2n−1 −n) such binary words, we have obtained the first two terms on the

right-hand side of (7.2). This covers the Type I, E and G. We now compute the cyclic

descents in a permutation of Type IG.

Examining the bijection w↔ IG(w), it can be checked that the cyclic descents in

[IG(w)] correspond to the first 0 in any run of w consisting of 0s. This means that for

any binary word w having (2j− 1) or 2j runs for some j ⩾ 3, we have cdes[IG(w)] = j.

Since there are (
n− 1

2j− 2

)
+

(
n− 1

2j− 1

)
=

(
n

2j− 1

)
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binary words having (2j− 1) or 2j runs for any j ⩾ 3, we get the required result.
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Chapter 8

Avoiding [4,k]-pairs in circular

permutations

In this chapter, we define notions of patterns in the objects defined in the previous

sections. This is done in such a way that it corresponds to pattern avoidance in

circular permutations. This allows us to study avoidance of [4,k]-pairs in circular

permutations.

In particular, we obtain upper bounds for the number of Wilf equivalence classes

of [4,k]-pairs. Moreover, we prove that the obtained bound is tight when the pattern

of size 4 in consideration is [1342]. Using ideas from our general results, we also

obtain a complete characterization of the avoidance classes for [4, 5]-pairs.

The results in this chapter are from [42], which is joint work with Anurag Singh.

8.1 Subsequences in binary words: Avoiding [1342,k]-

pairs

In this section, we study the avoidance of pairs of the form [1342,σ] for some

σ ∈ Av[1342]. In Section 7.1, we saw that circular permutations in Av[1342] can be

represented as binary words. We now see how patterns in permutations of Av[1342]

translate to subsequences in binary words.

Definition 8.1. Let w,w ′ be binary words. We say that w contains w ′ if [σ(w)] contains

[σ(w ′)] and that w avoids w ′ if [σ(w)] avoids [σ(w ′)].
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We now characterize this pattern containment relation. The following theorem is

the cyclic analogue of [46, Lemma 6].

Theorem 8.2. Let w,w ′ be binary words.

1. If w ′ has more than two runs, then w contains w ′ if and only if w contains w ′ as a

subsequence.

2. If w ′ = 0a+11b for some a,b ⩾ 0, then w contains w ′ if and only if w contains either

0a+11b or 1b+10a as a subsequence.

3. If w ′ = 1b+10a for some a,b ⩾ 0, then w contains w ′ if and only if w contains either

0a+11b or 1b+10a as a subsequence.

Proof. To prove this result, we examine what binary word corresponds to a pattern in

a permutation of Avn[1342]. Let w = w1w2 · · ·wn−1 and σ(w) = σ1σ2 · · ·σn. Suppose

A ⊆ [n− 1] is the set of indices i for which wi = 0 and B = [n− 1] \A. Then, we have

1. a ∈ A, b ∈ B⇒ σa < σn < σb,

2. a,a ′ ∈ A and a < a ′ ⇒ σa < σa ′ , and

3. b,b ′ ∈ B and b < b ′ ⇒ σb > σb ′ .

This tells us that if 1 ⩽ i1 < · · · < ik−1 < ik ⩽ n, then the pattern σi1 · · ·σik−1
σik

satisfies the same order relation as the permutation corresponding to the binary word

wi1 · · ·wik−1
. Hence, the binary word corresponding to σi1 · · ·σik−1

σik is wi1 · · ·wik−1
.

This means that the circular patterns contained in [σ(w)] are those of the form

[σ(w ′)] where w ′ is a subsequence of w. Combining this with Theorem 7.6 gives us

the required result.

The upshot of the above results is the following corollary.

Corollary 8.3. The permutations in Avn[1342] are in bijection with binary words of length

(n− 1) of the following kinds:

• Words with at most two runs and starting with 0, i.e., 0n−1, 0n−21, . . . , 01n−2, which

we call exceptional.
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• Words with more than two runs, which we call non-exceptional.

For any binary word w, we have for any n ⩾ 2,

#Avn[1342,σ(w)] = #En−1(w) + #NEn−1(w) = #Bn−1(w) − #En−1(w) (8.1)

where

• En−1(w) is the set of exceptional binary words of length (n− 1) that avoid w,

• NEn−1(w) is the set of non-exceptional binary words of length (n− 1) that avoid w,

and

• Bn−1(w) is the set of binary words of length (n− 1) that avoid w.

Proof. Most of the proof follows directly from Theorem 8.2. We only note that the

second equality in (8.1) follows since the number of binary words starting with 0

1. having length n− 1,

2. having at most two runs, and

3. containing a binary word w

is the same as the number of those starting with 1 satisfying the same conditions.

The results of [21] can be proved using the correspondence between Av[1342] and

binary words.

Example 8.4. From [21, Theorem 2.2], we know that for any n ⩾ 3,

#Avn[1342, 1234] = 2(n− 2).

We prove this using Corollary 8.3.

Since [1234] = [σ(03)] = [σ(102)], we take w = 03. Any binary word avoiding w can

have at most two 0s and if it has two 0s, then the first term should be a 0. Counting

based on the number of 0s, for any n ⩾ 3, there are

1+ (n− 1) + (n− 2)
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binary words of length n− 1 avoiding w. The exceptional such binary words are

01n−2 and 021n−3.

Hence, using Corollary 8.3, we get, as required,

#Avn[1342, 1234] = 1+ (n− 1) + (n− 2) − 2 = 2(n− 2).

We now study Wilf equivalences among pairs of patterns the form [1342,σ] where

[σ] avoids the pattern [1342].

Theorem 8.5. For any k ⩾ 1, all pairs of patterns of the form [1342,σ(w)], where w is a

non-exceptional binary word of length k, are Wilf equivalent.

Proof. The idea of this proof is similar to that of [32, Theorem 2.7]. Let w =

w1w2 · · ·wk be a non-exceptional binary word. We prove this result by describ-

ing the cyclic permutations that avoid [1342] but contain [σ(w)]. By Theorem 8.2,

we have to describe the binary words that contain w as a subsequence. Any such

binary word will also be non-exceptional and hence we do not have to worry about

over-counting exceptional words.

Using the left most occurrence of w, we can see that any binary word v containing

w is of the form

v = v(1) w1 v(2) w2 · · · v(k) wk v(k+1)

where v(i) is a word whose letters are in {0, 1} \ {wi} for i ∈ [k] and v(k+1) is a word

with letters from {0, 1}. Note that the v(i)’s could be empty words as well. This shows

that the number of cyclic permutations in Avn[1342] that contain [σ] is

∑
(n1,n2,...,nk+1)

2nk+1

where the sum is over tuples (n1,n2, . . . ,nk+1) such that ni ⩾ 0 for all i ∈ [k+ 1] and

k+n1 +n2 · · ·+nk+1 = n− 1. Since this only depends on the size of w, we get our

result.

The above proof also gives us the following generating function.
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Corollary 8.6. For any k ⩾ 1 and non-exceptional binary word w of length k, we have

∞∑
n=1

#Avn[1342,σ(w)]tn =

∞∑
n=1

#Avn[1342]t
n −

(
t

1− t

)k(
t

1− 2t

)
.

Using the fact that #Avn[1342] = 2n−1 − (n− 1) for n ⩾ 1, we get

∞∑
n=1

#Avn[1342,σ(w)]tn =
t

1− 2t
−

t2

(1− t)2
−

(
t

1− t

)k(
t

1− 2t

)
.

Lemma 8.7. For any a,b ⩾ 0, the pair [1342,σ(0a+11b)] is Wilf equivalent to

[1342,σ(0b+11a)].

Proof. This is a trivial Wilf equivalence and follows since [1342c] = [1342] and for any

a,b ⩾ 0, [σ(0a+11b)c] = [σ(0b+11a)].

We now show that there are no other Wilf equivalences among exceptional

patterns.

Theorem 8.8. Let 0a+11b and 0c+11d be such that a,b, c,d ⩾ 0 and {a,b} ̸= {c,d}. Then

the pairs [1342,σ(0a+11b)] and [1342,σ(0c+11d)] are not Wilf equivalent.

Proof. If a+b ̸= c+d, then the result follows since taking n = min{a+b+ 2, c+d+ 2}

gives different values for #Avn[1342,σ(0a+11b)] and #Avn[1342,σ(0c+11d)].

Suppose a+ b = c+ d. Without loss of generality, we can translate the condition

{a,b} ̸= {c,d} to c < a and c ̸= b. We will show that #Avn[1342,σ(0a+11b)] and

#Avn[1342,σ(0c+11d)] differ for some n ⩾ 1.

Let k = a+ b+ 1 = c+ d+ 1, the length of the words 0a+11b and 0c+11d. The

exceptional binary words of length n ⩾ k that contain neither 0a+11b nor 1b+10a as a

subsequence are

01n−1, 021n−2, . . . , 0a1n−a, 0n−b+11b−1, 0n−b+21b−2, . . . , 0n−11, 0n.

Since n ⩾ k, these are all distinct and there are (a+ b) of them. This means that,

by Corollary 8.3, the number of permutations in Avn[1342,σ(0a+11b)] is (a+ b) less

than the number of binary words of length n that contain neither 0a+11b nor 1b+10a

as a subsequence. We get a similar result for the size of Avn[1342,σ(0c+11d)]. Since

a+ b = c+ d, to prove our result, it is enough to show that for some n ⩾ k, the
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number of binary words of length n that contain neither 0a+11b nor 1b+10a as a

subsequence is different from the number of those that contain neither 0c+11d nor

1d+10c as a subsequence.

We have c ̸= b, so we consider two cases: b < c and c < b. First let us consider

b < c and n = k+ b+ 1. Consider the binary words of length n that contain either

0a+11b or 1b+10a as a subsequence. The proof of Theorem 8.5 shows that the number

that contain 0a+11b as a subsequence is

∑
(n1,n2,...,nk+1)

k+n1+n2···+nk+1=n

2nk+1 .

This same number counts the binary words of length n that contain 1b+10a as a

subsequence. However, the binary word 1b+10a+11b is of length n and contains both

0a+11b and 1b+10a as subsequences. Hence, the number of binary word of length n

that contain either 0a+11b or 1b+10a as a subsequence is strictly less than

2 ×
∑

(n1,n2,...,nk+1)
k+n1+n2···+nk+1=n

2nk+1 . (8.2)

We now show that no binary word of length n can contain both 0c+11d and

1d+10c as subsequences. This will then show that the number of binary words

containing either 0c+11d or 1d+10c as a subsequence is given by (8.2) and hence that

[1342,σ(0a+11b)] and [1342,σ(0c+11d)] are not Wilf equivalent.

Let w be a binary word of length n containing both 0c+11d and 1d+10c as subse-

quences. Since w contains the subsequence 0c+11d, it must have at least d 1s after the

(c+ 1)th 0. Similarly, since w contains the subsequence 1d+10c, it must have at least c

0s after the (d+ 1)th 1. This means that if the (d+ 1)th 1 is before the (c+ 1)th 0, then

w has at least (d+ 1) + (c+ 1) + d letters. On the other hand, if the (d+ 1)th 1 is after

the (c+ 1)th 0, then w has at least (d+ 1) + (c+ 1) + c letters. But we have

n = c+ d+ b+ 2 <


d+ 2c+ 2, since b < c

c+ 2d+ 2, since b < d.

This is a contradiction to the length of w being n. Hence, no binary word of length

n can contain both 0c+11d and 1d+10c.
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Next, we have to consider the case when c < b. But this follows just as before by

taking n = k+ c+ 1.

Corollary 8.9. If w and w ′ are binary words where w is exceptional and w ′ is not, then

[1342,σ(w)] and [1342,σ(w ′)] are not Wilf equivalent.

Proof. Just as in the previous theorem, we can assume that w and w ′ have the same

length, say k ⩾ 1. Suppose w = 0a+11b for some a,b ⩾ 0. Hence, k = a+ b+ 1 and by

the proof of Theorem 8.8, the number of permutations in Avk+2[1342] that contain

[σ(w)] if {a,b} ̸= {0,k− 1} is

2 ×
∑

(n1,n2,...,nk+1)
k+n1+n2···+nk+1=k+1

2nk+1 − (k+ 1− (a+ b)) = 2k+ 2.

This is because, if {a,b} ̸= {0,k− 1}, there are no binary words of length (k+ 1) that

contain both 0a+11b and 1b+10a as subsequences. Otherwise, there are exactly two

binary words of length k+ 1 that contain both 0a+11b and 1b+10a as subsequences. If

a = k− 1 and b = 0, they are 10k and 010k−1 and if a = 0 and b = k− 1, they are 01k

and 101k−1. Hence, if {a,b} = {0,k− 1}, the number of permutations in Avk+2[1342]

that contain [σ(w)] is

2 ×
∑

(n1,n2,...,nk+1)
k+n1+n2···+nk+1=k+1

2nk+1 − (k+ 1− (a+ b)) − 2 = 2k.

Also, by the proof of Theorem 8.5, the number of permutations in Avk+2[1342] that

contain [σ(w ′)] is ∑
(n1,n2,...,nk+1)

k+n1+n2···+nk+1=k+1

2nk+1 = k+ 2.

Since there exist non-exceptional words only for k ⩾ 3, we get that

#Avk+2[1342,σ(w)] < #Avk+2[1342,σ(w ′)]. Hence [1342,σ(w)] and [1342,σ(w ′)] are

not Wilf equivalent.

We call a pair of patterns [1342,σ] a [1342,k]-pair if [σ] ∈ Avk[1342].

Theorem 8.10. For k ⩾ 4, the number of Wilf equivalence classes of [1342,k]-pairs is ⌈k2⌉.
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Proof. Combining Theorem 8.5, Lemma 8.7, Theorem 8.8, and Corollary 8.9, we get

that for k ⩾ 4, the number of Wilf equivalence classes of [1342,k]-pairs is

1 + #{(a,b) : a ⩾ b ⩾ 0, a+ b = k− 1}.

The first term counts the equivalence class consisting of non-exceptional patterns

and the second counts the exceptional classes.

We now compute the sequence (#Avn[1342,σ])n⩾1 for various [σ] ∈ Av[1342].

Proposition 8.11. For any k ⩾ 1, we have [1342, ιk+1] ≡ [1342, δk+1] and for any n ⩾ k,

#Avn+1[1342, ιk+1] =

(
n− 1

k− 2

)
− (k− 1) +

k−2∑
i=0

(
n

i

)
.

Proof. Since σ(0k) = ιk+1, we have to count the binary words of length n that contain

neither 0k nor 10k−1 as subsequences. Such words either have strictly less than (k− 1)

0s, or have exactly (k− 1) 0s and start with 0. Clearly, there are

(
n− 1

k− 2

)
+

k−2∑
i=0

(
n

i

)

such binary words of length n. Since there are (k− 1) exceptional words of length n

that avoid 0k and 10k−1, we get the required result.

Proposition 8.12. Let w be a non-exceptional binary word of length k ⩾ 1. For any n ⩾ k,

we have

#Avn+1[1342,σ(w)] = 1+

k−1∑
i=2

(
n

i

)
. (8.3)

Proof. This follows from the fact that there are

k−1∑
i=0

(
n

i

)

binary words of length n that do not contain 0k as a subsequence. By the proof

of Theorem 8.5, this is the same as the number of those that do not contain w as

a subsequence. The equality in (8.3) then follows from Corollary 8.3 since all n

exceptional binary words of length n avoid w.
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Remark 8.13. The following, admittedly complicated, generating function can be

obtained for the size of avoidance classes of [1342,σ(w)]-pairs where w is exceptional.

If w = 0a+11b, then

∑
n⩾1

#Avn[1342,σ(w)]tn = t[G1(t) +G2(t) +G3(t)] − E(t)

where the terms are defined as follows.

1. G1(t) accounts for those binary words with at most b 1s and is given by

(
1− ta+1

1− t

(
1

1− t

)b

+

b∑
k=1

(
1

1− t

)k
)

.

2. G2(t) accounts for those binary words with (b+k) 1s where k ∈ [b] and is given

by
b∑

k=1

[(
a∑

i=0

(
i+ k

k

)
ti

)
×
(

1

1− t

)b−k

×

(
a−1∑
i=0

(
i+ k− 1

i

)
ti

)]
.

3. G3(t) accounts for those binary words with (b+ k) 1s where k > b and is given

by

∑
k>b

a−1∑
j=0

(b− k− 1+ j

j

)
tj ×

a−j∑
i=0

(
i+ b

b

)
ti

×
a−j−1∑

i=0

(
i+ b− 1

i

)
ti

 .

4. E(t) accounts for the exceptional over-counting and is given by

a+b+1∑
n=0

(n− 1)tn +
∑

n>a+b+1

(a+ b)tn.

Using the results of this section we also get the following result about linear

pattern avoidance.

Corollary 8.14. Let k ⩾ 1. All sets of linear patterns of the form {213, 231,σ(w)}, where w

is a binary word of length k, are Wilf equivalent. For any n ⩾ k,

#Avn+1(213, 231,σ(w)) =

k−1∑
i=0

(
n

i

)
.
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We also have

∞∑
n=1

#Avn(213, 231,σ(w))tn =
t

1− 2t
−

(
t

1− t

)k(
t

1− 2t

)
.

Proof. This follows from:

1. The proof of [46, Lemma 6] (linear version of Theorem 8.2), which shows that

(linear) pattern avoidance in (213, 231)-avoiding permutations corresponds to

linear pattern avoidance in the corresponding binary words.

2. The proof of Theorem 8.5, which shows that the number of binary words of

size n linearly containing a pattern only depends on the size of the pattern.

3. The fact that there are
k−1∑
i=0

(
n

i

)
binary words of length n that do not contain 0k as a subsequence.

4. The fact that for any n ⩾ 1, #Avn(213, 231) = 2n−1.

8.1.1 Avoiding [1342] and a pattern of size 5

We now use our results to study avoidance of pairs [1342,σ] where [σ] ∈ Av5[1342].

The first two results are special cases of Propositions 8.11 and 8.12 respectively.

Corollary 8.15. We have [1342, 12345] ≡ [1342, 15432] and for any n ⩾ 5,

#Avn[1342, 12345] = (n− 3) +

(
n− 1

2

)
+

(
n− 2

2

)
.

Corollary 8.16. For any σ ∈ {12435, 12534, 13254, 14235, 14325, 15234, 15243, 15423} and

n ⩾ 5, we have

#Avn[1342,σ] = 1+

(
n− 1

2

)
+

(
n− 1

3

)
.

Proposition 8.17. We have [1342, 12354] ≡ [1342, 12543] and for n ⩾ 6,

#Avn[1342, 12354] = 3n− 1.
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Proof. Since [12354] = [σ(031)] = [σ(1202)] we have to count binary words of length

(n− 1) that contain neither 031 nor 1202 as a subsequence. The result follows from

the following facts which can be verified.

1. There are 4 such binary words with at most one 1.

2. There are (3n− 2) such binary words with at least two 1s.

3. There are 3 such binary words that are exceptional.

From these computations, we get the following result.

Result 8.1. There are 3 Wilf equivalence classes among [1342,σ]-pairs where [σ] ∈ Av5[1342].

Note that this is just a special case of Theorem 8.10.

8.2 Domination in circled compositions: Avoiding

[1324,k]-pairs

In Section 7.2, we saw that the permutations in Av[1324] correspond to circled

compositions. We not define a notion called domination in circled compositions and

show that this corresponds to patterns in permutations of Av[1324]. We use this to

study avoidance of [4,k]-pairs where the pattern of size 4 is [1324].

Definition 8.18. A circled composition X is said to dominate a circled composition Y

if Y can be obtained from X via the following procedure:

1. Select a subsequence of X.

2. Replace any uncircled number k in this sequence by some number in [k].

3. If either the first or last term is an uncircled number k, then replace it with k

1 s.
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Example 8.19. The circled composition X given by

1
2

5 1 1 1
2

3 1 1
3

2 1 1
3

dominates the circled composition Y given by

1
8

2 1
2

1 1 .

One possible procedure corresponding to the steps in Definition 8.18 that illustrates

this is as follows:

1. Select the highlighted subsequence of X in

1
2

5 1 1 1
2

3 1 1
2

1 2 1 1 1
2
.

2. Replacing the uncircled 3 by 2, we get

5 1
3

2 1
2

1 1 .

3. After replacing the the first term, the uncircled 5, with 5 1 s, we get Y.

Theorem 8.20. Given a circled composition X of n, let [σ(X)] be the associated permutation

in Avn[1324]. For any two circled compositions X and Y, we have that [σ(X)] contains [σ(Y)]

if and only if X dominates Y.

Proof. We have to show that pattern containment in permutations of Av[1324] corre-

sponds to domination of circled compositions. We do this by showing that finding a

pattern in a permutation of Av[1324] corresponds to the steps in Definition 8.18 in

the associated circled composition.

Recall from the proof of Theorem 7.17 that the terms in a circled composition

of n correspond to the numbers 1, . . . ,n in order. That is, the first part, which is

always 1, corresponds to the number 1 in the permutation. If the second part is b,

it corresponds to the numbers 2, . . . ,b+ 1 in the permutation, and so on. Also, the

circled parts correspond to the numbers in the final run when the permutation is

written with the largest number at the end.
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Let X be a circled composition and suppose we have chosen an occurrence of

a pattern in [σ(X)]. Example 8.21 below illustrates the steps that follow and hence

might make them easier to understand.

1. Since an occurrence of a pattern in [σ(X)] corresponds to choosing some el-

ements of the permutation, let A ⊆ [n] be the elements chosen. Highlight

the subsequence of X that consists of parts whose corresponding permutation

elements have elements of A.

2. We rewrite the subsequence by replacing each uncircled number with the num-

ber of corresponding permutation elements that are in A. Call this sequence

Y ′. The pattern obtained by selecting the numbers in A can be extracted from

Y ′. This is done in a similar fashion to how a permutation in Av[1324] is ob-

tained from a circled composition (drawing the permutation with contiguous

runs corresponding to the uncircled parts and adding terms at the end of the

permutation at the appropriate places using the 1 s).

3. To get the circled composition corresponding to this pattern, we have to

cyclically shift it so that it ends with the largest number. To do so, it can be

checked that

(a) we do not have to cyclically shift the pattern if the last part of Y ′ is circled,

and

(b) if the last part of Y ′ is a and is uncircled, we have to cyclically shift the

pattern a steps to the left.

Since at most one interval of numbers is cyclically shifted to the end, the only

numbers in the final run are those corresponding to the first and last term of

Y ′ and those corresponding to circled parts of Y ′. Also, the circled composition

Y corresponding to this pattern is the one obtained by replacing the first and

last part of Y ′ with the appropriate number of 1 s.

Example 8.21. Let X be the circled composition given by

1
2

1 2 1 1
3

1 3 1 1 .

Consider the pattern induced by the numbers A = {4, 5, 6, 7, 9, 12, 13}. This permuta-

tion is shown in Figure 8.1 with the numbers in A highlighted using red boxes.
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1. Looking at which parts have corresponding numbers that intersect A, we

highlight the sequence shown below:

1
2

1 2 1 1 1 1 1 3 1 1

2. Since all numbers from those corresponding to the uncircled 2 and the uncircled

1 are chosen, they are left unchanged. Since only 2 numbers are chosen from

those corresponding to the uncircled 3, it is replaced by an uncircled 2. Hence

Y ′ is the sequence

2 1 1
2

2.

The pattern corresponding to Y ′ is shown on the left in Figure 8.2.

3. After writing the pattern in the required form, we see that its corresponding

circled composition is

1
2

1 1
4
.

This is shown on the right in Figure 8.2. Note that this circled composition is

the same one that is obtained from the sequence Y ′ in the previous point after

replacing the first and last part with the appropriate number of 1 s.

Figure 8.1: Step 1 in Example 8.21.
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−→

Figure 8.2: Step 2 and 3 in Example 8.21.

Example 8.22. From [21, Theorem 2.3], we know that for any n ⩾ 3,

#Avn[1324, 1234] = 2(n− 2).

We now prove this using circled compositions. Since the circled composition corre-

sponding to [1234] is 1
4
, for any n ⩾ 3, we have to count the circled compositions

of n that do not dominate 1
4
. Such a circled composition has either two or three

1 s.

If the circled composition has three 1 s, it is of the form

1 A 1 B 1

where A and B consist of only uncircled numbers. If A has some number k ⩾ 2,

then we can use it along with the two 1 s after it to obtain the circled composition

1
4
. Hence A consits of just 1s. Similarly B also consists of just 1s. We can check

that such circled compositions do not domiate 1
4
. It is easy to check that there are

(n− 2) such circled compositions.

Similarly, the circled compositions of n that have two 1 s and do not dominate

1
4

are of the form

1 A 1

where A consits of all 1s or has exactly one 2 and all other terms 1. Again, the

number of such compositions is (n− 2). Combining these counts, we get the required

result.

By the above results, studying pattern avoidance among permutations in Av[1324]

is the same as studying the domination poset of circled compositions. Hence, we

now focus on domination in circled compositions.
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Definition 8.23. Two circled compositions X and Y are said to be Wilf equivalent,

written as X ≡ Y, if the number of circled compositions of n that dominate X is equal

to the number that dominate Y for any n ⩾ 1.

Lemma 8.24. If X and Y are circled compositions such that X ≡ Y, then they are compositions

of the same number.

Proof. This follows from the fact that if m < n, any circled composition of m avoids

all circled compositions of n.

Lemma 8.25. Any circled composition is Wilf equivalent to its reverse.

Proof. This follows from the fact that a circled composition X dominates a circled

composition Y if and only if the reverse of X dominates the reverse of Y.

Remark 8.26. In terms of permutations, the above lemma translates to the trivial Wilf

equivalence [1324,σ] ≡ [1324,σrc].

Suppose X is a circled composition with at least one uncircled number. This

means that X is of the form

1
r

A 1
s

where r, s ⩾ 1 and A is a non-empty sequence of 1 s and uncircled numbers that

starts and ends with an uncircled number. Suppose A has n parts such that the parts

indexed by C ⊆ [n] are circled. Using the leftmost occurrence of

1
r

A,

we can see that a circled compositions that dominates X can be written uniquely as

Dr D1 D2 · · · Dn Ds (8.4)

where the following conditions hold:

1. Dr is a sequence of 1 s and uncircled numbers that starts with a 1 such that

the following hold:

(a) If the number of 1 s in Dr is m, we have m ⩽ r. Also, if m = r, then Dr

ends with a 1 and if Dr ends with an uncircled number, then m < r.
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(b) For any non-final uncircled number k in Dr, k more than the number of

1 s after it is at most r.

(c) If Dr ends with a 1 and m < r, the value r is attained at least once in the

procedure given in (b).

(d) If Dr ends with an uncircled number, this number is at least r and the

value r is never attained in the procedure given in (b).

2. If i ∈ C, then Di is a sequence that ends with a 1 and all other terms are

uncircled.

3. If i ∈ [n] \C and the corresponding uncircled number in A is k, then Di is a

sequence that ends with an uncircled number whose value is at least k and all

other terms are either 1 s or uncircled numbers less than k.

4. Ds is a sequence of 1 s and uncircled numbers that ends with a 1 such that

at least one of the following hold:

(a) The number of 1 s in Ds is at least s.

(b) There is some uncircled number k in Ds such that k more than the number

of 1 s before it is at least s.

Remark 8.27. Before using this description to prove results about Wilf equivalence, we

note that it gives us a generating function for the circled compositions that dominate

X. Denoting this generating function by FX, we have

FX = FrF1F2 · · · FnFs

where the terms are defined as follows.

1. Fr corresponds to Dr and Fr(t) is given by

r∑
m=1

[
t

m−1∏
i=1

1− t

1− tr−m+i

]
−

r−1∑
m=1

[
t

(
1− 2tr−1

1− tr−1

)m−2∏
i=0

1− t

1− tr−m+i

]
.

2. For i ∈ [n], Fi corresponds to Di. If i ∈ C, Fi(t) is given by

t(1− t)

1− 2t
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and if i ∈ [n] \C, and the corresponding uncircled number in A is k, then Fi(t)

is given by
tk

(1− t)2
.

3. Fs corresponds to Ds and Fs(t) is given by

t(1− 2t)

1− 3t+ t2
−

s−1∑
m=1

[
t

m−2∏
i=0

1− t

1− ts−m+i

]
.

This description also tells us that the circled composition X is Wilf equivalent

to any circled composition obtained by permuting A such that it is still starts and

ends with an uncircled number. If σ ∈ Sn is such a permutation, then the circled

composition dominating X written in the form (8.4) is mapped to

Dr Dσ(1) Dσ(2) · · · Dσ(n) Ds.

This means that we can combine all except the first and last strings of circled

numbers and rearrange the uncircled numbers. We adopt the convention of reorder-

ing the uncircled numbers in decreasing order and placing the combined circled

numbers (if any exist) before the last uncircled number. Also, by Lemma 8.25, we

can make sure that the initial string of 1 s is longer than the final string.

Example 8.28. The circled composition

1
2

5 1 1 1
2

3 1 1
6

2 1 1
3

is Wilf equivalent to the circled composition

1
3

5 3 2 1 1 1
9

1 1
2
.

The above discussions gives us the following lemma.

Lemma 8.29. Any circled composition with at least one uncircled number is Wilf equivalent

to a circled composition of one of the following forms:

1. A circled composition

1
k0

a1 a2 · · · ak 1
k1

ak+1 1
k2
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where k0 ⩾ k2 and a1 ⩾ a2 ⩾ · · · ⩾ ak ⩾ ak+1.

2. A circled composition

1
k0

a1 a2 · · · ak 1
k2

where k0 ⩾ k2 and a1 ⩾ a2 ⩾ · · · ⩾ ak.

Lemma 8.30. Suppose X is a circled composition of the form

A 2 B

where A and B are nonempty sequences of 1 s and uncircled numbers such that A starts

and B ends with a 1 . If B has an uncircled number, then X ≡ Y where Y is the circled

composition

A 1 1 B.

Proof. Using the same ideas as the discussion above, we can prove this result by

showing that there are a same number of the following objects for each n ⩾ 1:

1. Sequences D of circled and uncircled numbers such that

(a) D ends with an uncircled number whose value is at least 2 and all other

terms are either 1 s or uncircled 1s, and

(b) the sum of the parts in D is n.

2. Pairs of the form (D1,D1) where

(a) D1 is a sequence that ends with an uncircled number with all terms before

it being 1 s, and

(b) D1 is a sequence that ends with a 1 and all terms before it are uncircled

such that the sum of parts in D1 added to the sum of parts in D1 is n.

It can be checked that both these objects are counted by 2n−1 − 1. For objects of

type (1), we can use the recurrence a(n) = a(n− 1)+ 2n−2 obtained based on whether

the last number is greater than 2. For the objects of type (2) concatenating D1 and

D1 and deleting the 1 s gives a bijection with compositions of numbers less than

n.
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Lemma 8.31. Suppose X is a circled composition of the form

1
2

c B

where c is an uncircled number and B is a nonempty sequence of 1 s and uncircled numbers

that ends with a 1 . Then X ≡ Y where Y is the circled composition

1 1 c B.

Proof. Let Z be a circled composition of n that dominates X. Using the left most

occurrence of 1
2
, we can write Z as

Z1 Z2

where Z1 is a sequence of the form

1 1 1 · · · 1 1 or 1 1 1 · · · 1 a (8.5)

where a ⩾ 2.

Let Z ′ be the circled composition

Z ′1 Z2

where Z ′1 is obtained by replacing all terms between the first and last term of Z1

with 1 and the last term with 1 if the last term of Z1 is 1 . This means that if Z1 is

as in (8.5), then Z ′1 is

1 1 1 · · · 1 1 or 1 1 1 · · · 1 a

respectively. It can be checked that this is a bijection between circled compositions

of n that dominate X and those that dominate Y.

Combining Lemma 8.29, Lemma 8.30, and Lemma 8.31, we get the following

theorem.

Theorem 8.32. Any circled composition of n is Wilf equivalent to a circled composition of n

of one of the following forms:

1. The circled composition 1
n

.
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2. A circled composition

1
k0

a1 a2 · · · ak 1
k1

ak+1 1
k2

where k0 ⩾ k2, a1 ⩾ a2 ⩾ · · · ⩾ ak ⩾ ak+1, and a1, . . . ,ak+1,k0,k2 ̸= 2.

3. A circled composition

1
k0

a1 a2 · · · ak 1
k2

where k0 ⩾ k2, k0,k2 ̸= 2, a1 ⩾ a2 ⩾ · · · ⩾ ak, and if k ⩾ 2, then a1, . . . ,ak ̸= 2.

We now compute the sequence (#Avn[1324,σ])n⩾1 for various [σ] ∈ Av[1324].

Proposition 8.33. We have for n ⩾ 2 and k ⩾ 1,

#Avn[1324, δk+2] =

k−1∑
i=0

(
n+ i− 2

2i

)
.

Proof. Note that for any k ⩾ 1, [δk+2] is the permutation corresponding to the circled

composition

1 1 1 · · · 1 1

where there are k uncircled 1s. Hence, #Avn[1324, δk+2] is the number of circled

compositions of n that have less than k uncircled numbers. We count these circled

compositions based on the number of uncircled parts.

The following procedure can be used to specify a circled composition of n with i

uncircled parts.

1. Consider a sequence of length n+ i consisting of 1s, with the first and last 1

circled.

2. Select 2i out of the remaining (n+ i− 2) uncircled 1s. Suppose these are the 1s

with indices a1 < a2 < · · · < a2i.

3. Replace the string of 1s having indices in [a2j−1,a2j] by a2j − a2j−1 + 1 for all

j ∈ [i] and circle the remaining 1s.

4. Reduce the value of any uncircled number by 1.
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This shows that there are (
n+ i− 2

2i

)
circled compositions of n with i uncircled parts and hence proves the result.

Remark 8.34. Setting a(n,k) = #Avn[1324, δk+2] for all k ⩾ 0 and n ⩾ 2, we have for

any n ⩾ 3 and k ⩾ 1,

a(n,k) = a(n− 1,k) +
n−2∑
i=1

a(n− i,k− 1)

with a(2,k) = 1 for k ⩾ 1 and a(n, 0) = 0 for n ⩾ 2. This recurrence can be obtained

by deleting the last term in A of a circled composition

1 A 1

that has less than k uncircled parts. The first term on the right-hand side corresponds

to the last term being a 1 and the second corresponds to it being an uncircled

number.

We also note that a(n,k) = T(n+ k− 3, 2n− 4) where T is the triangle of numbers

listed in the OEIS [53] as A027926.

Proposition 8.35. Let X be the circled composition given by

1 k 1

for some k ⩾ 1. Setting a(n) = #Avn[1324,σ(X)] for all n ⩾ 2, we have for any n ⩾ k+ 1,

a(n) = a(n− 1) +

k−1∑
i=1

a(n− i)

with a(n) = F2n−4 for n ∈ [2,k].

Proof. It is clear that a(n) is the number of circled compositions of n of the form

1 A 1

where any term in A is either 1 or some uncircled number in [k− 1]. Deleting the

last term of A gives the required recurrence relation. The initial conditions follow

from the fact that #Avn[1324] = F2n−4 for n ⩾ 2 (see Example 7.19).

152

https://oeis.org/A027926


8.2.1 Avoiding [1324] and a pattern of size 5

We now use our results to study avoidance of pairs [1324,σ] where [σ] ∈ Av5[1324].

The first two results are special cases of Propositions 8.33 and 8.35 respectively.

Corollary 8.36. We have [1324,σ] for σ ∈ {12453, 12543, 14532, 15432} are all Wilf equiva-

lent and for n ⩾ 4,

#Avn[1324, 15432] = 1+

(
n− 1

2

)
+

(
n

4

)
.

Corollary 8.37. Setting a(n) = #Avn[1324, 15234], we have for n ⩾ 4,

a(n) = 2a(n− 1) + a(n− 2)

with a(2) = 1 and a(3) = 2.

Proposition 8.38. We have for n ⩾ 4,

#Avn[1324, 12345] = Fn+1 − 4+

n−4∑
i=0

(n− 3− i)Fi.

Proof. Note that [12345] is the permutation corresponding to the circled composition

given by

1
5
.

Hence, we have to count the circled compositions of n that avoid 1
5
. We count

them based on the number of 1 s. Such a circled composition can have at most four

1 s.

If the circled composition has four 1 s, it is of the form

1 A 1 B 1 C 1

where A and C consist of just 1s and B consists of 1s and 2s. The number of such

circled compositions of n is
n−4∑
i=0

(n− 3− i)Fi.

This is because the size of B can take values in [0,n− 4] and there are (n− 3− i)

ways to choose the sizes of A and C so that B can have size i ∈ [0,n− 4].
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If the circled composition has three 1 s, it is of the form

1 A 1 B 1

where A and B consist of 1s and 2s and at most one of them can have a 2. The

number of such circled compositions of n is

(n− 2) + 2×
n−3∑
i=2

(Fi − 1).

This is because there are (n− 2) such circled compositions without a 2 and if A has a

2 and is of size i ∈ [2,n− 3], there are Fi − 1 possibilities for A and B should contain

just 1s. A similar argument holds if B has a 2.

If the circled composition has only two 1 s, it is of the form

1 A 1

where A consists of 1s and 2s or has exactly one 3 and all other terms 1. The number

of such circled compositions is

(n− 4) + Fn−2.

Combining all these counts, we get the required result, using the fact that for any

k ⩾ 0,
k∑

i=0

Fi = Fk+2 − 1. (8.6)

Corollary 8.39. Setting a(n) = #Avn[1324, 12345], we have for n ⩾ 6,

a(n) = a(n− 1) + a(n− 2) + (n+ 1)

with a(4) = 5 and a(5) = 12.

Proposition 8.40. We have [1324, 12354] ≡ [1324, 13452]. Setting a(n) =

#Avn[1324, 12354], we have for n ⩾ 3,

a(n) = a(n− 1) + Fn+1 − (n+ 1)
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with a(2) = 1.

Proof. Note that [12354] is the permutation corresponding to the circled composition

X given by

1
3

1 1 .

The circled compositions of n that do not dominate X are those which have no

uncircled number or are of the form

1 A c 1
k

(8.7)

where c ⩾ 1 is the last uncircled number, and A is a sequence such that

1. all uncircled numbers are either 1 or 2,

2. there is at most one 1 , and

3. there are no 1 s after an uncircled 2.

Note that k ⩾ 1 is fixed once A is fixed.

It is clear that a(2) = 1 and that for n ⩾ 3, those circled compositions counted

by a(n) which have no uncircled numbers or whose last uncircled number c is at

least 2 is given by a(n− 1) (replace c by c− 1). We now have to count the circled

compositions of n of the form described by (8.7) where c = 1.

Suppose A has a 1 . Then A is of the form

B 1 C

where B consists of just 1s and C consists of 1s and 2s. Hence, the number of circled

compositions of n of the form (8.7) where c = 1 and A contains a 1 is

n−3∑
i=0

i−1∑
j=0

Fj.

Here i ∈ [0,n− 3] represents the size of A and j ∈ [0, i− 1] represents the size of C.

Suppose A has no 1 s. Then, A just consists of 1s and 2s. Hence, the number of

circled compositions of n of the form (8.7) where c = 1 and A does not contain a 1
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is
n−3∑
i=0

Fi.

Combining the above counts, we get that the number of circled compositions of

n of the form (8.7) where c = 1 is

n−3∑
i=0

i−1∑
j=0

Fj +

n−3∑
i=0

Fi = Fn+1 − (n+ 1)

where the equality is obtained by repeatedly using (8.6). This gives us the required

result.

Corollary 8.41. We have for n ⩾ 2,

#Avn[1324, 12354] = Fn+3 − 1−

(
n+ 2

2

)
.

Proposition 8.42. We have [1324,σ] for σ ∈ {12534, 13542, 14523, 15342, 15423} are all Wilf

equivalent and for n ⩾ 1,

#Avn[1324, 13542] = 2n−1 − (n− 1).

Proof. Note that [13542] is the permutation corresponding to the circled composition

X given by

1 1 1 1 1 .

The circled compositions of n that do not dominate X are those where all uncircled

numbers are consecutive. Such circled compositions can be specified as follows.

1. Consider a sequence of length n consisting of 1s.

2. Select either none or at least two spaces from the (n− 1) spaces between the 1s.

3. Circle all 1s before the first selected space and after the last. If no spaces are

selected, circle all 1s.

4. Combine all 1s between any two consecutive selected spaces to form an uncir-

cled number.

This shows that there are 2n−1 − (n − 1) circled compositions of n where all

uncircled numbers are consecutive.
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From these computations, we get the following result.

Result 8.2. There are 5 Wilf equivalence classes among [1324,σ]-pairs where [σ] ∈ Av5[1324].

This shows that when [σ] ∈ Av5[1324], there are no Wilf equivalences other than

those given in Theorem 8.32.

8.3 Patterns in Grassmannian permutations: Avoiding

[1432,k]-pairs

In Section 7.3, we saw that permutation in Av[1432] can be represented using binary

words via Grassmannian permutations and their inverses. We now translate pattern

avoidance among [1432]-avoiding permutations to the corresponding binary words

and use this to study avoidance of [4,k]-pairs where the pattern of size 4 is [1432].

From [21, Theorem 1.3], we know that for any k ⩾ 1, #Avn[1432, ιk] = 0 for all

n ⩾ 2k− 2. However, if [σ] ∈ Avk[1432] is not of Type I, then #Avn[1432,σ] ⩾ 1 for all

n ⩾ 1 (in particular, [ιn] ∈ Avn[1432,σ]). Hence, we only focus on pairs of the form

[1432,σ] where [σ] ∈ Av[1432] is of Type E, G or IG.

Definition 8.43. For a binary word w, the complement of w, denoted by wc, is the

binary word obtained by changing all 0s to 1s and vice versa.

Theorem 8.44. Let w1 be a binary word starting with 0 and having at least 3 runs. The

permutations contained in [G(w1)] are those of the form [G(w2)] where either w2 or wc
2 is a

subsequence of w1.

Proof. Let the length of w1 be n. Suppose σ is the pattern in G(w1) formed using the

numbers in the set A ⊆ [n].

If the largest number of A is after the descent of G(w1), then σ is already in the

required form (largest number at the end). Also, the numbers before the descent

of σ are precisely those elements of A that are before the descent of G(w1). Hence

the binary word corresponding to σ is the subsequence of w1 corresponding to the

numbers in A.

If the largest number of A is before the descent of G(w1), then the permutation σ

has to be rotated to end with the largest number. Call this permutation σ ′. It can
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be checked that this process results in the numbers before the descent of σ ′ being

precisely those elements of A that are after the descent of G(w1). Hence the binary

word corresponding to σ ′ is the complement of the subsequence of w1 corresponding

to the numbers in A.

Note that even if σ (or σ ′) were the identity permutation, using the convention of

Remark 7.25, the statement of the lemma would still hold.

Example 8.45. The pattern in [G(01301021)] = [146782359] obtained by choosing the

set A ⊆ [9] when

1. A = {2, 3, 4, 7, 9} is [G(01202)], which is shown in Figure 8.3, and when

2. A = {1, 2, 5, 6, 8} is [G(02120)], which is shown in Figure 8.4.

−→

Figure 8.3: The pattern [G(01202)] in [G(01301021)].

−→ =

Figure 8.4: The pattern [G(02120)] in [G(01301021)].
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Theorem 8.46. Let w1 be a binary word starting with 0 and having at least 3 runs. The per-

mutations contained in [IG(w1)] are those of the form [IG(w2)] where w2 = 0n11n2 · · · 1nk0m

where all ni ⩾ 1, m ⩾ 0, and

1i0n11n2 · · · 1nk0m−i

is a subsequence of w1 for some i ∈ [0,m].

Proof. Just as in the proof of Theorem 8.44, we consider the rightmost number (in

IG(w1)) in the set A used to form a pattern in IG(w1). If this number is after the

descent of the inverse permutation (above the dashed line), then the pattern is

already in the required form. As before, it can be checked that the corresponding

binary word is the subsequence of w1 corresponding to numbers used to form the

pattern.

If the rightmost number is before the descent of the inverse permutation (below

the dashed line), then the pattern has to be cyclically shifted to the required form.

Again, it can be checked that the corresponding binary word is the one obtained

from the subsequence of w1 corresponding to A by cyclically shifting the first string

of 1s to the end and changing them to 0s.

Example 8.47. The pattern in [IG(01301021)] = [167283459] obtained by choosing the

set A ⊆ [9] when

1. A = {2, 3, 4, 7, 9} is [IG(0130)], which is shown in Figure 8.5, and when

2. A = {1, 3, 5, 6, 8} is [IG(02102)], which is shown in Figure 8.6.

−→

Figure 8.5: The pattern [IG(0130)] in [IG(01301021)].
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−→ =

Figure 8.6: The pattern [IG(02102)] in [IG(01301021)].

Using Theorem 8.44 and Theorem 8.46, we get the following result about con-

tainment among different types of permutations in Av[1432]. Recall that patterns in

identity permutations are again identity permutations.

Corollary 8.48. We have

1. Type I permutations can be found as patterns in Type I, E, G and IG permutations.

2. Type E permutations can be found as patterns only in Type E, G and IG permutations.

3. Type G permutations can be found as patterns only in Type G permutations.

4. Type IG permutations can be found as patterns only in Type IG permutations.

Example 8.49. From [21, Theorem 2.4], we know that for any n ⩾ 1,

#Avn[1432, 1324] = 1+

(
n− 1

2

)
.

We now prove this using the above description of Av[1432]. Note that [1324] is a Type

E permutations and [G(0101)] = [IG(0101)] = [1324]. It is clear that if w is a binary

word starting with 0 and having at least 4 runs, then [G(w)] and [IG(w)] will contain

[1324]. Using this, we get that the only permutations in Av[1432, 1324] are those of

Type I and those of Type E of the form [G(w)] where w is a binary word starting

with 0 having exactly 3 runs. This gives us the required result.

Theorem 8.44 also gives the following relation with [1342]-avoiding permutations.
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Corollary 8.50. If [G(v)] and [G(w)] are Type G permutations, then [1432,G(v)] ≡
[1432,G(w)] if and only if [1342,σ(v),σ(vc)] ≡ [1342,σ(w),σ(wc)].

Proof. The result is a consequence of the following facts.

1. The binary words corresponding to Type G permutations are non-exceptional

(in the sense of Corollary 8.3).

2. A binary word w1 contains w2 or wc
2 as a subsequence if and only if wc

1 contains

w2 or wc
2 as a subsequence.

We now turn to Wilf equivalences among [1432,k]-pairs. The following lemmas

are trivial Wilf equivalences which follow since [1432rc] = [1432]. They could also be

derived using Theorem 8.44 and Theorem 8.46.

Lemma 8.51. Let w be a binary word starting with 0 and having k ⩾ 3 runs. If run sizes

of w are n1,n2, . . . ,nk, then we have [1432,G(w)] ≡ [1432,G(w ′)] where w ′ is the binary

word starting with 0 having run sizes nk, . . . ,n2,n1.

Lemma 8.52. For any binary word w starting with 0 and having at least 3 runs, we have

[1432, IG(w)] ≡ [1432, IG(w ′)] where

w = 0n11n2 · · · 1nk0m and w ′ = 0nk · · · 0n21n10m.

That is w ′ is obtained from w by reversing and complementing the portion of the binary

word up to the last run consisting of 1s.

We now obtain some non-trivial Wilf equivalences. We use the notation (01)k for

the alternating binary word of length 2k starting with 0.

Lemma 8.53. Let w and w ′ be binary words of the same length starting with 0 and having

at least 5 runs. Suppose w ends with a 1. Then if w ′ either ends with a 1 or w ′ = (01)k0 for

some k ⩾ 2 then [1432, IG(w)] ≡ [1432, IG(w ′)].

Proof. Let w = w1w2 · · ·wm where w1 = 0 and wm = 1. The permutations in Avn[1432]

that contain [IG(w)] are in bijection with binary words of length n starting with 0

that contain w as a subsequence. Such words are clearly in bijection with binary
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words of length (n− 1) that contain w2 · · ·wm as a subsequence. Using the idea in

the proof of Theorem 8.5, we know that the number of such binary words only

depends on m. Hence, if w ′ also ends with a 1, we get [1432, IG(w)] ≡ [1432, IG(w ′)].

The permutations in Avn[1432] that contain [IG((01)k0)] are in bijection with

binary words of length n that contain either (01)k0 or 1(01)k as a subsequence. But

any binary word starting with 0 that contains 1(01)k will automatically contain

(01)k0 as well. Hence, the permutations in Avn[1432] that contain [IG((01)k0)] are in

bijection with binary words of length n that contain (01)k0. The result now follows

just as before.

As suggested by the statement of Lemma 8.51, it will be convenient to represent

binary words as compositions, at least for Type G. For a composition (n1,n2,n3, . . .),

the corresponding binary word is B(n1,n2,n3, . . .) = 0n11n20n3 · · · .

Lemma 8.54. Let w = B(1,n2, . . . ,nk) be a binary word starting with 0 and having

k ⩾ 4 runs with first run of size 1. Then we have [1432,G(w)] ≡ [1432,G(w ′)] where

w ′ = B(n2, . . . ,nk, 1).

Proof. When k ⩾ 5, the result is a consequence of Theorem 8.44 and the fact that the

following statements are equivalent for a given composition (m1,m2,m3 . . . ,mp).

1. The binary word B(m1,m2,m3 . . . ,mp) contains B(1,n2, . . . ,nk) or

B(1,n2, . . . ,nk)
c as a subsequence.

2. The binary word B(m2,m3 . . . ,mp) contains B(n2, . . . ,nk) or B(n2, . . . ,nk)
c as a

subsequence.

3. The binary word B(m2,m3 . . . ,mp,m1) contains B(n2, . . . ,nk, 1) or

B(n2, . . . ,nk, 1)c as a subsequence.

When k = 4, the fact that the number of Type E and Type G permutations

in Avn[1432,G(w)] is the same as the number in Avn[1432,G(w)] follows just as

before. For Type IG, we use the logic of Lemma 8.53 to show that the number

of permutations containing [G(w)] is the same as the number of those containing

[G(w ′)]. We can do so because

1. any binary word with 4 runs that starts with a 0 must end with a 1, and
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2. the number of binary words with 4 runs containing 01n20n31n4 as a subsequence

is the same as the number of those containing 0n21n30n41.

Lemma 8.55. If w = 0101 · · · , an alternating binary word, then we have [1432,G(w)] ≡
[1432, IG(w)].

Proof. If w has length less than 5, then G(w) = IG(w), and we are done. If w

has length k ⩾ 5, then it can be checked that the permutations in Av[1432] that

contain [G(w)] are in bijection with binary words starting with 0 that contain at

least k runs. This can be done using the fact that a binary word starting with 0

containing wc = 1010 · · · must contain w = 0101 · · · . A similar argument shows that

the permutations in Av[1432] that contain [IG(w)] are in bijection with binary words

starting with 0 that contain at least k runs.

Combining the results above, we get the following result. Note that <lex is the

usual lexicographic ordering. This can be replaced with any convenient total order.

Theorem 8.56. Any pair [1432,σ] is Wilf equivalent to a pair [1432, τ] where [τ] has one of

the following forms:

1. [G(w)] where w = 0a1b0c where a ⩾ c.

2. [G(w)] where w is an alternating binary word starting with 0 having at least 4 runs.

3. [G(w)] where w = B(n1,n2, . . . ,nk, 1r) has at least 4 runs, r ⩾ 0, n1,nk ̸= 1, and

(nk, . . . ,n2,n1) ⩽lex (n1,n2, . . . ,nk).

4. [IG(w)] where w = 0n11n2 · · · 1nk0m is not an alternating binary word, has at least 5

runs, m ⩾ 1, and (nk, . . . ,n2,n1) ⩽lex (n1,n2, . . . ,nk).

We now compute the sequence (#Avn[1432,σ])n⩾1 for various [σ] ∈ Av[1432].

Proposition 8.57. Let u be the alternating binary word of length k ⩾ 5 starting with 0. For

any binary word w of length k, starting with 0, having at least 5 runs, and ending with 1,

we have [1432,G(u)] ≡ [1432, IG(u)] ≡ [1432, IG(w)] and for n ⩾ 5,

#Avn[1432,G(u)] = 2n−1 − (n− 1) +

k−2∑
i=4

(
n− 1

i

)
.
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Proof. The Wilf equivalences are by Lemma 8.53 and Lemma 8.55. All Type I, E and

IG permutations avoid [G(u)]. Also, by the proof of Lemma 8.55, we can see that

the number of Type G permutations in Avn[1432] that avoid [G(u)] is the number of

binary words of length n, starting with 0, and having at least 5 but less than k runs.

The number of such words is
k−2∑
i=4

(
n− 1

i

)
.

Using the counts given in Example 7.27, we get the required result.

Proposition 8.58. Let c be a composition with (k+1) ⩾ 5 parts. If k of the parts are 1 and the

other is m ⩾ 2, then setting w = B(c), the generating function
∑∞

n=1 #Avn[1432,G(w)]xn

is given by

3x3 − 3x2 + x

(1− 2x)(1− x)2
+

(
x

1− x

)k
m−2∑

i=0

m−1∑
j=0

(
i+ j

i

)
xi+j+1

+

k∑
i=5

(
x

1− x

)i

.

Proof. By Lemma 8.54, we can assume c = (1, 1, . . . , 1,m). We already know that all

Type I, E and IG permutations avoid [G(w)]. Also, for any binary word v with at

most k runs, [G(v)] avoids [G(w)]. This gives the first and last term of the proposed

generating function.

We have to study those binary words v with at least (k+ 1) runs such that [G(v)]

avoids [G(w)]. The result follows since any such v has the form v1 v2 where v1 is a

binary word with k runs starting with 0 and v2 is a non-empty binary word starting

with 0 (respectively 1) if k is even (respectively odd) and has at most (m− 1) 0s and

at most (m− 1) 1s.

Proposition 8.59. Let c be a composition with 4 parts. If three of the parts are 1 and the

other is m ⩾ 2, then setting w = B(c), the generating function
∑∞

n=1 #Avn[1432,G(w)]xn

is given by

(
x

1− x

)
+

(
x

1− x

)3
1+

m−2∑
j=0

[(
x

1− x

)j+1

− xj+1

]
+

m−2∑
i=0

m−1∑
j=0

(
i+ j

i

)
xi+j+1

 .

Proof. By Lemma 8.54, we can assume w = 0101m. Note that [G(w)] is a Type

E permutation and [G(w)] = [IG(w)] (see Lemma 7.26). We now compute the

contribution of each type to the generating function.
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1. Since all Type I permutations avoid [G(w)], Type I contributes(
x

1− x

)
.

2. The permutations of Type E and Type G that avoid [G(w)] are in bijection with

binary words starting with 0 that have at least 3 runs and contain neither w nor

wc as subsequences. Such binary words either have 3 runs or are of the form

0a 1b 0c v

where v is a binary word starting with 1 that has at most (m− 1) 1s and at most

(m− 1) 0s. Hence, the contribution of Type E and Type G to the generating

function is (
x

1− x

)3
1+

m−2∑
i=0

m−1∑
j=0

(
i+ j

i

)
xi+j+1

 .

3. The permutations of Type IG that avoid [IG(w)] correspond to binary words

that start with 0, have at least 5 runs, and do not contain w as a subsequence.

Such binary words are of the form

0a 1b 0c 1 v

where v is a binary word having at most (m− 2) 1s and at least one 0. Hence

the contribution of Type IG to the generating function is

(
x

1− x

)3
m−2∑

j=0

[(
x

1− x

)j+1

− xj+1

] .

Proposition 8.60. Let w = 010m for some m ⩾ 2. Then,

∞∑
n=1

#Avn[1432,G(w)]xn =

(
x

1− x

)
A(x) +

(
x

1− x

)2

B(x), (8.8)

where

A(x) = 1+

m−2∑
i=0

[
xm+i

[(
1

1− x

)m−i−1

− 1

]
+

(
x

1− x

)i+1

− xi+1

]
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and

B(x) =
x(xm − 1)(1− xm−1)

(1− x)2
+

m−2∑
i=0

m−1∑
j=0

(
i+ j

i

)
xi+j+1.

Proof. The first term in (8.8) is the contribution of Type I, E and IG permutations.

The Type I permutations contribute (
x

1− x

)
.

By Lemma 7.26, we have [G(w)] = [IG(01m0)]. Hence, the Type E and IG permutations

correspond to binary words starting with 0 and having at least 3 runs that do not

contain 01m0 or 101m as subsequences. We consider two cases. Such binary words

that do not contain 01m as a subsequence are of the form

0a 1 v

for some a ⩾ 1 and a binary word v containing at least one 0 and at most (m− 2) 1s.

They contribute (
x

1− x

)m−2∑
i=0

[(
x

1− x

)i+1

− xi+1

]
.

Such binary words that contain 01m as a subsequence are of the form

0 0a1 1 0a2 1 · · · 0am 1 1i

where a1,a2, . . . ,am ⩾ 0 with ak ̸= 0 for some k ⩾ 2, i ∈ [0,m− 2], and ak+1 = 0 for

k ∈ [i]. Hence, they contribute

m−2∑
i=0

xm+1+i

(
1

1− x

)[(
1

1− x

)m−i−1

− 1

]

The second term in (8.8) is the contribution of Type G permutations. These

correspond to binary words starting with 0, having at least 5 runs, and not containing

010m or 101m as subsequences. These are binary words of the form

0a 1b 0 v

where a,b ⩾ 1 and v is a binary word with at most (m − 2) 0s and (m − 1) 1s.

Omitting such binary words that have 3 or 4 runs, gives the required result.
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8.3.1 Avoiding [1432] and a pattern of size 5

The first three results are special cases of [21, Theorem 1.3], Proposition 8.57, and

Proposition 8.59 respectively.

Corollary 8.61. We have for n ⩾ 8,

#Avn[1432, 12345] = 0.

Corollary 8.62. We have [1432, 13524] ≡ [1432, 14253] and for n ⩾ 5,

#Avn[1432, 13542] = 2n−1 − (n− 1).

Corollary 8.63. We have [1432,σ] for σ ∈ {12435, 13245, 13425, 14235} are all Wilf equiva-

lent and for n ⩾ 4,

#Avn[1432, 13425] = 1+

(
n

3

)
+

(
n− 3

2

)
.

Before proving other results, we note the following interesting corollary to [12,

Theorem 2], Proposition 8.42, and Corollary 8.62.

Corollary 8.64. We have [1342] ≡ [1324,σ] ≡ [1432, 13524] ≡ [1432, 14253] for all σ ∈
{12534, 13542, 14523, 15342, 15423}.

Proposition 8.65. We have for n ⩾ 6,

#Avn[1432, 15234] = 11n− 43.

Proof. Note that [15234] = [G(0130)] = [IG(0103)]. We count the permutations in

Avn[1432] that avoid [15234] by type.

Type E and G permutations avoiding [15234] correspond to binary words starting

with 0, having at least 3 runs, and not containing the subsequences 0130 and 1031. It

can be checked that such a binary word must have at most 6 runs. The following

facts about such binary words are easy to verify.

1. Those with 3 runs are of the form 0a1b0c for some a,b, c ⩾ 1 where b ⩽ 2.

2. Those with 4 runs are of the form 0a1b0c1d for some a,b, c,d ⩾ 1 where b, c ⩽ 2.

3. Those with 5 runs are of the form 0a10b10c for some a,b, c ⩾ 1 where b ⩽ 2.
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4. Those with 6 runs are of the form 0a10101b for some a,b ⩾ 1.

Type IG permutations avoiding [15234] correspond to binary words starting with

0, having at least 5 runs, and not containing the subsequences 0103, 10102, 12010 and

1301. Again, it can be checked that such binary words have at most 6 runs and that

the following facts about such binary words are true.

1. Those with 5 runs are of the form 0a101b0 for some a,b ⩾ 1.

2. Those with 6 runs are of the form 0a10101b for some a,b ⩾ 1.

Counting such binary words of length n and including the Type I permutation

as well, we get the required result.

The proofs of the following results are similar.

Proposition 8.66. We have [1432, 12534] ≡ [1432, 14523] and for n ⩾ 6,

#Avn[1432, 12534] = 8n− 31+

(
n− 2

2

)
.

Proposition 8.67. We have for n ⩾ 6,

#Avn[1432, 12453] = 10n− 39+

(
n− 3

2

)
.

Proposition 8.68. We have [1432, 12354] ≡ [1432, 13452] and for n ⩾ 6,

#Avn[1432, 12354] = 9n− 34+

(
n− 4

2

)
+

(
n− 3

2

)
.

Proof. This result could also be proved using Proposition 8.60.

From the above computations, we get the following result.

Result 8.3. There are 7 Wilf equivalence classes among [1432,σ]-pairs where [σ] ∈ Av5[1432].

This shows that when [σ] ∈ Av5[1432], there are no Wilf equivalences other than

those given in Theorem 8.56.
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Chapter 9

Future directions

In the proofs of results in Section 8.1, we have shown that for subsequence pattern

avoidance in binary words, all patterns of a given size are Wilf equivalent. Also, we

have shown that there are only trivial Wilf equivalences among pairs of patterns of

the form {0a+11b, 1b+10a}.

Question 9.1. What more can be said about pattern avoidance in binary words and what

implications do they have for avoidance of [1342,k] and [1432,k]-pairs?

For example, what can be said about avoiding pairs of the form {w1,w2} where

w1 and w2 are non-exceptional binary words? This corresponds to studying

Av[1342,σ(w1),σ(w2)]. In the special case when w2 = wc
1, this corresponds to study-

ing Av[1432,G(w1)]. Also, is there a simple formula for #Avn[1342,σ(0a+11b)] for

arbitrary a,b ⩾ 1 (see Remark 8.13)? We note that in [43, 44], which are both joint

work with Anurag Singh, we study patterns in Grassmannian permutations as well

as subsequences in binary words.

In Section 8.2, for a circled composition that has at least one uncircled number,

we were able to use its left-most occurrence to give a description of the circled

compositions that dominate it. This description could also be used to get a generating

function for such circled compositions (see Remark 8.27). This method does not

seem to work for circled compositions of the form 1
n

.

Question 9.2. Is there a general way to describe or count the circled compositions that

dominate 1
n

for n ⩾ 1?
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This corresponds to studying the avoidance class Av[1324, ιn]. Therefore, Corol-

lary 8.39 might be useful if it can be combinatorially proved and generalized.

We have proved various Wilf equivalences among [1324,k]-pairs as well as

[1432,k]-pairs. However, unlike for [1342,k]-pairs, we have not shown that these are

the only equivalences.

Question 9.3. Are there any Wilf equivalences among [1324,k]-pairs (respectively [1432,k]-

pairs) other than those described in Theorem 8.32 (respectively Theorem 8.56)?

The methods we have used made it natural to study Wilf equivalences among

[4,k]-pairs for which the pattern of size 4 is the same (or trivially Wilf equivalent).

This raises the following problem.

Question 9.4. What can be said about Wilf equivalences among [4,k]-pairs where the

patterns of size 4 are different?

From the computations in Sections 8.1.1, 8.2.1 and 8.3.1, we note that there is

only one Wilf equivalence among [4, 5]-pairs where the patterns of size 4 are not

trivially Wilf equivalent, i.e., [1324, 12534] ≡ [1432, 13542] (see Corollary 8.64). Hence,

there are 14 Wilf equivalence classes of [4, 5]-pairs.

Most of the sequences that enumerate avoidance classes for [4, 5]-pairs are avail-

able in the OEIS [53]. We list them in Table 9.1 where we specify a representative from

a Wilf equivalence class and its corresponding OEIS sequence number. Studying

other descriptions for these sequences mentioned in the OEIS might yield interesting

combinatorial questions.

Finally, we note that in Examples 7.9, 7.20 and 7.28, we used the combinatorial

descriptions for circular permutations avoiding a pattern of size 4 to study cyclic

descent generating functions. Similarly, these descriptions might make it easier to

obtain enumerative results for other statistics on circular permutations avoiding

patterns of size 4 (see [21, Section 5.2]).
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[4, 5]-pair OEIS sequence number

[1342, 12345] A028387

[1342, 12435] A050407

[1342, 12354] A016789

[1324, 12453] A027927

[1324, 15234] A000129

[1324, 12345] A210673

[1324, 12354] A116717

[1324, 12534] A000325

[1432, 12435] A116721

[1432, 15234] A017401

Table 9.1: OEIS sequences appearing in the pattern avoidance of [4, 5]-pairs.
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