Reflection Groups

Homework 3

Due date: 07/03/2013

1. Prove that any finite group of rotations of the Euclidean plane \mathbb{R}^{2} about the origin is cyclic. Prove that, in general, if it is a finite group of orthogonal transformations then it could be a dihedral group.
2. Prove that if r is a rotation of \mathbb{R}^{2} and s is a reflection then $s r$ is a reflection. Deduce from this that $s r s^{-1}=r^{-1}$.
3. If $D_{2 n}$ is a dihedral group of order $2 n$ then prove that $D_{2 n}$ has one conjugacy class of reflections if n is odd, and two if n is even.
4. Prove that in a planar root system, the lengths of roots can take at most two values. In particular conclude that in a root system of $D_{2 n}$, with n odd, all roots have the same length.

Let V_{1} and V_{2} be two orthogonal subspaces of a vector space V and let Φ_{i} be a root system in $V_{i}, i=1,2$. Then $\Phi_{1} \bigcup \Phi_{2}$ is a root system in V denoted by $\Phi_{1} \oplus \Phi_{2}$.

5 Make a sketch of the root systems $A_{1} \oplus A_{1}$ in $\mathbb{R}^{2}, A_{1} \oplus A_{1} \oplus A_{1}$ in \mathbb{R}^{3}, D_{3} and B_{3} in \mathbb{R}^{3}.

6 Prove that the reflection group of type $B C_{2}$ is isomorphic to D_{8}.
Bonus Prove that there exists a group, unique up to isomorphism, generated by two involutions such that their product has infinite order.

