Reflection Groups

 $\begin{array}{c} \mbox{Homework 2} \\ \mbox{Due date: $01/02/2013$} \end{array}$

1 Arrangements of lines

Definition 1.1. An arrangement of lines $\mathcal{L} = \{l_1, \ldots, l_n\}$ is a finite collection of straight lines in \mathbb{A}^2 satisfying following conditions:

- 1. no two lines are parallel;
- 2. not all lines pass through a single point (i.e., $\bigcap_{i=1}^{n} l_i = \emptyset$).

An arrangement \mathcal{L} decomposes \mathbb{A}^2 into a finite number of vertices, edges and cells whose numbers are denoted by $f_0(\mathcal{L}), f_1(\mathcal{L})$ and $f_2(\mathcal{L})$ respectively.

Definition 1.2. Two line arrangements are isomorphic if and only if there is an incidence preserving one-to-one correspondence between vertices, edges and cells of one arrangement and those of the other arrangement. The number of isomorphism types of arrangements of n lines is denoted by c(n).

A simple arrangement is the one in which every vertex is an intersection of exactly 2 lines. The number of isomorphism types of simple arrangements is denoted by $c^s(n)$. A simplicial arrangement is the one in which all the cells are triangles (bounded or otherwise). The number of their isomorphism types is denoted by $c^{\Delta}(n)$.

For example, an arrangement of 3 lines is both simple and simplicial. In fact, $c(3) = c^s(3) = c^{\Delta}(3) = 1$.

- 1. For a simple arrangement of n lines find a formula, in terms of n, for f_i 's.
- 2. For $4 \le n \le 6$ determine c(n). Also draw the picture of a representative of each isomorphism type.
- 3. For $4 \le n \le 7$ determine $c^s(n)$. Also draw the picture of a representative of each isomorphism type.
- 4. For $4 \le n \le 10$ determine $c^{\Delta}(n)$. Also draw the picture of a representative of each isomorphism type.
- 5. (Bonus). Is it possible to classify simplicial arrangements? If yes then state your classification. (i.e., try to find patterns in simplicial arrangements). Prepare a table which illustrates, for each isomorphism type of simplicial arrangement you have obtained, the numbers n, f_0, f_1, f_2 and the number of bounded cells.
- 6. (Bonus). Formulate a reasonable conjecture regarding $c^{\Delta}(n)$ for all n.

2 Groups of symmetries

Definition 2.1. For a polyhedron $\Delta \subset \mathbb{A}^n$, the group of symmetries Sym Δ consists of isometries of \mathbb{A}^n that map Δ onto Δ .

- 1. Give examples of polytopes in \mathbb{A}^3 such that
 - (a) Sym Δ acts transitively on the set of vertices but is intransitive on the set of faces.
 - (b) Sym Δ acts transitively on the set of faces but is intransitive on the set of vertices.
 - (c) Sym Δ is transitive on the set of edges but is intransitive on the set of faces.
- 2. Prove that symmetry group of a polytope is finite.
- 3. Construct a polyhedron with an infinite symmetry group.