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Abstract

Here I will consider the group of diffeomorphisms (see page 4 of ref. 4) generated by separating reflections on a connected
differentiable manifold(see page 2 of ref. 4). We call them reflection group for brevity. Later I will define the analogous
definition of hyperplane arrangement , walls , chambers , galleries for a manifold with a beautiful example. I’ll also show
that the reflection group on manifolds have exactly similar properties with that of a reflection group on Affine n-space.

Introduction

A n-dimensional manifold is a topological space whose each point has a neighborhood which is homeomorphic to an
open subset of Rn. A differentiable manifold is a manifold with a global differential structure(intuitively a structure
where we can use differential calculus). A reflection s on M is a diffeomorphism s : M → M such that s2 = 1.
Ms = {x ∈M |s(x) = 1}. Ms has co-dimension 1 in M . s is called separating if M −Ms is disconnected. A reflection
group W acting on M is a discrete group of diffeomorphism of M generated by separating reflections.

Geometry of manifolds

Proposition 1 :

Let s be a reflection of M . Then M −Ms has at most two connected components.
Proof : Let x0 and x1 in M −Ms and let x(t) be a piecewise path from x0 and x1 that intersects Ms transversally.
Let x(t1), ...x(tN ) be the points of intersection. Consider the new path x̃(t) such that x̃(t) = x(t) for 0 ≤ t ≤ t1 ;
x̃(t) = sx(t) for t1 ≤ t ≤ t2 ; x̃(t) = x(t) for t2 ≤ t ≤ t3
Deform the path x̃(t) such that in a small neighborhoods of x(t1), . . . , x(tN ) to make it come off Ms.(see fig. 1)

Figure 1

http://en.wikipedia.org/wiki/Diffeomorphism
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The resulting path x̃(t) does not intersect Ms at all if N is even and intersects once if N is odd. Thus any x, y ∈Ms can
be joined by a continuous path intersecting Ms at most once. Assume M −Ms has three connected components X,Y, Z
and choose three points x, y, z in X,Y, Z respectively. Then there are paths γ, γ̃ from x to y and from y to z respectively
intersecting Ms once. The composite path γγ̃ from x to z intersects Ms twice. This leads to a contradiction.�
From this proposition we can easily conclude that any continuous path between any two points in M intersects with
Ms even number of times if and only if they lie in the same component.

Example 1:

(a) Let M = S1 × S1 be the two dimensional torus. Then the reflection about it’s diagonal is not separating.

(b) Let M = S1 be the unit circle at origin. Then any reflection about it’s diameter is separating.

Fact 1 :

If M is simply connected1 then any reflection of M is separating.

Analog of hyperplane arrangement in manifolds

In the rest of the paper I’ll consider only separating reflections and groups generated by them. By Fact 1, if M is
simply connected then the assumption is automatically satisfied.

Now I’ll establish some terminology.
• Half space : The closures Ms

ε, ε = ±1, of connected components of M −Ms are the two closed half-spaces. If A ⊂M
intersects only one component of M −Ms then we denote the corresponding half-space by Ms(A)

+
and the other by

Ms(A)
−

• Wall and Chamber : The sets Ms, s ∈ R are called the (reflecting)walls of M and the closure of the connected
components of M −∪s∈RMs are the chambers of M . Since a wall Ms defines s uniquely so one can identify elements of
R with the corresponding walls.
• Face : Faces of a chamber C are the elements of the set C ∩ ∪s∈RMs

• Adjacent chamber : Two chambers C 6= D are adjacent if they have a common face. Let Mr be the unique wall
containing this face then D = rC.
• Gallery and minimal gallery : A sequence of chambers C0, C1, . . . , CN of chambers is a gallery of length N going
from C0 to CN if for i = 1, 2, . . . , N the chambers Ci−1, Ci are adjacent. If Ci = riCi−1 for all i then the corresponding
sequence of reflections is r1, r2, . . . , rN . The distance between C and D denoted by d(C,D) is the length of the minimal
sequence of reflections r1, r2, . . . , rN . A minimal gallery from C to D is the minimal gallery C0, C1, . . . , CN such that
C = C0 and D = CN . A wall Ms separates C and D if C ⊂Ms

ε and D ⊂Ms
−ε. The set of reflections separating C

and D is denoted by R(C,D).

Example 2 :

In this figure {{(1, 0), (−1, 0)}, {(1/2,
√

3/2),
(−1/2,−

√
3/2)}, {(−1/2,

√
3/2), (1/2,−

√
3/2)}} is the

hyperplane arrangement. {C0, C1, C2, C3, C4, C5} is the
set of chambers. Faces of C0 are (1/2,−

√
3/2) and

(−1/2,−
√

3/2). Here C0, C1, C2, C3, C4 is gallery from
C0 to C4. But the minimal gallery from C0 to C4 is
C0, C5, C4. So, d(C0, C4) = 2

Figure 2

1A simply connected space is a topological space which is path connected and has trivial fundamental group(equivalently where every loop
can be shrunk to a point).e.g. Sn for n ≥ 2 , Rn for n ≥ 1.

http://en.wikipedia.org/wiki/Torus


Properties of reflection groups

Proposition 2 :

C = C0, C1, . . . , CN = D is a minimal gallery from C to D if and only if {r1, r2, . . . , rN} = R(C,D)

Proof : I’ll prove this proposition by showing {r1, r2, . . . , rN} ⊆ R(C,D) and {r1, r2, . . . , rN} ⊇ R(C,D) by an
intuitive idea.
Let r ∈ R(C,D). So, C ⊂Mr

ε and D ⊂Mr
−ε . A gallery from a chamber C to another chamber D can be visualized

as a path from C to D. As, C and D lies in the different half-space so, the path must cuts Mr. So, there are
two chambers Ci and Ci+1 such that Ci ⊂ Mr

ε and Ci+1 ⊂ Mr
−ε and Ci+1 = rCi. Then r ∈ {r1, r2, . . . , rN}. So,

{r1, r2, . . . , rN} ⊇ R(C,D)
If r ∈ {r1, r2, . . . , rN} and r /∈ R(C,D) then C and D lies in the same half-space of M −Mr. So, the path from C to
D cuts Mr even number of times.
By a similar construction as I did in proposition 1 I can construct a new path which does not intersect with Mr. This
new path is equivalent to a new gallery from C to D. It is obvious from the following figure(see figure 3) that the
length of the new gallery is less than the length of the previous gallery. This contradicts with the assumption that
C = C0, C1, . . . , CN = D is a minimal gallery from C to D.
So, {r1, r2, . . . , rN} ⊆ R(C,D) �

Figure 3

We’ve a gallery G from C to D C0 = C,C1, C2, C3, C4, C5 = D. We construct new gallery Ǵ from C to D Ć0 =
C, Ć1, Ć2, Ć3 = D. length of Ǵ = length of G− 2.



Corollary 1 :

Let D 6= C be two chambers, let Ms (resp. Mr) be a wall of C (resp. D) such that r, s ∈ R(C,D). Then there exists a
minimal gallery C = C0, C1, . . . , CN = D such that C1 = sC and CN−1 = rD.

Proof :
I’ll apply induction to d(C,D). If d(C,D) = 1 then obviously r = s. So, the assertion is trivial. If t ∈ R and t 6= s then t
can not separate sC from C. Moreover, if t ∈ R(C,D) then C, sC ⊆Mt(D)

−
and if t /∈ R(C,D) then C, sC ⊆Mt(D)

+
.

Therefore R(sC,D) = R(C,D)\{s} and d(sC,D) = d(C,D)− 1.
This proves the corollary. �

Let W be the reflection group acting on M and let R ⊂ W be the set of reflections in W . The group W acts
on the set R by conjugations r → grg−1 which I’ll denote g.r for my convenience. The group W acts on the set of
chambers of M . As in a manifold there is no analogue of root system,then without loss of generality we can choose any
chamber C+ to be fundamental chamber. We denote the set of reflections in the walls of C+ by SC+ . s ∈ SC+ are
called simple reflections of M .

Proposition 3 :

(i) Any r ∈ R is conjugate to some s ∈ S.

(ii) S generates W .

Proof :
Let r ∈ R and let C be such that Mr is a wall of C. Let W̃ be the subgroup of W generated by S. There is a w ∈ W̃
such that w−1C = C+ (as C+ is the fundamental chamber). Thus w−1Mr is a wall of C+.

So, w−1Mr = Ms for some s ∈ S , therefore r = wsw−1. This proves (i). From (i) we get that R ⊆ W̃ . The group W

is generated by R and R ⊆ W̃ . Thus W = W̃ . This proves (ii). �

Proposition 4 :

(i) W acts simply transitively on the set of chambers. i.e. for any two chambers Ci and Cj there exists an unique
g ∈W such that Ci = gCj .

(ii) Let g ∈ W and let g = s1s2 . . . sN be a decomposition of g into simple reflections. Then the sequence C0 =
C+, C1 = s1C+, . . . , Ci = s1s2 . . . siC+, . . . , CN = s1s2 . . . sNC+ is a gallery. This establishes a one to one
correspondence between the word in si and galleries starting from C+.

Proof :
This prove is exactly same as that we’ve done in our course for hyperplane arrangement in Affine n-space.(see page
86,87 of ref. 1.) �

Choose a fundamental chamber C+ from the set of chambers and let S be the corresponding set of simple reflections.
S generate W . A decomposition of g = s1s2 . . . sN , si ∈ S of g ∈ W is called minimal if it is the shortest possible
decomposition. Then we denote the length of g to be d(g) = N . The distance d(g, h) is defined by d(g, h) = d(g−1h).
We denote Mr(C+)

ε
by just Mr

ε and R(C+, gC+) by R(g).



Corollary 2 :

(i) For any g, h ∈W , d(g, h) = d(gC+, hC+) and d(g) = |R(g)|.
(ii) R(g) = {r ∈ R|g−1Mr

ε = Mg−1.r
−ε}

Proof :
(i) follows immediately from Proposition 2 and 4.
R(g) = {r ∈ R|gC+ ⊂Mr

−}.
Since g−1gC+ = C+ we have g−1Mr

− = M+
g−1r. On the other hand if r /∈ R(g) then gC+ ⊂ Mr

+ therefore

g−1Mr
+ = Mg−1r

+. This proves (ii). �

For x ∈M define isotropy subgroup Wx of W by Wx = {g ∈W |g(x) = x} and Rx = {r ∈ R|r(x) = x}

Proposition 4 :

(i) Let x, y ∈ C, g ∈W and let gx = y. Then x = y and g ∈Wx.

(ii) For any x ∈M the group Wx is generated by reflections r ∈ Rx.

Proof :
Let C,D be such chambers such that C ∩ D 6= Φ. Since any wall that separates C and D, contains C ∩ D. A
minimal gallery C = C0, C1, . . . , CN = D going from C to D crosses only the walls Mr ∈ R(C,D), so every chamber
C1, . . . , CN−1 contains C ∩D.
So the corresponding sequence on reflections {r1, r2, . . . , rN} leave C ∩D fixed point-wise. Now g = rNrN−1 . . . r1. As
{r1, r2, . . . , rN} leave C ∩D fixed so is g.
So, x = g.gx = gy = y. Hence (i) holds.
For x ∈M let C be the chamber containing it. By the same argument as before any g ∈Wx is a product of ri ∈ Rx

which proves (ii). �

Corollary 3 :

The natural mapping ϕ : C+ →M/W is an isomorphism.2.

Main Theorem

Coxeter group :

Definition :
A coxeter group is a group W with a finite set S of generators and a presentation
W = 〈S|(sr)m(s,r) = 1∀r, s ∈ S〉.
Where the function m : S × S → {1, 2, . . . ,∞}
Example :

(a) Coxeter group of type An−1 is W = 〈S|(si)2 = 1∀0 ≤ i ≤ n− 1; sisi+1si = si+1sisi+1∀1 ≤ i ≤ n− 2; sisj =
sjsi∀|i− j| = 1〉 ∼= Sn.

(b) Coxeter group of type Bn is W = 〈S|(si)2 = 1∀0 ≤ i ≤ n− 1; sisi+1si = si+1sisi+1∀1 ≤ i ≤ n− 2; sisj =

sjsi∀|i− j| > 1; (s0s1)2 = (s1s0)2〉 ∼= Sn
B the group of signed permutation.

Main Theorem on representation of reflection groups :

Let W be a reflection group acting on M , let C+ be a fundamental chamber, let S ⊂ R be the corresponding set of
simple reflections and for s, r ∈ S let m(s, r) be the order of sr. Then W is a coxeter group with the presentation

W = 〈S : (sr)m(s,r) = 1〉

2We denote by M/s the quotient of M by the action of s endowed with natural topology. e.g. for a) of Example 1 M/s is the Möbius band.

http://www.cut-the-knot.org/do_you_know/moebius.shtml


Main Example

Here I’ll consider S1 and it’s reflection group W generated by finite number of it’s dissecting reflections.(reflections
w.r.t it’s diameters)
We know that a group of orthogonal transformations in R2 consisting of at least one reflection is a dihedral group.
Moreover, if the generator s, r meets at an angle of π/m then the reflection group is the coxeter group of order 2m with
the presentation

Dm = 〈s, r : s2 = r2 = (sr)m = 1〉

So, if we consider the example that we’ve seen in example 2 there each walls are meeting at π/3. So, the reflection
group is D6.

Labeling of chambers of Example 2 :

Figure 4

Here choose fundamental chamber C+ to be C3. So, the set of simple reflection S = {s, r}
So, reflection group W = 〈s, r : s2 = r2 = (sr)3 = 1〉.
Figure 4 is showing the labeling of S1 by the elements of W .

Conclusion

So, we’ve seen that reflections in manifold is more generalized than reflections in euclidean space and both of them
satisfy almost similar properties. In figure 4 we’ve found that the reflection group generated by two dissecting reflection
of S1 is coxeter group of order 6. This illustrates the main theorem.
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