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Sensitivity of an Algorithm

■ Measure of change in output as a function of change in 
input
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This talk: A sensitivity definition for graph 

algorithms



Talk Outline

■ Our definition of sensitivity for graph algorithms

■ Key properties of our definition

■ Main results 

■ Algorithm with low sensitivity for the global minimum cut 
problem

■ Conclusions and open directions
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Average Sensitivity: Intuitive Definition
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Algorithm 𝐴 𝑆 ⊆ 𝑉𝐺 = (𝑉, 𝐸)



Average Sensitivity: Intuitive Definition
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𝐺′ is a large subgraph of 𝐺 obtained by removing a few 
random edges

Algorithm 𝐴

𝑆′ ⊆ 𝑉

𝑆 ⊆ 𝑉

𝐺′ = 𝑉, 𝐸′ ; 𝐸′ ⊆ 𝐸

𝐺 = (𝑉, 𝐸)

Algorithm 𝐴



Average Sensitivity: Intuitive Definition
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𝐺′ is a large subgraph of 𝐺 obtained by removing a few 
random edges

Algorithm 𝐴

𝑆′ ⊆ 𝑉

𝑆 ⊆ 𝑉

𝐺′ = 𝑉, 𝐸′ ; 𝐸′ ⊆ 𝐸

𝐺 = (𝑉, 𝐸)

Sensitivity of 𝐴 on 𝐺=|𝑆 Δ 𝑆′| = Ham(𝑆, 𝑆′)

Algorithm 𝐴



Why Sensitivity?
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■ Natural notion of 
performance of algorithms 

𝐺′ is a large subgraph of 𝐺 obtained by 
removing a few random edges

Algorithm 𝐴

𝑆′ ⊆ 𝑉

𝑆 ⊆ 𝑉

𝐺′ = 𝑉, 𝐸′

𝐺 = (𝑉, 𝐸)

Sensitivity of 𝐴 =|𝑆 Δ 𝑆′| = Ham(𝑆, 𝑆′)

Algorithm 𝐴



Why Sensitivity?
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■ Natural notion of 
performance of algorithms 

■ Answer questions about 𝐺
by answering questions 
about 𝐺′

– Useful in cases where one 
has access only to 𝐺′

𝐺′ is a large subgraph of 𝐺 obtained by 
removing a few random edges

Algorithm 𝐴

𝑆′ ⊆ 𝑉

𝑆 ⊆ 𝑉

𝐺′ = 𝑉, 𝐸′

𝐺 = (𝑉, 𝐸)

Sensitivity of 𝐴 =|𝑆 Δ 𝑆′| = Ham(𝑆, 𝑆′)

Algorithm 𝐴



Average Sensitivity: Deterministic Algorithms

Deterministic graph algorithm 𝐴 outputs a set of edges or 
vertices
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Average Sensitivity: Deterministic Algorithms

Deterministic graph algorithm 𝐴 outputs a set of edges or 
vertices
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Average sensitivity of 𝐴 on graph 𝐺 = (𝑉, 𝐸)

avg𝑒∈𝐸 [Ham 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]



Average Sensitivity: Deterministic Algorithms

Deterministic graph algorithm 𝐴 outputs a set of edges or 
vertices

Algorithm with low average sensitivity: stable-on-average algorithm
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Average sensitivity of 𝐴 on graph 𝐺 = (𝑉, 𝐸)
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Average Sensitivity: Deterministic Algorithms

Deterministic graph algorithm 𝐴 outputs a set of edges or 
vertices

Algorithm with low average sensitivity: stable-on-average algorithm

Generalization to 𝑘-average sensitivity for the removal of 𝑘
random edges (without replacement)
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Average sensitivity of 𝐴 on graph 𝐺 = (𝑉, 𝐸)

avg𝑒∈𝐸 [Ham 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]



Average Sensitivity: 
Deterministic 
Algorithms
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■ Averaging over edges: 
Models random edge 
deletion from input graphs

Deterministic graph algorithm 𝐴
outputs a set of edges or vertices

Average sensitivity of 𝐴 on graph 

𝐺 = (𝑉, 𝐸)

avg𝑒∈𝐸 [Ham 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]



Average Sensitivity: 
Deterministic 
Algorithms
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■ Averaging over edges: 
Models random edge 
deletion from input graphs

■ Sensitivity of solutions, not 
values: Solutions may be 
used in further processing

Deterministic graph algorithm 𝐴
outputs a set of edges or vertices

Average sensitivity of 𝐴 on graph 

𝐺 = (𝑉, 𝐸)

avg𝑒∈𝐸 [Ham 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]



Example 1: Average Sensitivity of Outputting 
Large Degree Vertices
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On input 𝐺 of 𝑛 vertices:

• Output all vertices of degree at least 𝑛/2.  

Large Degree Vertices



Example 1: Average Sensitivity of Outputting 
Large Degree Vertices

Removing any edge affects the degrees of at most 2 vertices
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On input 𝐺 of 𝑛 vertices:

• Output all vertices of degree at least 𝑛/2.  

Large Degree Vertices



Example 1: Average Sensitivity of Outputting 
Large Degree Vertices

Removing any edge affects the degrees of at most 2 vertices

Average sensitivity at most 2
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On input 𝐺 of 𝑛 vertices:

• Output all vertices of degree at least 𝑛/2.  

Large Degree Vertices



Example 2: Average Sensitivity of s-t 
Shortest Path

Problem: Given a graph 𝐺 on 𝑛 vertices and two vertices 𝑠, 𝑡, 
output the 𝑠-𝑡 shortest path
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Example 2: Average Sensitivity of s-t 
Shortest Path

Problem: Given a graph 𝐺 on 𝑛 vertices and two vertices 𝑠, 𝑡, 
output the 𝑠-𝑡 shortest path
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Average sensitivity of outputting 𝑠-𝑡
shortest paths is Θ(𝑛)
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Shortest Path
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Average sensitivity of outputting 𝑠-𝑡
shortest paths is Θ(𝑛)



Example 2: Average Sensitivity of s-t 
Shortest Path
Problem: Given a graph 𝐺 on 𝑛 vertices and two vertices 𝑠, 𝑡, output 
the 𝑠-𝑡 shortest path

Lower Bound: Consider a                         
deterministic algorithm that outputs 𝑃

21

Average sensitivity of outputting 𝑠-𝑡
shortest paths is Θ(𝑛)



Example 2: Average Sensitivity of s-t 
Shortest Path
Problem: Given a graph 𝐺 on 𝑛 vertices and two vertices 𝑠, 𝑡, output the 𝑠-𝑡
shortest path

Lower Bound: Consider a                         
deterministic algorithm that outputs 𝑃

For any of the 𝑛/2 edges removed                     
from 𝑃, the algorithm has to output 𝑄

22

Average sensitivity of outputting 𝑠-𝑡
shortest paths is Θ(𝑛)



Average Sensitivity: Randomized Algorithms
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Average sensitivity of randomized algorithm 𝐴 on graph 𝐺 = (𝑉, 𝐸)

avg𝑒∈𝐸 [Dist 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]

Distribution 

over solutions



Average Sensitivity: Randomized Algorithms

■ Earth Mover's Distance
– Generalization of 𝐿1 distance that penalizes ``significant 

differences" in probabilities on ``really different" solutions
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Average sensitivity of randomized algorithm 𝐴 on graph 𝐺 = (𝑉, 𝐸)

avg𝑒∈𝐸 [Dist 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]

Distribution 

over solutions



Average Sensitivity: Randomized Algorithms

■ Earth Mover's Distance
– Generalization of 𝐿1 distance that penalizes ``significant 

differences" in probabilities on ``really different" solutions
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Average sensitivity of randomized algorithm 𝐴 on graph 𝐺 = (𝑉, 𝐸)

avg𝑒∈𝐸 [dEM 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]

Distribution 

over solutions



Average Sensitivity: 
Randomized 
Algorithms
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Average sensitivity of 

randomized algorithm 𝐴 on 

graph 𝐺 = (𝑉, 𝐸)

avg𝑒∈𝐸 [dEM 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]
Distribution 𝐷1
over solutions  

Distribution 𝐷2
over solutions  



Average Sensitivity: 
Randomized 
Algorithms
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Average sensitivity of 

randomized algorithm 𝐴 on 

graph 𝐺 = (𝑉, 𝐸)

avg𝑒∈𝐸 [dEM 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]

Cost of moving prob. 𝑝 from 𝑆𝑖 to 𝑆𝑗 is 

𝑝 ⋅ Ham 𝑆𝑖 , 𝑆𝑗

Distribution 𝐷1
over solutions  

Distribution 𝐷2
over solutions  



Average Sensitivity: 
Randomized 
Algorithms
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Average sensitivity of 

randomized algorithm 𝐴 on 

graph 𝐺 = (𝑉, 𝐸)

avg𝑒∈𝐸 [dEM 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]

Optimal cost of moving the probability 

mass from one distribution to the other

Distribution 𝐷1
over solutions  

Distribution 𝐷2
over solutions  



Generalization to 𝑘-average sensitivity 

for the removal of 𝑘 random edges 

(without replacement)

Average Sensitivity: 
Randomized 
Algorithms
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Average sensitivity of 

randomized algorithm 𝐴 on 

graph 𝐺 = (𝑉, 𝐸)

avg𝑒∈𝐸 [dEM 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]

Optimal cost of moving the probability 

mass from one distribution to the other

Distribution 𝐷1
over solutions  

Distribution 𝐷2
over solutions  



Related Sensitivity Notions

■ Differential Privacy [Dwork McSherry Nissim Smith '06]
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Related Sensitivity Notions

■ Differential Privacy [Dwork McSherry Nissim Smith '06]

– Edge Differential Privacy [Nissim Raskhodnikova Smith '07]

■ An algorithm 𝐴 on a graph 𝐺 is differentially private if for all 𝑒 ∈ 𝐸
the distributions 𝐴(𝐺) and 𝐴(𝐺 − 𝑒) are close to each other
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Related Sensitivity Notions

■ Differential Privacy [Dwork McSherry Nissim Smith '06]

– Edge Differential Privacy [Nissim Raskhodnikova Smith '07]

■ An algorithm 𝐴 on a graph 𝐺 is differentially private if for all 𝑒 ∈ 𝐸
the distributions 𝐴(𝐺) and 𝐴(𝐺 − 𝑒) are close to each other

– Much stricter notion than average sensitivity
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Related Sensitivity Notions
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replacing any sample in the training data
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Related Sensitivity Notions

■ Differential Privacy [Dwork McSherry Nissim Smith '06]

– Edge Differential Privacy [Nissim Raskhodnikova Smith '07]

■ An algorithm 𝐴 on a graph 𝐺 is differentially private if for all 𝑒 ∈ 𝐸
the distributions 𝐴(𝐺) and 𝐴(𝐺 − 𝑒) are close to each other

– Much stricter notion than average sensitivity

– Some of our algorithms inspired by differentially private algorithms

■ Stability of Learning Algorithms [Bousquet Elisseeff '02]

– A learner is stable if empirical loss does not change much by 
replacing any sample in the training data

– Stable learners have low generalization error
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Talk Outline

■ Our definition of average sensitivity for graph algorithms

■ Key properties of our definition

■ Main results 

■ Algorithm with low sensitivity for the global minimum cut 
problem

■ Conclusions and open directions
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k-Average Sensitivity from Average 
Sensitivity

38

Theorem: If 𝐴 has average sensitivity 𝑓(𝑛,𝑚), it has 𝑘-average 

sensitivity at most σ𝑖∈[𝑘] 𝑓(𝑛,𝑚 − 𝑖 + 1).



Average Sensitivity Composes

Algorithms 𝐴, 𝐵, 𝐶 such that 𝐴(𝐺) = 𝐵(𝐺, 𝐶 𝐺 )
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Average Sensitivity Composes

Algorithms 𝐴, 𝐵, 𝐶 such that 𝐴(𝐺) = 𝐵(𝐺, 𝐶 𝐺 )
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Theorem (Informal): Average sensitivity of 𝐴 on 𝐺 = (𝑉, 𝐸) can 

be bounded by the sum of: 

• a term for average sensitivity of 𝐵, and 

• a term for average sensitivity of 𝐶.



Average Sensitivity Composes

Algorithms 𝐴, 𝐵, 𝐶 such that 𝐴(𝐺) = 𝐵(𝐺, 𝐶 𝐺 )

Can be used to bound the average sensitivity of a distribution 
over multiple stable-on-average algorithms.
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Theorem (Informal): Average sensitivity of 𝐴 on 𝐺 = (𝑉, 𝐸) can 

be bounded by the sum of: 

• a term for average sensitivity of 𝐵, and 

• a term for average sensitivity of 𝐶.



Connection to 
Sublinear Algorithms
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Deterministic 

Algorithm 𝐴
𝐺 𝐴(𝐺)



Connection to 
Sublinear Algorithms
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Deterministic 

Algorithm 𝐴
𝐺 𝐴(𝐺)

Local 

simulator 𝐿

Graph 𝐺



Connection to 
Sublinear Algorithms
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Deterministic 

Algorithm 𝐴
𝐺 𝐴(𝐺)

Local 

simulator 𝐿

1 if 𝑒 ∈ 𝐴(𝐺)

0, otherwise

𝑒 ∈ 𝐸

Graph 𝐺



Connection to 
Sublinear Algorithms
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𝑞 𝐺 ≜ 𝔼𝑒∈𝐸[#queries by 𝐿]

Deterministic 

Algorithm 𝐴
𝐺 𝐴(𝐺)

Local 

simulator 𝐿

1 if 𝑒 ∈ 𝐴(𝐺)

0, otherwise

𝑒 ∈ 𝐸

Graph 𝐺



Connection to 
Sublinear Algorithms
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𝑞 𝐺 ≜ 𝔼𝑒∈𝐸[#queries by 𝐿]

Deterministic 

Algorithm 𝐴
𝐺 𝐴(𝐺)

Local 

simulator 𝐿

1 if 𝑒 ∈ 𝐴(𝐺)

0, otherwise

𝑒 ∈ 𝐸

Graph 𝐺

Average sensitivity of 𝐴
on 𝐺 is ≤ 𝑞(𝐺)



Connection to 
Sublinear Algorithms
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𝑞 𝐺 ≜ 𝔼𝜋,𝑒∈𝐸[#queries by 𝐿]

Algorithm 𝐴
𝐺

𝐴𝜋(𝐺)

Local 

simulator 𝐿

1 if 𝑒 ∈ 𝐴𝜋(𝐺)

0, otherwise

𝑒 ∈ 𝐸

Graph 𝐺

Average sensitivity of 𝐴
on 𝐺 is ≤ 𝑞(𝐺)

𝜋

𝜋

𝜋 is the random string



Connection to Local 
Computation 
Algorithms (LCAs)
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LCA 𝐿
𝜋 ∈ 0,1 𝑟

1 if 𝑣 is part of 

a solution to 𝑃
on 𝐺

0, otherwise

𝑣 ∈ 𝑉

Graph 𝐺

Graph problem 𝑃

Answers of 𝐿 are consistent with a 

single feasible solution of 𝑃 on 𝐺



Connection to Local 
Computation 
Algorithms (LCAs)
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LCA 𝐿
𝜋 ∈ 0,1 𝑟

1 if 𝑣 is part of 

a solution to 𝑃
on 𝐺

0, otherwise

𝑣 ∈ 𝑉

Graph 𝐺

Graph problem 𝑃

Answers of 𝐿 are consistent with a 

single feasible solution of 𝑃 on 𝐺

If a problem 𝑃 has an LCA of 

query complexity 𝑞(𝐺), then it 

has an algorithm with average 

sensitivity ≤ 𝑞(𝐺)



Connection to Local 
Computation 
Algorithms (LCAs)
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LCA 𝐿
𝜋 ∈ 0,1 𝑟

1 if 𝑣 is part of 

a solution to 𝑃
on 𝐺

0, otherwise

𝑣 ∈ 𝑉

Graph 𝐺

Graph problem 𝑃

Answers of 𝐿 are consistent with a 

single feasible solution of 𝑃 on 𝐺

If a problem 𝑃 has an LCA of 

query complexity 𝑞(𝐺), then it 

has an algorithm with average 

sensitivity ≤ 𝑞(𝐺)

Lower bound on average 

sensitivity implies lower bound 

on LCA query complexity!



Talk Outline

■ Our definition of average sensitivity for graph algorithms

■ Key properties of our definition

■ Main results 

■ Algorithm with low sensitivity for the global minimum cut 
problem

■ Conclusions and open directions
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Minimum Spanning Forest

Algorithm Average Sensitivity

Kruskal's Algorithm

Prim's Algorithm

52

For graphs on 𝑛 vertices and 𝑚 edges

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm#/media/File:KruskalDemo.gif
https://en.wikipedia.org/wiki/Prim%27s_algorithm#/media/File:PrimAlgDemo.gif


Minimum Spanning Forest

Algorithm Average Sensitivity

Kruskal's Algorithm 𝑂(𝑛/𝑚)

Prim's Algorithm
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For graphs on 𝑛 vertices and 𝑚 edges

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm#/media/File:KruskalDemo.gif
https://en.wikipedia.org/wiki/Prim%27s_algorithm#/media/File:PrimAlgDemo.gif


Minimum Spanning Forest

Algorithm Average Sensitivity

Kruskal's Algorithm 𝑂(𝑛/𝑚)

Prim's Algorithm Ω(𝑛)
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For a specific tie-

breaking rule

For graphs on 𝑛 vertices and 𝑚 edges

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm#/media/File:KruskalDemo.gif
https://en.wikipedia.org/wiki/Prim%27s_algorithm#/media/File:PrimAlgDemo.gif


Other Problems We Study

■ Maximum Cardinality Matching

– Output an independent set of edges with maximum cardinality
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Other Problems We Study

■ Maximum Cardinality Matching

– Output an independent set of edges with maximum cardinality

■ Global Minimum Cut

– Output a subset 𝑆 of vertices with minimum number of edges 
between 𝑆 and 𝑉 ∖ 𝑆
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Other Problems We Study

■ Maximum Cardinality Matching

– Output an independent set of edges with maximum cardinality

■ Global Minimum Cut

– Output a subset 𝑆 of vertices with minimum number of edges 
between 𝑆 and 𝑉 ∖ 𝑆

■ 𝑠-𝑡 Minimum Cut

■ 2-Coloring
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Maximum Cardinality Matching
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For graphs on 𝑛 vertices with max. matching size OPT



Maximum Cardinality Matching

Approximation Ratio Average Sensitivity

1 Ω(𝑛)
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For graphs on 𝑛 vertices with max. matching size OPT



Maximum Cardinality Matching

Approximation Ratio Average Sensitivity

1 Ω(𝑛)

1/2 1
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For graphs on 𝑛 vertices with max. matching size OPT



Maximum Cardinality Matching

Approximation Ratio Average Sensitivity

1 Ω(𝑛)

1/2 1

61

For graphs on 𝑛 vertices with max. matching size OPT

Corollary: 2-approximation algorithm for minimum vertex 

cover with average sensitivity 2.



Maximum Cardinality Matching

Approximation Ratio Average Sensitivity

1 Ω(𝑛)

1/2 1

1 − 𝜖
𝑂

𝑂𝑃𝑇

𝜖3

1
1+𝜖2
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For graphs on 𝑛 vertices with max. matching size OPT

Corollary: 2-approximation algorithm for minimum vertex 

cover with average sensitivity 2.



Global Minimum Cut
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For graphs on 𝑛 vertices with global min. cut of size OPT



Global Minimum Cut

Approximation Ratio Average Sensitivity

1 Ω(𝑛)
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For graphs on 𝑛 vertices with global min. cut of size OPT



Global Minimum Cut

Approximation Ratio Average Sensitivity

1 Ω(𝑛)

2 + 𝜖
𝑛
𝑂(

1

𝜖OPT
)
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For graphs on 𝑛 vertices with global min. cut of size OPT



Global Minimum Cut

Approximation Ratio Average Sensitivity

1 Ω(𝑛)

2 + 𝜖
𝑛
𝑂(

1

𝜖OPT
)
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For graphs on 𝑛 vertices with global min. cut of size OPT

If OPT = 𝜔(log 𝑛), average sensitivity is 𝑂(1)



Global Minimum Cut

Approximation Ratio Average Sensitivity

1 Ω(𝑛)

2 + 𝜖
𝑛
𝑂(

1

𝜖OPT
)

< ∞ Ω(𝑛1/OPT/OPT2)
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For graphs on 𝑛 vertices with global min. cut of size OPT

If OPT = 𝜔(log 𝑛), average sensitivity is 𝑂(1)



Global Minimum Cut

Approximation Ratio Average Sensitivity

1 Ω(𝑛)

2 + 𝜖
𝑛
𝑂(

1

𝜖OPT
)

< ∞ Ω(𝑛1/OPT/OPT2)
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For graphs on 𝑛 vertices with global min. cut of size OPT

If OPT = O log 𝑛 , average sensitivity is (nearly) optimal

If OPT = 𝜔(log 𝑛), average sensitivity is 𝑂(1)



s-t Minimum Cut

Approximation

(multiplicative, additive)

Average Sensitivity

(1, 𝑂(𝑛2/3)) 𝑂(𝑛2/3)

69

For graphs on 𝑛 vertices with s-t min. cut of size OPT

Problem: Given graph 𝐺 and vertices 𝑠, 𝑡, find output a subset 𝑆 of 

vertices with minimum number of edges between 𝑆 and 𝑉 ∖ 𝑆 such 

that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑉 ∖ 𝑆



2-Coloring

Approximation

(multiplicative, additive)

Average Sensitivity

− Ω(𝑛)

70

Problem: Given a bipartite graph 𝐺, output the set of vertices in 

one of the bipartitions.

Every LCA for 2-coloring has query complexity Ω(𝑛)

Answers an open question raised by [Czumaj, Mansour, Vardi 18] on 

existence of sublinear-query LCAs for the problem of 2-coloring.



Talk Outline

■ Our definition of average sensitivity for graph algorithms

■ Key properties of our definition

■ Main results 

■ Algorithm with low sensitivity for the global minimum cut 
problem

■ Conclusions and Open directions
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Global Minimum Cut Problem

Given 𝐺 = (𝑉, 𝐸) and 𝑆 ⊆ 𝑉, 

size(𝑆, 𝐺): number of edges crossing (𝑆, 𝑉 ∖ 𝑆)
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Global Minimum Cut Problem

Given 𝐺 = (𝑉, 𝐸) and 𝑆 ⊆ 𝑉, 

size(𝑆, 𝐺): number of edges crossing (𝑆, 𝑉 ∖ 𝑆)

Problem: Output set 𝑆 ⊆ 𝑉 with the minimum size.
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Theorem [Karger 93]: For 𝛼 ≥ 1, the number of cuts of size at 

most 𝛼 ⋅OPT is at most 𝑛2𝛼 and they can be enumerated in 

polynomial time (per cut).



Global Minimum Cut
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Theorem: There exists a polynomial time 

(2 + 𝜖)-approximation algorithm with average sensitivity 

𝑛
𝑂

1

𝜖OPT for the global minimum cut problem for all 𝜖 > 0. 



Stable Algorithm for Global Minimum Cut
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On input 𝐺 = (𝑉, 𝐸) and parameter 𝜖 > 0:

• Compute the value OPT;

• Let 𝛼 ← 𝜃(
log 𝑛

𝜖OPT
);

• Enumerate all cuts of size at most 2 + 𝜖 ⋅OPT; 

• Output a cut 𝑆 ⊆ 𝑉 with probability proportional to 

exp(−𝛼 ⋅ size 𝑆, 𝐺 )
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Stable Algorithm for Global Minimum Cut
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On input 𝐺 = (𝑉, 𝐸) and parameter 𝜖 > 0:

• Compute the value OPT;
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log 𝑛

𝜖OPT
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Stable Algorithm for Global Minimum Cut
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On input 𝐺 = (𝑉, 𝐸) and parameter 𝜖 > 0:

• Compute the value OPT;

• Let 𝛼 ← 𝜃(
log 𝑛

𝜖OPT
);

• Enumerate all cuts of size at most 2 + 𝜖 ⋅OPT; 

• Output a cut 𝑆 ⊆ 𝑉 with probability proportional to 

exp(−𝛼 ⋅ size 𝑆, 𝐺 )

Sampling from 

an approximate 

Gibbs 

distribution



Stable Algorithm for Global Minimum Cut
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On input 𝐺 = (𝑉, 𝐸) and parameter 𝜖 > 0:

• Compute the value OPT;

• Let 𝛼 ← 𝜃(
log 𝑛

𝜖OPT
);

• Enumerate all cuts of size at most 2 + 𝜖 ⋅OPT; 

• Output a cut 𝑆 ⊆ 𝑉 with probability proportional to 

exp(−𝛼 ⋅ size 𝑆, 𝐺 )

Inspired from a differentially private algorithm for global 

minimum cut [Gupta Ligett McSherry Roth Talwar '10]

Sampling from 

an approximate 

Gibbs 

distribution



Analysis

Approximation Ratio Clear from algorithm 

description

Running time Follows from Karger's theorem

Average Sensitivity Will analyze now
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Analysis: A (Slightly) Different Algorithm
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On input 𝐺 = (𝑉, 𝐸) and parameter 𝜖 > 0:

• Compute the value OPT;

• Let 𝛼 ← 𝜃(
log 𝑛

𝜖OPT
);

• Output cut 𝑆 ⊆ 𝑉 with prob. proportional to exp(−𝛼 ⋅ size 𝑆, 𝐺 )

Sampling from 

Gibbs 

distribution



Analysis: A (Slightly) Different Algorithm
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On input 𝐺 = (𝑉, 𝐸) and parameter 𝜖 > 0:

• Compute the value OPT;

• Let 𝛼 ← 𝜃(
log 𝑛

𝜖OPT
);

• Output cut 𝑆 ⊆ 𝑉 with prob. proportional to exp(−𝛼 ⋅ size 𝑆, 𝐺 )

Observation: Enough to bound average sensitivity of above 

inefficient algorithm, since its output distribution is close to original 

algorithm

Sampling from 

Gibbs 

distribution



Analysis 
Overview

Denote the inefficient algorithm 
using 𝐴

■ Average sensitivity = Average 
(over 𝑒 ∈ 𝐸) earth mover's 
distance between 𝐴(𝐺) and 
𝐴(𝐺 − 𝑒)
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On input 𝐺 = (𝑉, 𝐸) and 

parameter 𝜖 > 0:

• Compute the value OPT;

• Let 𝛼 ← 𝜃(
log 𝑛

𝜖OPT
);

• Output cut 𝑆 ⊆ 𝑉 with 

prob. proportional to 

exp(−𝛼 ⋅ size 𝑆, 𝐺 )



Analysis 
Overview

𝑝 𝑆, 𝐺 :Probability that 𝐴 outputs cut 𝑆
on input 𝐺

Fix 𝑒 ∈ 𝐸.

■ For cuts 𝑆 such that 𝑒 crosses 𝑆, 
𝑝 𝑆, 𝐺 − 𝑒 ≈ 𝑝 𝑆, 𝐺 ⋅ exp 𝛼

■ Earth mover's distance between 
𝐴(𝐺) and 𝐴 𝐺 − 𝑒

≈ 𝑛 ⋅ 

𝑆:𝑒 crosses 𝑆

𝑝 𝑆, 𝐺 − 𝑒 − 𝑝 𝑆, 𝐺

= 𝑛 ⋅ exp 𝛼 − 1 ⋅ 

𝑆:𝑒 crosses 𝑆

𝑝 𝑆, 𝐺
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On input 𝐺 = (𝑉, 𝐸) and 

parameter 𝜖 > 0:

• Compute the value OPT;

• Let 𝛼 ← 𝜃(
log 𝑛

𝜖OPT
);

• Output cut 𝑆 ⊆ 𝑉 with 

prob. proportional to 

exp(−𝛼 ⋅ size 𝑆, 𝐺 )



Analysis 
Overview

■ Average sensitivity of 𝐴 is 

≈
𝑛

𝑚
⋅ exp 𝛼 − 1

⋅

𝑒



𝑆:𝑒 crosses 𝑆

𝑝 𝑆, 𝐺

■ Average sensitivity of 𝐴 is 

≤
𝑛

𝑚
⋅ exp 𝛼 − 1 ⋅(Expected 

size of cut output by 𝐴)

■ Expected size of cut 
≤ 2 + 𝜖 ⋅OPT + 𝑜(1)

■ OPT ≤
2𝑚

𝑛
, as min. cut size at most 

average degree

(More Detailed Analysis Overview)
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𝜖OPT
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Global Minimum Cut

96

Theorem: There exists a polynomial time 

(2 + 𝜖)-approximation algorithm with average sensitivity 

𝑛
𝑂

1

𝜖OPT for the global minimum cut problem for all 𝜖 > 0. 



Global Minimum Cut

97

Theorem: There exists a polynomial time 

(2 + 𝜖)-approximation algorithm with average sensitivity 

𝑛
𝑂

1

𝜖OPT for the global minimum cut problem for all 𝜖 > 0. 

Sampling from 

Gibbs distribution 

gives stability



Talk Outline

■ Our definition of average sensitivity for graph algorithms

■ Key properties of our definition

■ Main results 

■ Algorithm with low sensitivity for the global minimum cut 
problem

■ Conclusions and open directions
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Summary of our contributions

■ Introduced a definition of sensitivity of graph algorithms with 
several useful properties
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Summary of our contributions

■ Introduced a definition of sensitivity of graph algorithms with 
several useful properties

■ Design of stable algorithms for various combinatorial problems

■ Techniques for design of stable algorithms:

– Sampling from Gibbs distribution (Global Mincut)

– Notion of average sensitivity for LPs and stable LP solvers (s-t Mincut)

– Reusing analyses of existing sublinear-time algorithms and dynamic 
algorithms (Maximum Matching & Min. Vertex Cover)
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Open Directions

■ Stable-on-average algorithms for other combinatorial 
problems
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Open Directions

■ Stable-on-average algorithms for other combinatorial 
problems
– Further applications of our techniques for design of stable 

algorithms

■ New stable-on-average procedures for building stable 
algorithms

■ Average sensitivity analyses of existing approximation 
algorithms

■ Average sensitivity lower bounds
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THANK YOU!
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APPENDIX
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Example 3: Average Sensitivity of s-t 
Shortest Path

112

Average sensitivity of outputting 𝑠-𝑡 shortest paths is Θ(𝑛)

𝑃: output with probability 𝑝
𝑄: output with probability 

1 − 𝑝

Average sensitivity:
1

2
⋅ 1 − 𝑝 ⋅

𝑛

2
+
1

2
⋅ 𝑝 ⋅

𝑛

2
= Ω(𝑛)



Average Sensitivity Composes

■ Algorithms 𝐴, 𝐵, 𝐶 such that 𝐴(𝐺) = 𝐵(𝐺, 𝐶 𝐺 )

■ H - Max. cardinality among solutions of 𝐴 on 𝑛 node graphs

■ For 𝑥 ∈ 𝐶(𝐺), 
Sens𝐵(𝐺, 𝑥) - avg. sensitivity of algo. 𝐵(⋅, 𝑥) on 𝐺

113

Theorem: Average sensitivity of 𝐴 on 𝐺 = (𝑉, 𝐸) is at most:

𝔼𝑥∼𝐶(𝐺)[Sens𝐵(𝐺, 𝑥)] + H⋅ avg𝑒∈𝐸 [dTV 𝐶 𝐺 , 𝐶 𝐺 − 𝑒 ]



Analysis: Expected Size of Cut Output

Denote the inefficient algorithm using 𝐴

■ Expected size of cut output by 𝐴 is at most 2 + 𝜖 ⋅OPT + 
𝑜(1).
– Proof Idea: Total probability mass assigned to cuts of size more 

than 2 + 𝜖 ⋅OPT is 𝑜(1).
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Analysis: Average Sensitivity

■ 𝑍 = σ𝑇⊆𝑉 exp(−𝛼 ⋅ size 𝑇, 𝐺 ); 

■ 𝑍𝑒 defined similarly;

■ Probability that 𝐴 outputs cut 𝑆 on input 𝐺,

𝑝 𝑆, 𝐺 =
exp(−𝛼 ⋅ size 𝑆, 𝐺 )

𝑍

■ For 𝑒 ∈ 𝐸, 𝑝 𝑆, 𝐺 ⋅ 𝑍/𝑍𝑒 ≤ 𝑝 𝑆, 𝐺 − 𝑒

Claim: For 𝑒 ∈ 𝐸, we have dEM 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ≤ 𝑛 ⋅
𝑍𝑒

𝑍
− 1
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Analysis: Average 
Sensitivity

116

■ 𝑍 = σ𝑇⊆𝑉 exp(−𝛼 ⋅ size 𝑇, 𝐺 )

■ 𝑝 𝑆, 𝐺 =
exp(−𝛼⋅size 𝑆,𝐺 )

𝑍

■ 𝑝 𝑆, 𝐺 ⋅ 𝑍/𝑍𝑒 ≤ 𝑝 𝑆, 𝐺 − 𝑒

Claim: For 𝑒 ∈ 𝐸, we have 

dEM 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ≤ 𝑛 ⋅
𝑍𝑒

𝑍
− 1

Proof: Total Cost 

≤ 𝑛 1 −
𝑍

𝑍𝑒
≤ 𝑛

𝑍𝑒

𝑍
− 1 .



Analysis: Average Sensitivity

■ Claim: Average sensitivity of 𝐴 is 

≤
𝑛

𝑚
⋅ exp 𝛼 − 1 ⋅(Expected size of cut output by 𝐴)

■ Proof: Average sensitivity 
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Analysis: Average Sensitivity

■ Claim: Average sensitivity of 𝐴 is 

≤
𝑛

𝑚
⋅ exp 𝛼 − 1 ⋅(Expected size of cut output by 𝐴)

■ Proof (contd.): 
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Analysis: Average Sensitivity

■ Average sensitivity of 𝐴 is 
≤

𝑛

𝑚
⋅ exp 𝛼 − 1 ⋅(Expected size of cut output by 𝐴)

■ Expected size of cut output by 𝐴 ≤ 2 + 𝜖 ⋅OPT + 𝑜(1)

■ OPT ≤
2𝑚

𝑛
, as mincut size at most average degree

■ 𝛼 = 𝜃(log 𝑛 /𝜖OPT), by our setting

Theorem: Average sensitivity of 𝐴 is 𝑛𝑂(1/𝜖OPT).
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Why not total variation distance?

■ Consider algorithms 𝐴 and 𝐵 that output subsets of vertices

■ Given a graph 𝐺, edge 𝑒 ∈ 𝐸, 𝑣 ∈ 𝑉 and 𝑆 ⊆ 𝑉 be a set 
containing 𝑣

■ 𝐴 𝐺 = 𝑆 w.p.
3

4
and 𝐴 𝐺 = 𝑆 ∖ {𝑣} w.p.

1

4

– 𝐴 𝐺 − 𝑒 = 𝑆 w.p.
1

4
and 𝐴 𝐺 − 𝑒 = 𝑆 ∖ {𝑣} w.p.

3

4

– TV distance ≤ 1

– Earth mover's distance = 1
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Why not total variation distance?

■ Consider algorithms 𝐴 and 𝐵 that output subsets of vertices

■ Given a graph 𝐺, edge 𝑒 ∈ 𝐸, 𝑣 ∈ 𝑉 and 𝑆 ⊆ 𝑉 be a set 
containing 𝑣

■ 𝐵 𝐺 = 𝑆 w.p.
3

4
and 𝐵 𝐺 = 𝑆 ∖ {𝑣} w.p.

1

4

– 𝐵 𝐺 − 𝑒 = 𝑆 w.p.
1

4⋅2𝑛
, 𝐵 𝐺 − 𝑒 = 𝑆 ∖ {𝑣} w.p.

3

4
+

1

4⋅2𝑛
, and 

𝐵 𝐺 − 𝑒 = 𝑇 w.p.
1

4⋅2𝑛

– TV distance ≤ 1

– Earth mover's distance = Ω(𝑛)

121


