Introduction to Manifolds

Assignment 1

Due Date: 16/08/2018

Problem 1: In each of the following a function f is given, find a generic expression for its derivative $D f$, then determine when the derivative is non-singular. Finally, for the given subset S of the domain sketch its image $f(S)$.

1. $f(r, \theta)=(r \cos \theta, r \sin \theta)$ and $S=[1,2] \times[0,2 \pi]$.
2. $f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ and $S=\left\{(x, y) \mid x^{2}+y^{2} \leq a^{2}, x \geq 0, y \geq 0, a \geq 0\right\}$.
3. $f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$ and $S=[0,1] \times[0,2 \pi]$.
4. $f(\rho, \phi, \theta)=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$ and $S=[1,2) \times\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{2}\right]$.

Problem 2: Let $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ be a bilinear function.

1. Prove that

$$
\lim _{(h, k) \rightarrow 0} \frac{\|f(h, k)\|}{\|(h, k)\|}=0
$$

and that f is differentiable everywhere in the domain.
2. Prove that $D f(a, b)(x, y)=f(a, y)+f(x, b)$.
3. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be two differentiable maps and $h: \mathbb{R} \rightarrow \mathbb{R}$ is defined by setting $h(t)=$ $\langle f(t), g(t)\rangle$ (the standard inner product on \mathbb{R}^{n}). Prove that h is differentiable everywhere and find $h^{\prime}(a)$.

Problem 3: Let $U \subseteq \mathbb{R}^{m}$ and $V \subseteq \mathbb{R}^{n}$ be nonempty, diffeomorphic subsets. Then prove the following.

1. If U and V both are open then $m=n$.
2. If $m=n$ and U is open then V is also open.

Problem 4: Let $X=[-1,1]$ and $Y=\left\{(x, 0) \in \mathbb{R}^{2} \left\lvert\, 0 \leq x \leq \frac{1}{2}\right.\right\} \cup\left\{(0, y) \in \mathbb{R}^{2} \left\lvert\, 0 \leq y \leq \frac{1}{2}\right.\right\}$. Are X and Y diffeomorphic? Justify.
Problem 5: Show that the unit sphere S^{n} in \mathbb{R}^{n+1} is a smooth n-manifold using stereographic projection as a coordinate chart.

