Introduction to Manifolds

Assignment 2 Due Date: 30/08/2018

Problem 1: In each of the following questions show that the given function f is one-to-one on the given set A. Sketch A and B = f(A). For $p \in B$ find $Df^{-1}(p)$.

- 1. $f(x, y) = (x^2 y^2, 2xy), A = \{(x, y) | x > 0\}$ and p = (0, 1).
- 2. $f(x, y) = (e^x \cos y, e^x \sin y), A = \{(x, y) \mid 0 < y < 2\pi\} \text{ and } p = (0, 1).$

Problem 2: Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be given by the equation $f(x) = ||x||^2 \cdot x$.

- 1. Show that f is a smooth function.
- 2. Show that *f* maps the unit ball onto itself in a one-to-one fashion.
- 3. Is the inverse function differentiable at the origin ? Why ?

Problem 3: Let $g : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $g(x, y) = (2ye^{2x}, xe^y)$ and $f : \mathbb{R}^2 \to \mathbb{R}^3$ be given by the equation $f(x, y) = (3x - y^2, 2x + y, xy + y^3)$.

- 1. Show that there is a neighborhood of (0, 1) that g carries in a one-to-one fashion onto a neighborhood of (2, 0).
- 2. Find $D(f \circ g^{-1})$ at (2, 0).

Problem 4: Let $U \subset \mathbb{R}^n$ be open; let $f : U \to \mathbb{R}^n$ be a smooth function; assume Df(x) is non-singular for $x \in U$. Show that even if f is not one-to-one on U the image is open in \mathbb{R}^n .

Problem 5: Compute the derivative of the following functions.

- 1. $f : M(n, \mathbb{R}) \times M(n, \mathbb{R}) \to M(n, \mathbb{R})$ given by f(A, B) = A + B.
- 2. $g: M(n, \mathbb{R}) \times M(n, \mathbb{R}) \rightarrow M(n, \mathbb{R})$ given by g(A, B) = AB.
- 3. $h: M(n, \mathbb{R}) \to M(n, \mathbb{R})$ given by $h(A) = A^2$.
- 4. $j : M(n, \mathbb{R}) \to M(n, \mathbb{R})$ given by $j(A) = A^t$.