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Abstract

The study of regular polytopes has a long history in mathematics.
A seminal theorem of Coxeter [2] says that symmetry groups of such
polytopes can be realized as reflection groups. In this note we describe
the classification of these polytopes and their symmetry groups.

1 Introduction

The purpose of this report is to describe the classification of regular
polytopes. Convex polytopes are fundamental objects in mathematics
which can be viewed in a number of equivalent ways: as the convex
hull of a finite set of points in Rn, as the intersection of a finitely
many half-spaces whose intersection is compact, or as the image of a
high-dimensional simplex under a linear transformation. Within the
class of convex polytopes, those which are “completely symmetric are
particularly beguiling; they also have a tendency to play a major role
in seemingly disparate areas of mathematics. These highly symmetric
polytopes are more commonly known as regular polytopes. In this
report, we shall see how this classification is closely related to the
Coxeter-Dynkin diagrams, giving a glimpse into the ubiquity of the
theory of Reflection Groups in Mathematics.
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2 Regular Polytopes

In order to define regular polytopes, we need to define the associated
natural simplicial subdivision called its barycentric subdivision. Since
we are primarily interested in those polytopes which are highly sym-
metric, we define this subdivision using the circumcenters of the faces
of the polytope.

Definition 2.1 (Circumcenters). Given a bounded set A in Rn and a
point x ∈ Rn there is some minimum radius, radA(x), such that the
closed ball around x of radius radA(x) contains all of A. The collection
of all such minimal radii has an infimum and any point x ∈ Rn such
that radA(x) attains this infimum is called a circumcenter of A.

Definition 2.2 (Barycentric subdivision). The barycentric subdivi-
sion of a convex polytope P introduces a new vertex at the circumcenter
of each i-dimensional face and then subdivides appropriately. More
specifically, there is a simplex in the subdivision if and only if the faces
to which the vertices correspond form a partial flag, i.e. given any two
faces in the list, one is contained in the boundary of the other. For
convenience later, we think of every vertex of the subdivision as having
an integer assigned which records the dimension of the cell of which it
is the circumcenter. Notice that under this scheme, distinct integers
are assigned to each of the vertices in a simplex of the subdivision. The
barycentric subdivision of a regular pentagon is shown in Figure 3.

Definition 2.3 (Regular polytopes). Let P be an n-dimensional
convex polytope. A (complete) flag in P is a sequence of i-dimensional
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faces in P , one for each i = 0, · · · , n, ordered by inclusion. In other
words, a flag consists of a vertex which is contained in an edge which is
contained in a 2-cell, etc. The polytope P is called regular if its isometry
group acts transitively on its flags. An alternative definition can be
given using the barycentric subdivision of P . First note that there is
a one-to-one correspondence between the top dimensional cells in the
subdivided complex (sometimes called chambers) and the complete
flags in P . Since any isometry of P must take the circumcenter of a
face to the circumcenter of its image, all of the isometries of P induce
simplicial maps from the barycentric subdivision of P to itself. The
integers assigned to the vertices are, of course, preserved under these
maps. As a consequence, P is regular if and only if its isometry group
acts transitively on the chambers of the subdivision.

It is straightforward to check that any particular example is a
regular polytope according to this definition. The difficult part of the
classification theorem (as in any classification theorem) is to show that
we have found a complete list of examples. First we will give some
higher dimensional examples.

2.1 Higher dimensional examples

There are several high-dimensional regular polytopes with which the
reader is probably already familar, including n-simplices and n-cubes.
The dual (the convex hull of the circumcenters of the (n−1)-dimensional
faces of the polytope) of an n-cube is a generalized version of an octa-
hedron called the n-dimensional cross-polytope.

There are two slightly exotic examples of regular polytopes in di-
mension 4 which are closely related to the Poincare homology 3-sphere.

Example 2.2.1 (120-cell and 600-cell). The Poincare homology sphere
is the name given to the counterexample which Poincare found that
violated his famous conjecture in its original form. Poincare originally
suggested that any 3-dimensional manifold with the homology groups
of the 3-sphere might be homeomorphic to the 3-sphere. After finding a
counterexample, he reformulated the conjecture with homotopy groups
in place of homology groups. The construction of his counterexample
goes as follows. Start with a solid dodecahedron and identify antipodal
2-cells with a slight clockwise twist (a π/5 twist to be precise). The
result is a 3-manifold which can be given a metric with constant cur-
vature +1 and a universal cover which is isometric to S3 . Since the
fundamental group of the original 3-manifold has size 120, the universal
cover is tiled with 120 regular (spherical) dodecahedra. Thinking of S3
as sitting inside of R4 we can take the convex hull of the 600 vertices of
this tiling and get a regular 4-polytope known as the 120 -cell , named
after its 120 dodecahedra. Its dual is another regular 4-polytope with
120 vertices and 600 regular tetrahedra. It is called, of course, the
600-cell.
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Our last example is easiest to describe via direct construction.

Example 2.2.2 (24-cell). The sphere of radius 2 centered at the
origin in R4 contains exactly 24 vectors whose coordinates are integers.
There are 16 vectors of the form (±1,±1,±1,±1) and 8 vectors which
are ±2 times a standard basis vector. The regularity of the convex
hull of these 24 vectors is hinted at once it is observed that the 16
vectors of the form (±1,±1,±1,±1) can be split into two groups with
8 vectors each so that any two vectors in the same group are either
orthogonal or parallel. Moreover, it can also be checked that these three
groups of 8 vectors which look like the vertices of a 4-cross- polytope
are symmetrically arranged with respect to one another. At this point,
it should at least seem plausible that these 24 points form the vertices
of a regular (and self-dual) 4-polytope.

Perhaps surprisingly, the examples given above (including the pla-
tonic solids, and regular polygons) form a complete list of regular
polytopes in all dimensions. Verification that these examples are indeed
regular polytopes is left to the reader. As was mentioned earlier, the
real difficulty is showing that no other examples exist. The trick in this
case is to shift our attention from the polytope itself to its isometry
group and a fundamental domain of its action. We can write our main
theorem, thus, as:

Theorem (Classification of regular polytopes). Every regular poly-
tope is

1. a closed interval,

2. a regular m-gon with m ≥ 3,

3. one of the 5 platonic solids,

4. one of the 6 regular 4-polytopes, or

5. an n-dimensional simplex, cube or cross-polytope with n > 4.

3 Proof of the main theorem

3.1 Developing the tools

As a first step we show that the isometry group of a regular polytope is
always a finite group generated by reflections. Recall that a reflection
is an isometry of Rn which fixes an (n− 1)-dimensional hyperplane H
and sends vectors perpendicular to H to their negatives.

Let C be the fundamental chamber of the barycentrically subdivided
polytope.

Notice that the vectors from the origin out to the other n vertices in
C form a basis of Rn. Thus, their image under an isometry determines
that isometry uniquely. Because each isometry of P sends chambers to
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chambers and the isometry is completely determined by the image of
the fundamental chamber, the number of chambers in the barycentric
subdivision of P are in one-to-one correspondence with the elements of
the isometry group.

We recall that the isometry group is generated by the basic reflec-
tions due to the following lemma:

Lemma 3.1.1 (Generators). If P is a regular n-dimensional poly-
tope, then the isometry group of P is a finite group generated by n
reflections. More precisely the basic reflections of P with respect to
any fundamental chamber C generate the isometry group.

Because the basic reflections generate the isometry group, the entire
regular polytope P can be reconstructed from the shape of the funda-
mental chamber C by simply iteratively reflecting in its maximal proper
faces. The fundamental chamber, in turn, can be reconstructed from
the collection of dihedral angles between the basic reflections. It might
seem that these angles only encode the shape of the polyhedral cone
emanating from the origin, but the final side is an affine hyperplane
perpendicular to the vector from vn to vn−1. One fact which makes
regular polytopes easy to analyze is that most pairs of basic reflections
have orthogonal normal vectors.

Lemma 3.1.2 (Orthogonality relations). Let P be a regular polytope
with fundamental chamber C and let ri, i = {0, · · · , n− 1}, be its basic
reflections with respect to C. If |i− j| > 1 then the reflections ri and
rj commute and their normal vectors are orthogonal.

The converse of the above statement is also true.
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Definition 3.1.1 (Schlafli symbols)[4]. Since almost all of the dihedral
angles between codimension 1 faces in the fundamental chamber are
π/2, it makes sense to only record the remaining angles. In other words,
we should record the dihedral angles between the basic reflections ri−1

and ri for i = 1, · · · , n− 1. Since each of these angles is π/m for some
integer m, it makes sense to encode all of the necessary information
into a short sequence of positive integers. In preparation for the general
situation, each hyperplane containing a codimension 1 face of C will be
replaced with its unit normal vector which selects the side of the hyper-
plane containing C. If the dihedral angle between to faces is π/m, then
the angle between their inward points normal vectors will be π − π/m.
The Schlafli symbol for a regular n-dimensional polytope is the sequence
{m1,m2, · · · ,mn1} where the dihedral angle between the inward point-
ing normal vectors of the basic reflections ri and ri−1 is π − π/mi.
The Schlafli symbol for a cube, for example, is {4, 3} since there is
a π−π/4 angle between r0 and r1 and a π−π/3 angle between r1 and r2.

A more flexible notation containing essentially the same information
is the Dynkin diagram. One key advantage of Dynkin diagrams over
Schlafli symbols isthat they retain their usefullness even after we leave
the world of regular polytopes.

Definition 3.1.2 (Dynkin diagrams). Let P be a regular polytope
with fundamental chamber C. The Dynkin diagram of P records the
angles between the inward-pointing unit normal vectors of the codimen-
sion 1 faces of C in a finite labeled graph. The vertices correspond to
the basic reflections. If two basic reflections commute, then no edge
is drawn connecting the corresponding vertices. If the angle between
them is π − π/m for m > 2 then an edge labeled m is drawn between
their vertices. Because edges labeled 3 are quite common, these par-
ticularlabels are usually suppressed. The Dynkin diagrams for the
isometry groups ofthe regular polytopes are shown in Figure 4. The
conversions between their common names, their Schlafli symbols and
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the Cartan-Killing type of their associated Dynkin diagrams are given
in Table 1.

The main difficulty of the classification theorem can now be restated
using Dynkin diagrams. Every regular polytope is completely encoded
in the geometry of its fundamental chamber, which is determined by the
dihedral angles between its codimension 1 faces containing the central
vertex. These angles can be encoded in a Dynkin diagram which, by
Lemma 3.1.2 is a linear string of edges. The main question is which
sequences of edge labels are possible? The answer uses linear algebra.

Recall that if M is a real symmetric matrix, then all of its eigenval-
ues are real and it has an orthonormal basis of eigenvectors. Such a
matrix is called positive definite when all of its eigenvalues are positive.
Positive definite matrices are relevant because of their close connection
with arrangements of vectors in space. The key result we need is the
following.

Theorem 3.1.3 (Vector arrangements and positive definite matrices).
If ~vi, i = 1, · · · , n is a set of linearly independent vectors in Rn, then
the real symmetric matrix M whose (i, j) -entry is ~vi · ~vj is positive
definite. Conversely, given a real symmetric positive definite matrix M
, there exist an ordered n-tuple of linearly independent vectors in Rn

whose dot products are described by M .

We of course have Sylvester’s criterion: An n× n matrix is positive
definite if and only if all of its principal minors has positive determinants.

(Determinant calculations). An easy induction shows that for the
diagram of type An the determinant of 2M is n+ 1. As a consequence,
the matrix associated to An is positive definite and there exist vectors
arranged with the necessary angles. Using these values (and the fact
that τ2 = τ + 1), the determinants assoicated with H3, H4 and Z5

simplify to 4−2τ, 5−3τ , and 6−4τ , respectively. Since τ ∼ 1.618, the
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first two are positive while the third is negative, thereby establishing
that the H3 and H4 describe a possible arrangement of vectors in space,
but that Z5 does not.

In some sense, we already knew these Dynkin diagram produced
positive definite matrices since they were derived from the shapes of
fundamental chambers for the explicit regular polytopes constructed
earlier. More importantly, it is also easy to calculate the determinants
associated with the 5 Dynkin diagrams shown in Figure 5 and verify
that they are not positive definite, and thus do not describe any ar-
rangement of vectors in space.

Corollary 3.1.4 (Forbidden subgraphs). If Xn is the Dynkin diagram
of a regular polytope, then Xn cannot contain any of the graphs shown
in Figure 5 as a subgraph.

We now have enough tools to complete the classification.

3.2 The Proof

Theorem (Classification of regular polytopes). Every regular polytope
is

1. a closed interval,

2. a regular m-gon with m ≥ 3,

3. one of the 5 platonic solids,

4. one of the 6 regular 4-polytopes, or

5. an n-dimensional simplex, cube or cross-polytope with n > 4.

Proof. Let P be a regular polytope and Xn be its Dynkin diagram.
Since there exist regular polytopes for each of the Dynkin diagrams
listed, it only remains to show that this list is complete. By Corollary
3.1.4, it is sufficient to show that the only linear Dynkin diagrams which
avoid the 5 types of graphs shown in Figure 5 are the ones we have
listed. The outline of the proof is given in Figure 6.

If Xn diagram has at most 2 vertices then Xn is either a trivial
graph (and P is an interval) or Xn is of type I2(m) (and P is a regular
m-gon). Thus we may assume n > 2. If Xn has no edges with a label
larger than 3, then Xn is of type An (and P is a regular n-simplex).
On the other hand, if Xn has more than one such edge label, then it
contains C̃n as a subgraph, contradiction. Thus we may assume that
Xn contains exactly one label bigger than 3. If this label is 6 or more,
then Xn contains G̃2 as a subgraph, contradiction, so we may assume
the label is either 4 or 5.

Suppose the label is 4. If this label occurs at either end of Xn, then
Xn is of type Bn (and P is either an n-cube or an n-cross-polytope). If
it does not occur at an end, then either Xn is F4 (and P is the 24-cell),
or it contains F̃4 as a subgraph, contradiction. Finally, consider the
case where the label is 5. If it does not occur at an end of Xn, then
Xn contains Z4 as a subgraph, contradiction. On the other hand, if it
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occurs at one end, then Xn is either H3 (making P a dodecahedron or
an icosahedron), H4 (making P a 120-cell or a 600-cell), or it contains
Z5, contradiction.
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