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Abstract
Topological complexity of a configuration space X is a homotopy invariant in robotics that measures the
minimum number of discontinuities of a continuous motion planning problem. In this thesis, we will
define it formally, discuss its properties such as homotopy invariance, and compute it for various spaces.
We also discuss notions such as sectional category, Lusternik-Schnirelman category, and other variants
of topological complexity that are relevant to our topic at hand.

The notion of sectional category of a fibration, defined by A.S Schwarz in [12], is a very useful
concept that generalises the notion of topological complexity. It can be shown that the topological
complexity is the sectional category of the fibration π : XI −→ X × X; α 7→ (α(0),α(1)), where XI is
equipped with compact open topology. We also use the sectional category to define other homotopy
invariants, such as the Lusternik-Schnirelman category. The notion of Lusternik-Schnirelman category
is very well known and well-investigated on its own right due to the connections it has to the number of
critical points of a smooth function from a closed smooth manifold. It is useful for giving bounds for
TC(X) and thus useful in computations.

After computing TC(X) for some easy examples, we proceed to discuss a problem that is of great
practical interest: finding the complexity of collision-free motion planning of n point-like objects in Rk.
We consider two cases: the case where there are no obstacles and the case when there are m point-like
obstacles, that are possibly moving.

In the last two chapters, we briefly give a survey of some similar notions such as higher topological
complexity, and other variants of topological complexity, such as monoidal topological complexity and
symmetric topological complexity.
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Introduction

Consider a mechanical system with a configuration space X. The set X has the structure of a topological
space, that formalises how similar two configurations are. As an example, we consider the system of a
rigid rod of length r, fixed to a point O in Rk+1, free to rotate around the point. See Fig. 1.1. Since, the
position of the other end of the rod completely determines the configuration, and this can take any point
in the sphere of radius r centred at O, it makes sense to consider the configuration space as the k-sphere,
S k. Given a pair of initial and final configurations, A and B of the system, we can now ask how to take
the system from A to B, in a continuous way. This is equivalent to finding a continuous path in X from A
to B.

Motion planning problem deals with finding an algorithm that takes in two points A and B and gives
us a path joining A to B in such a way, that the algorithm depends as continuously as possible, on the
pair (A, B). Topological complexity of X, TC(X), is a measure of the minimal number of discontinuities
such an algorithm should have. It turns out that TC(X) is a homotopy invariant of X.

The notion of topological complexity was defined by Farber in his paper [2]. Computation of TC(X)
for various spaces have been an active area of research in the following years. Notions similar to TC(X)
have also been investigated extensively.

In this thesis, we introduce topological complexity, discuss its basic properties and its relevance to
the motion planning problem. We also give an alternate definition for it, which agrees with the original
version on smooth manifolds.

Schwarz genus, also known as the sectional category of fibration, was introduced by A S Schwarz in
1961 in the paper [12]. This turns out to be very useful in the theory of TC(X), as TC(X) itself is the
sectional category of a specific fibration, known as the path fibration. This, and similar notions such as
Lusternik-Schnirelman category of a space are discussed in Chapter 2.

We also discuss the problem of computing the complexity of collision-free motion planning of n
point-like particles avoiding collisions with themselves and m obstacles, and its connection to TC(X).
The m = 0 case for this problem was investigated by Farber, Grant and Yuzvinsky, in a 2006 paper [6]
and was completed by Farber and Grant in [4]. The general m case was completed in [5]. We discuss the
collision-free motion problem in detail in Chapter 4.

Other notions similar to TC(X) are discussed. These include higher topological complexity, which
generalises TC(X) and talks about the complexity of finding a motion planning algorithm with the
system travelling through specific configurations in between the motion of the system; symmetric
topological complexity, which attempts to treat the starting and the ending points of the motion of the
system on an equal footing; and other notions such as monoidal topological complexity. We talk about
higher topological complexity in Chapter 5, and briefly give some results for monoidal topological
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complexity and symmetric topological complexity in Chapter 6.

Chapterwise organisation

Chapter 1 The motion planning algorithm and some examples of configuration spaces are given in
Section 1.1. We proceed on to define the topological complexity in Section 1.2, and give an alternate
version of topological complexity, using Euclidean Neighborhood retracts, in Section 1.3.

Chapter 2 In this chapter, we discuss the notion of sectional category. After giving the necessary
language for it, we define the sectional category in Section 2.1. The properties of sectional category like
the product inequality, and the invariance under fiber homotopy equivalence, are discussed in Section
2.2. We also prove these for the particular case of topological complexity as the sectional category of
the path fibration. Finally, in Section 2.3, we define the Lusternik-Schnirelman category and give some
of its properties and bounds.

Chapter 3 In this chapter, we focus on the computations of topological complexity. First, in Section
3.1, we give some bounds for topological complexity, that helps us in our computations. These include
the well-known dimension bound, dimension-connectivity bounds and the cohomological lower bound.
After this, we compute the topological complexity of some well-known spaces in Section 3.2.

Chapter 4 Here, we discuss the problem of collision-free motion planning of n point-like objects
in Rk. For this, in Section 4.1, we discuss the configuration space of the system, and compute the
cohomology groups of the related spaces in Section 4.2. We deal with the problem for the case with no
obstacles in Section 4.3, and the case with m possibly-moving obstacles in Section 4.4.

Chapter 5 We give a brief survey of results about higher topological complexity, TCn(X), here. In
Section 5.1, we define the higher topological complexity, and give its practical interpretation for robotics.
The Section 5.2 states some of the properties and bounds of higher topological complexity. We also
mention some results in computing TCn(X) in Section 5.3.

Chapter 6 We discuss briefly some of the other variants of TC(X) that are of interest, in the motion
planning problem. Specifically, we discuss the monoidal topological complexity in Section 6.1, and the
symmetric topological complexity in Section 6.2.



Chapter 1

Preliminaries

In this chapter, we begin with considering the motion planning problem of a robotic system, and giving
a mathematical model for it. After giving some examples of interesting mechanical systems and their
configuration spaces, we proceed to understand the importance of a notion of complexity for motion
planning, and define the topological complexity, TC(X), formally. We also give another similar but
distinct definition for the notion of topological complexity, and give a result about the equivalence of the
two definitions on smooth manifolds.

1.1 The motion planning problem

Consider a mechanical system with all the possible configurations of the system already known. We
assume that the possible configurations of the system can be modelled as a topological space, called
the configuration space, X. In fact, throughout this thesis, we assume that X is a CW complex, unless
otherwise mentioned.

Example 1.1. Consider a rigid rod, say, of length r with its one end fixed, to a point in Rk+1 such that it
is free to rotate around the point, in the space Rk+1. We note that the configurations of this space can be
given by the coordinate of the second end, and this forms a k-sphere of radius r, around the fixed end.
Thus, here, the configuration space can be modelled as S k. See Fig. 1.1.

Figure 1.1: Rigid rod in R2 with one end fixed

1



1.1. THE MOTION PLANNING PROBLEM 2

θ1
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Figure 1.2: Mechanical linkage in R2 with 4 rods.

Example 1.2. Let us generalise Example 1.1, by considering a mechanical linkage with n rods attached
one-by-one to the former one’s end, whereas the first one is fixed to a fixed point in Euclidean space
Rk+1. Each rod is allowed to rotate it in space, around its initial point. We simplify our model, by
allowing self-intersections of the rods with each other. See Figure Fig. 1.2.

This gives us a system with a configuration space S k × · · · × S k (n times).

Example 1.3. Consider a system with n point-like objects in Rk, that tries to avoid collision with a
single, point-like obstacle O. Note that the obejcts are allowed to collide with each other (i.e., occupy
the same point in space) and move through each other. This is a system where each of the n objects can
take any value in Rk\{O}. See Fig. 1.3. The configuration space is (Rk\{O}) × · · · × (Rk\{O}).

Example 1.4. Consider a rigid rod in Rk+1, with its center fixed at a specific point O ∈ Rk+1. It is free
to rotate in Rk+1, and two configurations are considered equivalent, as long as the rod is pointing in
the same direction, irrespective of its orientation. (By this we mean that if the tip of the rod is pointing
in the direction of vector v ∈ S k, or in the direction of −v, both are actually considered to be the same
configuration.) See Fig. 1.4.

The configuration space of this system is RPk, the real projective space of dimension k.

Finding a movement of the system from configuration A to B is modelled as finding a path from
point A to point B, in our configuration space. Trying to find such a path from point A to B in X, in a way
that the path depends continuously on the pair (A, B), is what the motion planning problem attempts to
do.

We now give the relevant mathematical terminology associated to this.

Definition 1.5 (Path fibration). For a topological space X, the path fibration is the map π : XI −→

X × X; p 7→ (p(0), p(1)), where I = [0, 1] and XI is equipped with the compact-open topology.

Definition 1.6. A continuous section of the path fibration π, is called a continuous motion planning
algorithm on X.

We now proceed on to see how the notion of topological complexity comes into the picture, in the
next section.
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O

Figure 1.3: The system of 4 point-like objects (blue) in R2, that tries to avoid collision with the point-like
obstacle O (black).

O

Figure 1.4: Rod in R2, free to rotate around its centre, without caring about its orientation.
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1.2 The definition of TC(X)

Here, we will see that a continuous motion planning algorithm on X is possible only for very limited
cases of X, namely the case when X is contractlible. This forces us to consider sections of π that are not
globally continuous, however with minimal possible number of discontinuities. This minimal number,
defined formally, is called the topological complexity.

We first begin with showing the following theorem:

Theorem 1.7. A globally continuous section of π is possible if and only if X is contractible.

Proof. (⇒): Suppose a globally continuous section s : X × X −→ XI of π exists. Fix c ∈ X.
Consider the map S c : X × I −→ X; (α, s) 7→ s(α, c)(s). S c turns out to be a continuous map (From

properties of compact-open topology [7]), and gives us a homotopy in X between the maps idX and the
constant function c, as

S c(x, 0) = x ; S c(x, 1) = c ∀ x ∈ X

proving that X is contractible.
(⇐): Suppose S is a homotopy in X between idX and c, a constant map such that

S (x, 0) = x ; S (x, 1) = c ∀ x ∈ X.

For each α ∈ X, let hα be the path obtained from S , joining α to S ; i.e.,

hα(t) := S (α, t).

Now, given (α, β) ∈ X × X, we can consider the path hβ ∗ hα, the path obtained by concatenating hβ
with hα, the homotopy inverse path of hα. It can be seen that the map

s : X × X −→ XI ; (α, β) 7→ hβ ∗ hα

is continuous, and thus gives us a continuous section of π. □

Thus, we can see that except in very limited cases, it is impossible to obtain a continuous motion
planning algorithm on X. We then attempt to do the next best thing: we divide X × X to open patches
each of which contains a local section of π. However, we would like to do this in a way such that only
the minimum number of local patches are being used, so that the number of discontinuities are as less as
possible. Topological complexity represents this minimal number of local patches required.

Definition 1.8 (Topological complexity). Consider the space X and the path fibration π : XI −→

X × X; p 7→ (p(0), p(1)). The minimal number k such that there are open subsets U0, U1, · · ·Uk

covering X × X, with continuous sections si : Ui −→ XI of π on each Ui, is called the topological
complexity of X. It is denoted by TC(X).

Corollary 1.9. We have, TC(X) = 0 if and only if X is contractible.

Proof. Immediate from Theorem 1.7 and the definiton of TC(X). □
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Remark 1.10. We note that TC(X) we defined here is one less than the value of TC(X) defined in
Farber’s paper [2]. This is an intentional choice and we follow the notation from [11], as this makes
our equations look simpler. This version is also sometimes called the ‘reduced’ version of topological
complexity, to distinguish it from the [2] version.

There is another way to define the notion of complexity of motion planning, and it turns out that
this agrees with the value of TC(X), atleast when X is a smooth manifold. We discuss this in the next
section.

1.3 The ENR Version

In defining TC(X), we had tried to cover X × X, by open sets with sections on them. However, in doing
so, there was some ambiguity in defining a global (possibly discontinuous) section, as two open patches
Ui and U j can intersect and both the local sections si and s j exist on the intersection. To avoid this
ambiguity, we try to partition X × X into disjoint collection of nice enough subsets, each of which has a
continuous section of π on it. This gives rise to an alternate version of topological complexity.

We start by precisely defining what we mean by the ‘nice enough’ subsets:

Definition 1.11 (Euclidean Neighborhood retracts). A Euclidean Neighborhood retract (ENR) is a
topological space X, homeomorphic to a subset Y of a Euclidean space Rn, such that there exists an
open neighborhood U in Rn containing Y where Y is a retract of U.

Now, we proceed on to define this alternate notion of topological complexity.

Definition 1.12. TCENR(X) is defined as the minimum k such that there are disjoint ENRs E0, E1, · · · Ek

covering X × X, with continuous sections si : Ei −→ XI of π on each Ei.

We state the equivalence of the two notions on smooth manifolds. We do not give a proof here.
Interested reader can refer [3] for the proof.

Theorem 1.13 (Theorem 6.1(1), [3]). Suppose X is a connected C∞ smooth manifold. Then

TCENR(X) = TC(X).

Since E0, E1, · · · Ek are disjoint subsets that cover X × X, using ENRs instead of open subsets
U0, U1, · · ·Uk as in the definition of TC(X), removes the ambiguity we had about having a global
(possibly discontinuous) section.



Chapter 2

The Sectional category

In this chapter, we introduce the sectional category, or Schwarz genus, of a fibration, after setting up the
necessary language for it. Introduced by A S Schwarz in his paper [12], this is a very useful notion that
can be considered as a generalisation of TC(X).

After defining it, and showing its basic properties such as invariance under homotopy equivalence
and the product inequality, we proceed to define a similar notion, Lusternik-Schnirelman category. We
also discuss the relations of these concepts with TC(X).

2.1 The definition of the sectional category

We first define the notion of a fibration.
Let p : E −→ B be a continuous map, and Y a topological space. Also, let i0 : Y −→ Y × I be the

map y 7→ (y, 0).

Definition 2.1 (Homotopy Lifting Property). The pair (Y , p) is said to satisfy homotopy lifting property
(HLP) if for any homotopy h : Y × I −→ B and map f : Y −→ E such that p ◦ f = h ◦ i0, it there exists
a map h̃ : Y × I −→ E such that the following diagram commutes:

Y E

Y × I B
h

f

i0 h̃ p

Definition 2.2 (Fibration). A continuous map p : E −→ B is called a fibration if for any topological
space Y , the pair (Y , p) satisfies HLP.

Remark 2.3. This version of fibration is called a Hurewicz fibration. There is a more general version of
fibration where HLP needs to be satisfied only for Y = In, i.e., n dimensional cubes. This is called a
Serre fibration. However, when we talk about fibrations, unless otherwise mentioned, we mean Hurewicz
fibration.

6



2.1. THE DEFINITION OF THE SECTIONAL CATEGORY 7

For a fibration p : E −→ B and a continuous function g : X −→ B, let

X ×g E :=
{
(x, e) ∈ X × E

∣∣∣ g(x) = p(e)
}

with the subspace topology from X × E. We also sometimes denote this space by g∗E.

Definition 2.4 (Pullback fibration, [9]). If p : E −→ B is a fibration and g : X −→ B is any continuous
map, then the projection map pr1 : X ×g E −→ A is a fibration. This is called the Pullback fibration.

Theorem 2.5. If p : E −→ B, p′ : E′ −→ X are fibrations and g : X −→ B and f : E −→ E′ are
continuous maps such that p ◦ f = g ◦ p′, then there exists a continuous map h : E′ −→ X ×g E such
that the following diagram commutes:

E′ E

X ×g E

X B
g

p

h

pr1

f

p′

pr2

For more details on fibrations we can refer to [9].
We now define the concept of fiber-homotopy equivalence. This will turn out to be a very useful

concept in understanding when two fibrations have the same sectional category.

Definition 2.6 (Fiber-homotopy equivalence). Suppose q : D −→ B and p : E −→ B are continuous
maps. A fiber homotopy equivalence is a map f : D −→ E, that has a homotopy inverse g : E −→ D
along a homotopy that satisfies that it is a map over B at each time t.

That is, if H : E × I −→ E is the homotopy that takes f ◦ g to idE , and ht : E −→ E represents the
homotopy H at time t, then the following diagram commutes for each t ∈ [0, 1].

E E

B

p

ht

p

Similarly for the homotopy G : D × I −→ D from g ◦ f to idD also.

Now, we are in a position to define the sectional category and discuss its properties:

Definition 2.7 (Sectional category). Consider a fibration p : E −→ B. The sectional category or Schwarz
genus of p is defined as the minimum k such that there are open subsets U0, U1, · · ·Uk covering B, with
continuous sections si : Ui −→ E of p on each Ui. It is denoted by secat(p).

Remark 2.8. Recall that the path fibration π : XI −→ X × X is the map p 7→ (p(0), p(1)). We note
that TC(X), defined as the minimal number of open sets U0, U1, · · ·Uk covering X × X , with continuous
sections si : Ui −→ XI of π on each Ui, is equal to secat(π).
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2.2 Properties of the sectional category

Here, we continue with our discussion of sectional category and its properties. We first give a product
inequality for the sectional category, and then use this to prove the product inequality for TC(X).

Definition 2.9. If p : E −→ B and p′ : E′ −→ B′ are two fibrations , then their product is the map
p × p′ : E × E′ −→ B× B′; (e, e′) 7→ (p(e), p′(e′)).

Theorem 2.10. Given two fibrations p and p′,

secat(p × p′) ≤ secat(p) + secat(p′)

Proof. See [12]. □

Corollary 2.11 (Product inequality). We have,

TC(X × Y) ≤ TC(X) + TC(Y) (2.1)

Proof. We recall the path fibration πX : XI −→ X × X; p 7→ (p(0), p(1)). We note that πX×Y = πX × πY ,
and hence we have the result. □

We would like to discuss how the sectional category behaves under homotopy invariance. As a first
step to this, we compare the sectional categories of a fibration and its pullback fibration.

Theorem 2.12. Suppose ξ = {p : E −→ B} be a fibration, and f : X −→ B be a continuous map. We
can consider the pullback f ∗E and obtain a fibration pr1 : f ∗E −→ B such that the following diagram
commutes :

f ∗E E

X B

pr2

p

f

pr1

We have,
secat( f ∗ξ) ≤ secat(ξ).

Proof. Suppose U0, U1, · · · , Un (where n := secat(p)) is a collection of open sets on B, with a local
section si : Ui −→ E, of p, on each Ui. We try to construct local sections of pr1 on f −1(Ui)s, so that we
can conclude secat(pr1) ≤ n = secat(p).

For this, for i fixed, consider the map

ti := (si ◦ f , idX) : f −1(Ui) −→ E × X

Since f ∗E :=
{
(x, e) ∈ E × X

∣∣∣ p(e) = f (x)
}

and p ◦ si ◦ f = f ◦ idX , we have that image of ti is in
f ∗E. Since it is clear that pr1 ◦ ti = id f −1(Ui), we have ti as a local section of pr1 on f −1(Ui). □
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Theorem 2.13. Suppose there are two fibrations p : E −→ B and p′ : E′ −→ B such that the following
diagram commutes:

E E′

B B

p p′

f

Then, we have secat(p′) ≤ secat(p). Also if f is a fiber homotopy equivalence, then secat(p) =
secat(p′).

Proof. Suppose U0, U1, · · · , Un (where n := secat(p)) is a collection of open sets on B, with a local
section si : Ui −→ E, of p, on each Ui. We try to construct local sections of p′ on Uis, so that we can
conclude secat(p′) ≤ n = secat(p).

For this consider the maps ti := f ◦ si : B −→ E′. We know, from the diagram Theorem 2.13, that :

p′ ◦ ti = p′ ◦ f ◦ si

= p ◦ si

= idUi

showing that tis form local sections of p′ on Ui s.
If f is a fiber homotopy equivalence, we just consider a fiber homotopy inverse of f , say h : E′ −→ E,

in place of f and use a similar argument to get secat(p) ≤ secat(p′). □

Theorem 2.14 (Homotopy invariance). If two fibrations p : E −→ B and p′ : E′ −→ B′ are such that
the following diagram commutes:

E E′

B B′

f

g

p′p

Suppose f is a fiber homotopy equivalence and g is a homotopy equivalence, then secat(p) =

secat(p′).

Proof. Using Theorem 2.5, the above diagram induces a new map from E to g∗E′ such that the following
diagram commutes:
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E

E′ ×B′ B E′

B B′

pr2

p′pr1

g

q f

p

Now the commuting square

g∗E′ E′

B B′

pr2

p′pr1

g

gives us that secat(pr1) ≤ secat(p′), using Theorem 2.12; whereas the commuting square:

E g∗E′

B B

q

p pr1

gives us that secat(p) = secat(pr1), using Theorem 2.13. Thus, secat(p) ≤ secat(p′). Proceeding
similarly with their respective homotopy inverses, we also get that secat(p′) ≤ secat(p), proving that

secat(p) = secat(p′).

□

Corollary 2.15. We have that TC(X) is invariant under homotopy equivalence.

Proof. Suppose X, Y are homotopy equivalent spaces with f : X −→ Y and g : Y −→ X such that
g ◦ f ≃ idX and f ◦ g ≃ idY . Consider the diagram

XI Y I

X × X Y × Y

πX

f∗

f× f

πY

where f∗ is the map α 7→ f ◦ α, f × f is the map (α, β) 7→ ( f (α), f (β)) and πX and πY are the
corresponding path fibrations for X and Y respectively. We can see that both of them are homotopy
equivalences. (Compositions with g∗ and g × g gives maps homotopic to corresponding identity maps.)
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It can also be proved that f∗ is a fiber-homotopy equivalence [9]. Thus, using Theorem 2.14, we get that
secat(πX) = secat(πY) and thus we get,

TC(X) = TC(Y).

□

Now that we have discussed the sectional category in some detail, and have mentioned how TC(X)
is a specific example of a sectional category, we proceed to give another relevant example in the next
section.

2.3 The Lusternik-Schnirelman category

In this section, we briefly discuss a similar notion, Lusternik-Schnirelman category or LS category. This
is a similar concept to that of TC(X) that is useful in its own right, mainly due to the connections it has
with the number of critical points of a smooth function f : M −→ R on a closed smooth manifold M.

However, here we use this concept to give some bounds and inequalities for TC(X), which will turn
out to be useful for us for TC(X) computations.
Fix x0 ∈ X. Consider the the space

P(X, x0) =
{
α ∈ XI | p(α) = α(0)

}
.

The map p : PX −→ X; α 7→ α(0) is a fibration.

Definition 2.16 (Lusternik-Schnirelman category). Lusternik-Schnirelman category of X is the sectional
category of the fibration p defined above. We denote it by cat(X).

Remark 2.17. An equivalent way to define Lusternik-Schnirelman category is, it is the minimal integer
k such that there exist open sets U0, · · · , Uk that cover X, such that the inclusion maps Ui −→ X are
each null-homotopic.

Theorem 2.18. (Homotopy invariance) The Lusternik-Schnirelman category, cat(X), is a homotopy
invariant of X.

Proof. Similar to the proof of Corollary 2.15. □

Here, we briefly give some inequalities that involve the notions of TC(X), cat(X) and the sectional
category of a fibration p.

Theorem 2.19 (Theorem 7.1, [11]). For any fibration p : E −→ B, we have,

secat(p) ≤ cat(B).

Theorem 2.20 (Theorem 5, [2]). If X is a path-connected CW complex, then

cat(X) ≤ TC(X) ≤ 2cat(X).
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Definition 2.21. A closed subset X of Y is called a neighborhood retract of Y , if X is a retract of some
open neighborhood that contains X.

Definition 2.22. A metrizable space X is called an absolute neighbourhood retract if for any metrizable
space Y such that X is a closed subset of Y , we have that X is a neighborhood retract of Y .

Theorem 2.23 (Theorem 7.7, [11]). If X, Y are two absolute neighbourhood retracts, then we have,

max
{
TC(X), TC(Y), cat(X × Y)

}
≤ TC(X ∨ Y) ≤ TC(X) + TC(Y) + 3.



Chapter 3

Some computations

In this chapter, we try to see how to compute the TC(X) for some interesting spaces X. For this, in the
first section, we give some of the known upper bounds and lower bounds for TC(X). Second section
involves some explicit computations of TC(X) using these bounds.

3.1 Bounds for topological complexity

Since TC(X) is a homotopy invariant of X that takes values in non-negative integers, getting sharp
enough upper and lower bounds is a way to compute it. Here, we give some upper bounds of TC(X)
in terms of dimension and connectivity (Theorem 3.1 and Theorem 3.2). We restrict our attention to
spaces homotopy equivalent to a path-connected CW complex.

Cohomology ring of a space is a very useful homotopy invariant of a topological space, that helps us
give a lot of information about its topology. It turns out that this is very useful in giving a good lower
bound for TC(X) (Theorem 3.7).

3.1.1 The dimension bound

Theorem 3.1. For a path-connected CW complex X of dimension dim X, we have,

TC(X) ≤ 2 dim X.

Proof. It is known that cat(X) ≤ dim(X). (See [8].) This, along with the right bound in Theorem 2.20
gives us the result. □

3.1.2 The dimension-connectivity bound

Theorem 3.2 (Theorem 5.2, [3]). If X is an r-connected CW polyhedron of dimension dim X, then

TC(X) <
2 dim X + 1

r + 1
.

Corollary 3.3. If X is a simply-connected CW polyhedron, then

TC(X) ≤ dim X.

13
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Proof. Since X is simply connected, it is 1-connected. From Corollary 3.3, we have

TC(X) <
2 dim X + 1

1 + 1
= dim X + 1/2

giving us that TC(X) ≤ dim X. □

3.1.3 The cohomological lower bound

Given a space X, and a field k, we can consider the map induced by the cup product, in H∗(X; k):

H∗(X; k) ⊗ H∗(X; k)
⌣
−−−−→ H∗(X; k).

We note that H∗(X; k) ⊗ H∗(X; k) is also a graded k algebra with the multiplication

(u1 ⊗ v1) · (u2 ⊗ v2) = (−1)|v1 ||u2 |(u1u2 ⊗ v1v2)

where |v1| and |u2| are the degrees of v1 and u2 respectively; and that ⌣ forms a graded k-algebra
homomorphism.

Definition 3.4. The kernel of the map ⌣ is called the ideal of zero-divisors of H∗(X; k). We denote it
by Ik(X).

Definition 3.5. The length of the longest non-trivial product in the ideal of zero-divisors of H∗(X; k) is
called the zero divisor cup length of H∗(X, k). We denote it by zclk(X).

Let p : E −→ B be a fibration.

Theorem 3.6 (Theorem 4, [12]). If ξ1 ∈ H∗(B, A1), ξ2 ∈ H∗(B, A2),... ,ξn ∈ H∗(B, An) are such that
p∗ξi = 0 for each i, and ξ1 ⌣ · · ·⌣ ξn ∈ H∗(B,

⊗n
i=1 Ai) is non zero, then secat(p) ≥ n.

Theorem 3.7 (Cohomological lower bound). We have a lower bound for TC(X) in terms of the zero
divisor cup length of H∗(X, k):

TC(X) ≥ zclk(X).

Proof. Consider the following commutative diagram, where c : X −→ XI is the map x 7→ cx, cx being
the constant path x from I to X; and ∆ : X −→ X × X is the diagonal map x 7→ (x, x).

X XI

X × X

π

c

∆

We note that c is a homotopy equivalence. Thus, applying the cohomology functor H∗(_; k) where k
is a field, and composing ∆∗ := H∗(∆; k) with the Kunneth isomorphism φ : H∗(X; k) ⊗ H∗(X; k) −→
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H∗(X × X; k), we get a map ψ : H∗(X; k) ⊗ H∗(X; k) −→ H∗(X; k) such that the following diagram
commutes:

H∗(X, k) H∗(XI , k)

H∗(X, k) ⊗ H∗(X, k) H∗(X × X, k)

c∗

π∗∆∗

φ

ψ

We note that the induced map ψ is the same as the one we obtained from cup product ⌣. Now since
φ and c∗ are k-algebra isomorphisms (c was a homotopy equivalence, as we noted earlier), we have
that the Theorem 3.6 applied to the path fibration π can be translated easily to a result regarding the
cup-product :

TC(X) ≥ zclk(X).

□

Remark 3.8. Here, we have assumed that the coefficients of the cohomology ring is in some field k.
However, this can be generalised to other rings also. Specifically, the inequality holds if the coefficients
are in Z.

3.2 Topological complexity computations

In this section, we compute the topological complexity for some interesting spaces, using the tools we
have already mentioned.

3.2.1 Spheres

TC(S n) =

1, for n odd,

2, for n even.

Proof. We know,
H∗(S n; Q) = Q[x]/(x2) deg x = n

a := x ⊗ x, b := 1 ⊗ x − x ⊗ 1 are zero-divisors of H∗(X; Q).

a2 = ab = 0 as x2 = 0.

Also,

b2 = (1 ⊗ x − x ⊗ 1)2

=
(
(−1)n2

− 1
)
(x ⊗ x)

=
(
(−1)n − 1

)
x ⊗ x.



3.2. TOPOLOGICAL COMPLEXITY COMPUTATIONS 16

Thus, b2 = 0 if n is even, and b2 , 0 if n is odd. From cohomological bound Theorem 3.7, TC(S n) ≥ 2
for n odd. For n even, TC(S n) ≥ 1 as S n is not contractible.

Now we show that these inequalities are, in fact equalities. We prove this by giving explicit motion
planning algorithms. Since S k is a C∞ smooth manifold, using Theorem 1.13, we can use TCENR(X) in
the place of TC(X).

• Case: k is odd.

Consider E0 :=
{
(A, B) | A , B

}
and for a pair (A, B) ∈ E0, let (A, B) maps to the shortest

geodesic path between A and B under s0 : E0 −→ XI , for X = S k.

Also, define E1 :=
{
(−A, A) | A ∈ X

}
. To define the section s1, we consider a continuous non-

vanishing vector field v, on S k. Existence of such a field for S k, as k is odd, is a well known result.
Now we define si : E1 −→ XI as

s1(−A, A)(t) := − cos(πt) · A + sin(πt) · v(A)

Note that E0 and E1 are ENRs with continuous sections of the path fibration π, namely s0 and s1

respectively, on each of them. This gives us the inequality

TC(S k) ≤ 1 for n odd.

by using the fact that TCENR(X) = TC(X) for smooth manifolds X.

• Case: k is even.

We define E0 and s0 similarly to the odd case: as E0 :=
{
(A, B) | A , B

}
and s0 : E0 −→ XI , for

X = S k as the map taking (A, B) to the shortest geodesic path between A and B.

For defining E1 and s1, unlike the case k is odd, there might not exist a continuous non-vanishing
vector field on S k for k even. However, we can get a vector field v that vanishes at only one point,
say A0. We define E1 :=

{
(−A, A) | A ∈ X, A , A0

}
and s1 : E1 −→ XI as above.

Now (−A0, A0) is the only point remaining that is not in either of the Eis. Define E2 :={
(−A0, A0)

}
and s2 : E2 −→ XI as a map taking (−A0, A0) to some fixed, continuous map from

−A0 to A0.

We note that E0, E1 and E3 are disjoint ENRs with continuous sections of the path fibration π, on
each of them. This gives us the inequality

TC(S k) ≤ 2 for n even.

□

3.2.2 Tori and product of m-dimensional spheres

We know, the n-torus is the topological space S 1 × · · · × S 1 (n times). In more generality, we can consider
the space X = S m × · · · × S m and try to compute the TC(X) for it. We have,

TC(X) =

n, if m is odd,

2n, if m is even.
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Proof. Using product inequality Eq. (2.1) repeatedly, TC(X) ≤ n · TC(S m). Thus,

TC(X) ≤

n, if m is odd,

2n, if m is even.

Also, for a lower bound, we use the cohomological lower bound. Note that,

H∗(S m; Q) =
Q[x]
(x2)

with deg x = m. If pi : X −→ S m is the ith projection, let ai := pi
∗(x). We see that 1 ⊗ ai − ai ⊗ 1 ∈

IQ(X). Since in H∗(X × X; Q)
n∏

i=1

(1 ⊗ ai − ai ⊗ 1) , 0

for S m, and
n∏

i=1

(1 ⊗ ai − ai ⊗ 1)2
, 0

for m even, we obtain that

TC(X) ≥

n, if m is odd,

2n, if m is even,

using the cohomological lower bound (Theorem 3.7). This, thus, completes our proof.
□

3.2.3 Orientable surfaces

If Σg is the orientable surface of genus g, then :

TC(Σg) =

2, g ≤ 1,

4, g > 1.

Proof. The case g = 0 was already considered in the spheres case, as genus g surface with g = 0 is just
S 2. The case g = 1 is a torus, and is also already considered seperately.

For g ≥ 2, using Theorem 3.1, we get that TC(Σg) ≤ 4. Also,

H∗(Σg; Q) =
Q⟨u1, v1, · · · , ug, vg, A⟩

R
where R := ⟨u2

i , v2
i , uiu j, uiv j, viv j, uivi − A, uivi + viui | i , j⟩ and deg ui = deg vi = 1 for each i, and

deg A = 2. Here Q⟨S ⟩ represents the non-commutative Q- algebra generated by the elements of S .
Here 1 ⊗ ui − ui ⊗ 1, 1 ⊗ vi − vi ⊗ 1 ∈ IQ(Σg), and

2∏
i=1

(1 ⊗ ui − ui ⊗ 1)(1 ⊗ vi − vi ⊗ 1) = 2A ⊗ A , 0

and thus, using the cohomological lower bound, we get TC(Σg) ≥ 4. Thus,

TC(Σg) = 4.

□
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3.2.4 Complex projective spaces

TC(CPn) = 2n.

Proof. Since CPn is simply connected, from the dimension-connectivity bound Theorem 3.2, we get
that

TC(CPn) <
2 · 2n + 1

1 + 1
= 2n + 1/2.

Also,

H∗(CPn; Q) =
Q[x]
(xn+1)

deg x = 2.

Now, 1 ⊗ x − x ⊗ 1 ∈ IQ(CPn) and

(1 ⊗ x − x ⊗ 1)2n = (−1)n
(
2n
n

)
xn ⊗ xn , 0.

By cohomological lower bound, we get,

TC(CPn) ≥ 2n.

Thus, we have,
TC(CPn) = 2n.

□



Chapter 4

The collision-free motion planning

In this chapter, we try to discuss the complexity of motion planning problem for n point-like objects in a
Euclidean space Rk, avoiding collisions. We consider two cases: the case when there are no obstacles to
avoid, and then the case when there are m point-like obstacles that are moving in time, to avoid.

For doing this, first we learn about the configuration space F(Rk, n), for n point-like objects in Rk

avoiding collisions with themselves.

4.1 The configuration space

Consider n distinct objects in Rk, each represented by a point in our space. Two objects are said to be
colliding when they occupy the same point in Rk.

Since each one of the objects can take up any point of Rk, except the ones already occupied by
another object, it is natural to define the configuration space of the problem as the space

F(Rk, n) :=
{
(x1, · · · , xn) ∈ (R

k)
n∣∣∣ xi , x j ∀ i , j

}
considered as a subspace of the Euclidean space (Rk)

n
= Rkn.

Note that F(Rk, n) can be considered as the complement in Rkn of the hyperplane arrangement
A := {Hi j}i, j where Hi j is the hyperplane

{
(x1, · · · , xn) ∈ (Rk)

n∣∣∣ xi = x j
}
.

Remark 4.1. We note that this system has a configuration that is very different from that in Example 1.3,
simply because we now do not allow objects to collide with, or pass through each other.

In the case k = 2, we have that R2 can be identified with C. Thus our configuration space is the
space:

F(C, n) =
{
(z1, · · · , zn)

∣∣∣ zi ∈ C; zi , z j if i , j
}

i.e., it is the complement of the central hyperplane arrangement {Hi j}i, j where Hi j =
{
(z1, · · · , zn) ∈

Cn
∣∣∣ zi = z j

}
.

Now since our configuration space is a complement of a complex hyperplane arrangement, we
define some terms and notations regarding complex hyperplane arrangements, that are useful in our
computations.

19
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Suppose A =
{
Vi

∣∣∣ i = 1, · · · , m
}

is a hyperplane arrangement in Cn. Let αi ∈ (Cn)∗ be such that
Vi = kerαi.

Definition 4.2. The rank of A is the cardinality of the maximal independent subset in
{
αi

∣∣∣ i = 1, · · · , m
}
.

In other words, it is the dimension of the subspace generated by αi s in (Cn)∗.

4.2 Cohomology of the configuration spaces

The cohomology group of the configuration space, specifically the zero-divisors of the cohomology,
is very useful in computing lower bounds for the topological complexity; as we saw in Theorem 3.7.
Hence we try to investigate the cohomology of F(Rk, n) and some related configuration spaces.This
will turn out to be useful for our problem of collision-free motion planning.

Consider the space F(Rk, n) ⊂ Rkn. We would like to consider the contiuous map

φi j : F(Rk, n) −→ S k−1; (x1, · · · xn) 7→
xi − x j

|xi − x j|
.

Applying the cohomology functor, H∗( _ , R) to φi j, we get the map

φ∗i j : H∗(S k−1, R) −→ H∗(F(Rk, n), R)

We recall that by taking R = Z, we have that H∗(S k−1, Z) = Z[x]/(x2). We define ei j s in the
cohomology ring of F(Rk, n) as: the image of x under φi j, i.e., ei j := φ∗i j(x), for each 1 ≤ i < j ≤ n.
We can give the structure of H∗(F(Rk, n), R) in terms of these ei js.

Theorem 4.3 (Theorem 4.1, [5]). The cohomology ring H∗(F(Rk, n)) is the free associative graded-
commutative algebra generated by ei j s where 1 ≤ i < j ≤ n, subject to the relations :

i) ei j
2 = 0,

ii) ei jeiℓ − ei je jℓ + eile jℓ = 0, for any triple i < j < ℓ.

The space X := F(Rk − S m, n), where S m is a collection of m distinct points in Rk, turns out to
be very useful in the moving obstacle case Section 4.4. Hence we give results about the cohomology
H∗(F(Rk − S m, n)) also.

Let S m = {q1, · · · , qm}. Note that we can think of F(Rk − S m, n) as the subspace of F(Rk, n + m),
obtained by taking the n-dimensional cross section of F(Rk, n + m) got by fixing the last m coordinates
as q1, · · · , qm.

Theorem 4.4 (Theorem 4.4, [5]). The homomorphism i∗, induced by the inclusion i : F(Rk − S m, n) −→
F(Rk, n + m),

i∗ : H∗(F(Rk, n + m); Z) −→ H∗(F(Rk − S m, n); Z)

is an epimorphism, with ker i∗ = ⟨ ei j | i, j > n ⟩.

Corollary 4.5. In H∗(F(Rk − S m, n); Z), the following relations are also satisfied :

ei j eiℓ = 0

for i, j, ℓ such that i ≤ n and j, ℓ > n.
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Proof. This follows from the fact that ei jeiℓ − ei je jℓ + eiℓe jℓ = 0 for all i < j < ℓ (See Theorem 4.3)
and that e jℓ = 0 if both j and ℓ are greater than n. (They are in the kernel of i∗ using Theorem 4.4.) □

We state a result for a basis for the cohomology ring of F(Rk − S m, n). We do not give the proof
here. Interested readers can check [1] for the details.

Theorem 4.6 (Theorem 4.4, [5]). A basis for H∗(F(Rk − S m, n); Z) is given by the monomials

ei1 j1 ei2 j2 · · · eir jr

where 1 ≤ i1 < i2 < · · · < ir ≤ n, and iℓ < jℓ ≤ n + m for each 1 ≤ ℓ ≤ r.

Example 4.7. For the cohomology computations that we are about to do, it is very important to
understand the basis elements given above. In this spirit, we give some explicit examples and non
examples for the basis elements mentioned in Theorem 4.6, for the case of H∗(F(R2 − S m, 5)).

Examples:

• e12, e23, e25, etc.

• e12 e25 e34.

• e15 e25 e35 e45, one of the largest length basis elements if m = 0.

• e18 e28 e38 e48 e58, one of the largest length basis elements if m = 3.

Non-examples:

• e16, if m = 0. Here, 6 > n + m = 5 + 0 = 5.

• e12 e13 e34. This is because iℓ s needs to be strictly increasing, whereas here iℓ is same for the first
two elements.

• e15 e25 e35 e45 e58 if m = 1. Here, e58 is not in one of the generators we mentioned, as jℓ needs to
be less than n + m = 5 + 1 = 6 for each ℓ.

We note that the length of a basis element in Theorem 4.6 is n if m ≥ 1 and n − 1 if m = 0. This is
because, in the m ≥ 1 case, we can take iℓ = l for each 1 ≤ ℓ ≤ n and jℓ to be, say, n + 1; whereas in the
m = 0 case, even if we take iℓ = l for each ℓ, we will have to leave out atleast the last place, for the last
jℓ.

Each ei j has a grade k − 1 due to the fact that ei j = φi j(x) where x is of grade k − 1. This gives us
that the maximal non-zero graded component in H∗(F(Rk − S m, n); Z) is (k − 1)(n − 1) if m = 0 and
(k − 1)n if m ≥ 1.

We note that H∗(F(Rk − S m, n); Z) have no torsion elements,from Theorem 4.6. Now, if this space
is simply-connected, then we will have the following result, using a theorem in [7], that says that such a
space is homotopy equivalent to a CW complex that will have a k cell corresponding to each k-graded
element in the basis.
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Theorem 4.8. If F(Rk − S m, n) is simply-connected, then it is homotopy equivalent to a CW complex X
of dimension:

dim X =

 (k − 1) (n − 1), if m = 0,

(k − 1) n, if m ≥ 1.

Now we proceed on to our actual problem, in the following section.

4.3 Collision free motion planning of n objects: without obstacles

Without any obstacles, our problem is the same as finding the topological complexity of the configuration
space F(Rk, n).There are 3 cases, each of which we deal with seperately :

1. k = 2,

2. k is odd,

3. k is even with k > 2.

For the first case, we recall that R2 can be considered the same as the complex plane C, and hence
F(R2, n) can be considered as the complement of a complex hyperplane arrangement in Cn. In fact,
the arrangement given by hyperplanes zi = z j for each distinct pairs i and j, is a very known one and is
known as the braid arrangement.

To compute TC(F(R2, n)), we first note the following result:

Theorem 4.9 (Theorem 6, [6]). If M is the complement of central complex hyperplane arrangement of
rank r, in Cn, then

TC(M) ≤ 2r − 1.

We use this theorem to obtain an upper bound for our case. For this, we note:

Theorem 4.10. Rank of the braid arrangement in Cn, is n − 1.

Proof. The map αi j := e∗i − e∗j , where e∗i is the dual for the i th standard coordinate vector in Cn, satisfies
the condition that the hyperplane zi − z j = 0 is kerαi j . Note that α1 js for j = 2, ..., n forms a linearly
independent subset, since e∗j are themselves linearly independent. Noting that αi j = α1 j − α1i gives us
that it also forms a basis of the span of αi js.

Thus we have that the rank is n − 1. □

Suppose Hi j is the hyperplane in Cn with zi = z j. We, once again, note that αi j = e∗i − e∗j ∈ Cn∗

satisfies Hi j = kerαi j for each pair (i, j). The following theorem is stated in [6], in the general matroid
language. Here, we translate it to our specific case:

Theorem 4.11. If S is a union of two disjoint sets T1 and T2 of αi j s, that satisfies the conditions that T1

is linearly independent, and T2 ∪ {αi j} is linearly independent for any αi j ∈ S , then, the product

µ =
∏

(i, j)∈ S

ei j

is non-zero in H∗(X) ⊗ H∗(X) where X = Cn\
⋃

i< j Hi j and ei j = 1 ⊗ ei j − ei j ⊗ 1 where ei j are the
generators of the cohomology ring of X, as in Theorem 4.6.
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Theorem 4.12. The topological complexity of the collision free motion planning of n point-like objects
in Rk, k > 1 is given by :

TC(F(Rk, n)) =

2n − 2, for k odd

2n − 3, for k even

Proof. We give the proofs only for the two most practically interesting k; i.e., k = 2 and k = 3. The
case k = 3 is just a specific case of the general odd k case. For obtaining the proof for the general odd k
case, we just replace k = 3 with a general odd integer k > 2, and the proof will go through.

However, the general even case for k > 2, is a bit more complicated. We do not prove it here.
Interested reader can refer to [4] for the proof.

• Case: k = 2.

Using Theorem 4.9, and the fact that the braid arrangement has rank n − 1, we have an upper
bound

TC(F(R2, n)) ≤ 2(n − 1) − 1 = 2n − 3.

For the reverse inequality, we consider the the lower bound Theorem 3.7. Using the same notation
as Theorem 4.11, we get that T1 := {αi n | i = 1, · · · n − 1 } and T2 := {αi n−1 | i = 1, · · · n − 2 }
satisfies the conditions of the theorem. Thus, if S := T1 ∪ T2, then, the product

µ =
∏
αi j∈ S

ei j

is non-zero. By Theorem 3.7, this gives us that:

TC(F(R2, n)) ≥ | S | = 2n − 3

and this proves our theorem for k = 2 case.

• Case: k = 3.

Note that since each of the Hi j =
{
(x1, · · · , xn) ∈ (R3)

n∣∣∣ xi = x j
}
, is of codimension 3 in R3n, our

configuration space F(R3, n) = R3n\
⋃

i, j Hi j is simply connected. Hence, from Theorem 4.8,
F(R3, n) is homotopy equivalent to a CW complex of dimension 2(n − 1).

Now, using Theorem 3.2, we get

TC(F(Rk, n)) <
2 · 2(n − 1) + 1

1 + 1

= 2(n − 1) +
1
2

.

Thus, TC(F(R3, n)) ≤ 2n − 2.

For the lower bound, once again, we consider the one given by zero-divisor-cup length.

For ei js as defined in Theorem 4.6, we define ei j := 1 ⊗ ei j − ei j ⊗ 1. We note that ei j is a
zero-divisor, for each ei j.
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Now, if we compute ei j
2, for any i and j, we can see that

ei j
2 = −2ei j ⊗ ei j

Thus,
n−1∏
i=1

ein
2 = (−2)n−1

µ ⊗ µ,

where µ :=
∏n−1

i=1 ein. Since µ is a basis vector of H∗(F(R3, n)) by Theorem 4.6, we have that
µ ⊗ µ is a basis vector of H∗(F(R3, n)) ⊗ H∗(F(R3, n)), and thus non-zero.

This, thus gives us
TC(F(R3, n)) ≥ 2(n − 1)

completing our proof.

□

4.4 Collision free motion planning of n objects avoiding obstacles

We consider the case of n point-like obstacles in Rk that tries to avoids collisions with m moving
obstacles, and with themselves.

Note that since the obstacles are also moving in time, the possible configurations (ie, the possible
positions the objects can occupy) and thus, the configuration space, is also changing in time. Thus, it is
no longer just a problem of just computing TC(X). Instead, we will define formally what the appropriate
analogue of TC(X), the complexity of the motion planning of the system, means in this case, and then
compute it. The problem is discussed in [5].

Let us denote the time by the variable t. The motion planning problem here requires us to take the
input :
i) The ordered n-tuples A = (A1, A2, · · · An), B = (B1, B2, · · · , Bn) ∈ F(Rk, n) where each Ai and Bi

represents the initial and final position of the i th object respectively.
ii) The path C(t) = (C1(t), C2(t), · · · , Cm(t)) in F(Rk, m), where each C j(t) is the position of j th
obstacle at time t, for every t ∈ [0, 1]. Since, the objects are at different positions than that of obstacles
at time t = 0, as well as at t = 1, we also require C(t) to have that Ai , C j(0) and Bi , C j(1) for each
pair i and j .
Our output should give us a path γ : I −→ F(Rk, n); γ(t) = (γ1(t), · · · , γn(t)) where each γi(t)
represents the position of the i th object at time t, avoiding collisions with obstacles and other objects.
ie, γ(t) satisfies γi(t) , C j(t) for each 1 ≤ i ≤ n, 1 ≤ j ≤ m, and γi(t) , γ j(t) for each distinct pair of
i, j in 1 to n and for each t ∈ [0, 1].

We define:

E(C) :=
{
γ : I −→ F(Rk, n)

∣∣∣ γi(t) , C j(t) for any i and j and for each t ∈ [0, 1]
}

and
B(C) :=

{
(A, B) ∈ F(Rk, n) × F(Rk, n)

∣∣∣ Ai , C j(0), Bi , C j(1) for each i and j
}
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If the obstacle path C : I −→ F(Rk, m) is fixed first, E(C) represents the possible motions the
system can take, and B(C) is the collection of possible endpoints (ie, initial and final configurations) for
the motions.

Similar to what we did in the case when the configuration space did not change with time, here also
we consider the map taking the possible motions to its endpoints :

π(C) : E(C) −→ B(C) ; γ 7→
(
γ(0), γ(1)

)
It turns out that this map is a fibration. See Theorem 4.14.
Finding a continuous motion planning algorithm in our case, is equivalent to finding a continuous

section of π(C). We define the complexity of this motion planning problem in a similar way as we did
for TC(X):

Definition 4.13. The complexity of motion planning problem for n objects avoiding collisions with
themselves and with m obstacles moving along the paths C = (C1, · · · , Cm), is defined as the sectional
category of π(C).

We now complete the proof for the fact that π(C) is a fibration and give a result that relates our
complexity of motion planning to TC(X):

Theorem 4.14. π(C) is a fibration and is fiber-homotopy equivalent to the path fibration of the
configuration space when the n objects try to avoid collisions with m obstacles that are not moving.
Thus, we have that the complexity of motion planning is:

secat(π(C)) = TC(F(Rk − S m, n)).

Proof. We try to show that π(C) is the same as the path fibration, π, of the configuration space
X := F(Rk − S m, n), upto homeomorphisms of the total space and the base space that commutes with
the maps π(C) and π. This will give us that π(C) is indeed a fibration, and that it is fiber-homotopy
equivalent to π, giving us that secat(π(C)) = secat(π), and thus that secat(π(C)) = TC(X).

To do this, we consider a continuous family of homeomorphisms ψt : Rk −→ Rk that satisfies
ψ0 = idRk and ψt(C(t)) = C(0) for each t ∈ [0, 1]. Here, ψt means ψt applied to each of the
coordinates, ie, ψt(C(t)) = (ψt(C1(t)), · · · ,ψt(Cm(t))). Existence of such a family of ψt follows from
the well-known isotopy extension theorem.

We consider the diagram :

E(C) XI

B(C) X × X

F

ππ(C)

G

where F(γ)(t) = ψt(γ(t)) and G(A, B) =
(
ψ0(A),ψ1(B)

)
. Since ψt are homeomorphisms and

ψt(C(t)) = C(0) for each t ∈ [0, 1], it can be noted that F and G are both homeomorphisms themselves.
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Also using the equations,

π ◦ F(γ) = ( F(γ)(0), F(γ)(1) )

= (ψ0(γ(0)), ψ1(γ(1)) )

and

G ◦ π(C) (γ) =G(γ(0), γ(1))

= (ψ0(γ(0)), ψ1(γ(1)) )

we note that π ◦ F = G ◦ π(C), and that the diagram above commutes.
Thus, π(C) is the same as π, upto homeomorphisms of the total space and the base space that

commutes with the maps π(C) and π. Thus, π(C) is a fibration, and we have that

secat(π(C)) = secat(π)

completing our proof. □

Thus, computing the complexity of motion planning in this case also, turns out to be computing the
TC(X) for a specific X, namely F(Rk − S m, n).

Remark 4.15. Note that this proves that the complexity of motion planning for n objects avoiding
collisions with themselves and with m moving obstacles, is independent of the paths C j s which the
obstacles take.

To complete the computation of complexity, we try to compute TC(F(Rk − S m, n)). We restrict our
attention to the cases k = 2 and k = 3, as these are the cases where we are most likely to have practical
interests in.

Theorem 4.16. The complexity of motion planning for n point-like objects avoiding m obstacles in R2

is given by

TC(F(R2 − S m, n)) :=


2n − 3, if m = 0,

2n − 1, if m = 1,

2n, if m ≥ 2.

Proof. The first two cases follow from Theorem 4.12, and the fact that F(R2 − S 1, n) is homotopy
equivalent to F(R2, n + 1) (See [1]).

For the m ≥ 2 case, we note that F(Rk − S m, n) is homotopy equivalent to a connected CW complex
of dimension n, by Theorem 4.8. Thus, by using the dimension bound Theorem 3.1, we get the upper
bound

TC(F(R2 − S m, n)) ≤ 2n.

Now to get a lower bound, we use the cohomological lower bound, Theorem 3.7. Let K := {1, · · · , n} ×
{n + 1, n + 2}. We consider the product

µ =
∏

(i, j)∈K

(1 ⊗ ei j − ei j ⊗ 1),
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where ei js are the generators of the cohomology ring, as given in Theorem 4.6. If we expand this product
out, we can write µ as a linear combination of µJ s where

µJ =
( ∏
(i, j)∈ J

ei j

)
⊗

( ∏
(i, j)∈ Jc

ei j

)
,

and where J varies over all subsets of K and Jc = K\J. Now since, µJ is in the tensor of the cohomology
ring H∗(F(R2, n)) with itself, and since by Theorem 4.6, the maximum non-zero graded part of the
ring is of grade n(2 − 1) = n, we have that both J and Jc are of cardinality n, in any non-zero µJ .

Moreover, if µJ , 0, we should have that

a(J) :=
∏

(i, j)∈ J

ei j

contains all other possible i s from 1 to n. This is because, if not, there will be repetition of some i, and
by Corollary 4.5, the product, as well as µJ will be 0. Similarly for a(Jc) as well.

Thus, J s with non-zero µJs look like

J =
{
(1, j1), (2, j2), · · · , (n, jn)

}
and Jc =

{
(1, ℓ1), (2, ℓ2), · · · , (n, ℓn)

}
where

{
ji, ℓi

}
=

{
n + 1, n + 2

}
for each i. Thus, non-zero µJs are of the form

( n∏
i=1

ei ji

)
⊗

( n∏
i=1

eiℓi

)
.

Since (
∏n

i=1 eiri ) s with ri = n+ 1 or n+ 2 are part of the basis elements mentioned in Theorem 4.6, we
have that µJs of the above form, are distinct basis elements for H∗

(
F(Rk − S m, n)

)
⊗H∗

(
F(Rk − S m, n)

)
,

and thus cannot cancel each other in the expansion of µ. Thus, we have, µ , 0, and gives us the lower
bound

TC(F(Rk − S m, n)) ≥ 2n

as we needed. □

Theorem 4.17. The complexity of motion planning for n point-like objects avoiding m obstacles in R3

is given by

TC(F(R3 − S m, n)) :=

 2n − 2, if m = 0,

2n, if m ≥ 1.

Proof. Again, the first case is obtained from the without-obstacles case, i.e., Theorem 4.12.
We note that since the configuration space F(R3 − S m, n) can be considered as the complement

of finitely many codimension 3 hyperplanes in R3n, we have that it is simply-connected. Now using
Theorem 4.8, we have that F(R3 − S m, n) is homotopy equivalent to a CW complex X of dimension 2n.
Thus, using Corollary 3.3, we have that

TC(F(R3 − S m, n)) ≤ dim X = 2n.
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Now, for using the cohomology lower bound Theorem 3.7, we note that ei j
2 = −2ei j ⊗ ei j for the

zero-divisors ei j = 1 ⊗ ei j − ei j ⊗ 1 defined for the generators ei js of the cohomology ring. Thus, we get
that

n∏
i=1

(ein)
2 = (−2)n

µ ⊗ µ

where µ =
∏n

i=1 ein. Since µ is a basis vector of H∗(F(R3 − S m, n)) from Theorem 4.6, µ⊗ µ is a basis
vector of H∗(F(R3 − S m, n)) ⊗ H∗(F(R3 − S m, n)), and thus non-zero. We thus have,

TC(F(R3 − S m, n)) ≥ 2n,

completing our proof. □



Chapter 5

Higher topological complexity

Higher topological complexity (TCn(X)) is a series of numerical invariants, of X, of which TC(X) forms
a part. We try to define it and mention its connection to the robot motion planning problem. We also give
some useful bounds, in the way we already did for TC(X), and mention the computations for spheres
S n and torus. Results are from [10] and [11].

Throughout this chapter, we will assume that X is a CW space of finite type, unless othewise
mentioned.

5.1 The definition of higher topological complexity

Let X be a CW space of finite type, and Jn be wedge of n copies of I = [0, 1], with 0 as the base point.
Consider the continuous map en : XJn −→ Xn; en(α) = (α(11), ...,α(1n)) where 1i is the 1 in the

ith copy of [0, 1]. It can be seen that en is fibration. Whenever we would like to make the dependence of
en on X explicit, we will denote it by en,X .

Definition 5.1 (Higher topological complexity). Higher topological complexity of order n, of X
(TCn(X)), is the sectional category of the fibration en,X .

TCn(X) := secat(en,X).

Now consider the map e′n : XI −→ Xn given by:

e′n(α) =
(
α(0), · · · ,α

(
k

(n − 1)

)
, · · · ,α(1)

)
.

This is also a fibration. We can prove that e′n is fiber homotopy equivalent to en. This gives rise to an
equivalent definition for TCn(X), due to Theorem 2.14 :

Theorem 5.2. We have,
TCn(X) = secat(e′n) = secat(en).

Remark 5.3. Note that
TC2(X) = TC(X).

29
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This shows that TCn(X), n ∈N is a generalisation of the notion of topological complexity, TC(X).

Remark 5.4. TCn(X) also have a practical interpretation in terms of robot motion planning. It is the
minimum number of discontinuities (counting from 0) in creating a motion planning algorithm for the
system such that not just the initial and final configuration of the system, but also n − 2 intermediate
steps as given as the input, in trying to construct the algorithm.

5.2 Properties and bounds

In this section, we briefly mention some of the properties and results related to TCn(X). For details or
proofs, we can see [10].

It turns out (TCn(X))n∈N is an increasing sequence:

Theorem 5.5 (Proposition 3.3, [10]). We have,

TCn(X) ≤ TCn+1(X).

Similar to the cohomological lower bound for TC(X), we have an analogous result for general
TCn(X).

Theorem 5.6 (Proposition 3.4, [10]). Let dn : X −→ Xn be the diagonal map x 7→ (x, ..., x). If there are
xi ∈ H∗(X; Ai), i = 1, ..., m such that d∗nxi = 0 and

x1 ⌣ x2 ⌣ ... ⌣ xn , 0

in H∗
(
Xn;

⊗m
i=1 Ai

)
, then TCn(X) ≥ m.

We also have,

Theorem 5.7 (Proposition 3.5, [10]). If X is connected and not contractible, then TCn(X) ≥ n − 1.

5.3 Higher topological complexity of spheres and torus

Here, we just mention the values of TCn(X) for the spheres and the torus. The computations are found
in [10].

Theorem 5.8. We have,

TCn(S k) =

 n, for k even,

n − 1, for k odd.

Theorem 5.9 (Proposition 5.1, [10]). If T 2 is the 2-torus S 1 × S 1, then we have,

TCn(T 2) ≥ 2n − 1.

Now, in the next chapter, we just give a short survey of some other variants of topological complexity.



Chapter 6

Other variants of topological complexity

When we defined TC(X), our aim was to obtain the number of discontinuities for constructing a motion
planning algorithm that takes in endpoints (A, B) as input and gives us a path from A to B. We did not
really care about how complicated the paths between the endpoints are, nor did we really place any other
restrictions on the path from A to B. However, there are several natural conditions that we can have
about a possible path from A to B, and this can give to some other variants of topological complexity.
We discuss two such examples in this chapter. These are discussed in [11]. We assume that X is a CW
complex, unless otherwise mentioned.

6.1 Monoidal topological complexity

Suppose we consider only the motin planning algorithms with the following property: If the initial and
final configurations are the same, A = B; then the path connecting them should be the constant path at
A = B. This gives us the notion of monoidal topological complexity.

Definition 6.1 (Monoidal topological complexity). For a CW complex X, the monoidal topological
complexity of X is the minimal number k such that there are open subsets U0, U1, · · ·Uk covering X × X,
with continuous sections si : Ui −→ XI of the path fibration π on each Ui, that also satisfies the condition
that s(x, x) = cx, the constant path at x, for each (x, x) ∈ Ui. We denote it by TCM(X).

Theorem 6.2 (Proposition 16.4, [11]). We have the inequality :

TC(X) ≤ TCM(X) ≤ TC(X) + 1.

Theorem 6.3 (Proposition 16.5, [11]). The equality TC(X) = TCM(X) holds for all k-connected
simplicial complexes X with

(k + 1)(TC(X) + 2) ≥ dim X + 1.

We recall the defintion of absolute neighbourhood retract, as a metrizable space X such that if X is a
closed subset of a metrizable space Y , then we have that X is a neighborhood retract of Y . We then have
the following result:

31
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Theorem 6.4 (Proposition 16.6, [11]). Let X, Y be two absolute neighbourhood retracts. Then,

max
{
TC(X), TC(Y), cat(X × Y)

}
≤ TC(X ∨ Y) ≤ TCM(X ∨ Y)

≤ TCM(X) + TCM(Y) + 1 ≤ TC(X) + TC(Y) + 3.

Now, we proceed on to discuss the symmetric topological complexity in the next section.

6.2 Symmetric topological complexity

Consider a motion planning problem where we require our motion planning algorithm to have that the
path from A to B is the inverse path of the path from B to A.This is a reasonable expectation to have,
as, in nice enough systems, the system should be able to retrace the path from A to B backwards, to
get a path from B to A. A variant of topological complexity that corresponds to this, is the notion of
symmetric topological complexity.

In fact, it turns out that there are two different ways we could define a notion of symmetric topological
complexity. We give both the definitions here, and discuss some of their properties briefly.

We consider the involutions τ : X × X −→ X × X; (x, y) 7→ (y, x) and τ̄ : XI −→ XI;α 7→ α(1 − t).
Note that τ2 = idX×X and τ̄2 = idXI .

Definition 6.5 (Symmetric subsets of X × X). A subset A of X × X is called symmetric if it satisfies
τA = A.

Definition 6.6 (Equivariant maps). Suppose A and A′ are spaces with involutions τ′ : A′ −→ A′; τ′2 = 0
on them. A map s : A −→ A′ is called equivariant if it satisfies τ′ ◦ s = s ◦ τ.

Now we proceed on to define the first version of symmetric topological complexity, TCΣ(X).

Definition 6.7. TCΣ(X) is the minimal integer k such that there exist symmetric open subsets U0 · · ·Uk

covering X × X, with continuous equivariant sections si : Ui −→ XI of the path fibration π, on each Ui.

It turns out that TCΣ(X) is invariant under homotopy equivalence.

Now, for the second version: Suppose ∆(X) denote the diagonal of X, i.e.,

∆(X) :=
{
(x, x)

∣∣∣ x ∈ X
}

and C(X) be the complement of ∆(X) in X × X, i.e.,

C(X) := X × X
∖

∆(X).

Now we consider the path fibration π and restrict it to the inverse of C(X) to get:

π : π−1(C(X)) −→ C(X).

Here, we note that π here satisfies τ ◦ π = π ◦ τ̄. Thus π is an equivariant map with free Z2-actions
on both the domain as well as the range.



6.2. SYMMETRIC TOPOLOGICAL COMPLEXITY 33

This gives rise to a map :

ξ := π
/
Z2 : π−1(C(X))

/
Z2 −→ C(X)

/
Z2.

It turns out that the above map is a fibration. Using this, we define our second version of symmetric
topological complexity.

Definition 6.8. We define TCS (X) as the sectional category of ξ plus 1. ie,

TCS (X) := secat(ξ) + 1.

Remark 6.9. Unike TCΣ(X), TCS (X) is not invariant under homotopy equivalences.

Now, we would like to know the relations between both the notions of symmetric topological
complexity. We give one such relation below:

Theorem 6.10 (Proposition 17.3, [11]). If X is an ENR, then we have :

TCS (X) − 1 ≤ TCΣ(X) ≤ TCS (X).
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