Introduction to Manifolds

Assignment 1 Due Date: 16/08/2018

Problem 1: In each of the following a function f is given, find a generic expression for its derivative Df, then determine when the derivative is non-singular. Finally, for the given subset S of the domain sketch its image f(S).

- 1. $f(r, \theta) = (r \cos \theta, r \sin \theta)$ and $S = [1, 2] \times [0, 2\pi]$.
- 2. $f(x, y) = (x^2 y^2, 2xy)$ and $S = \{(x, y) \mid x^2 + y^2 \le a^2, x \ge 0, y \ge 0, a \ge 0\}.$
- 3. $f(x, y) = (e^x \cos y, e^x \sin y)$ and $S = [0, 1] \times [0, 2\pi]$.
- 4. $f(\rho, \phi, \theta) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$ and $S = [1, 2) \times [0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}]$.

Problem 2: Let $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$ be a bilinear function.

1. Prove that

$$\lim_{(h,k)\to 0} \frac{\|f(h,k)\|}{\|(h,k)\|} = 0,$$

and that f is differentiable everywhere in the domain.

- 2. Prove that Df(a, b)(x, y) = f(a, y) + f(x, b).
- 3. Let $f, g: \mathbb{R} \to \mathbb{R}^n$ be two differentiable maps and $h: \mathbb{R} \to \mathbb{R}$ is defined by setting $h(t) = \langle f(t), g(t) \rangle$ (the standard inner product on \mathbb{R}^n). Prove that *h* is differentiable everywhere and find h'(a).

Problem 3: Let $U \subseteq \mathbb{R}^m$ and $V \subseteq \mathbb{R}^n$ be nonempty, diffeomorphic subsets. Then prove the following.

- 1. If U and V both are open then m = n.
- 2. If m = n and U is open then V is also open.

Problem 4: Let X = [-1, 1] and $Y = \{(x, 0) \in \mathbb{R}^2 \mid 0 \le x \le \frac{1}{2}\} \cup \{(0, y) \in \mathbb{R}^2 \mid 0 \le y \le \frac{1}{2}\}$. Are *X* and *Y* diffeomorphic? Justify.

Problem 5: Show that the unit sphere S^n in \mathbb{R}^{n+1} is a smooth *n*-manifold using stereographic projection as a coordinate chart.