AVERAGE SENSITIVITY OF GRAPH ALGORITHMS

אוניברסיטת חיפה University of Haifa جـامعـة حيفـا

Nithin Varma
Joint work with Yuichi Yoshida

Sensitivity of an Algorithm

- Measure of change in output as a function of change in input

This talk: A sensitivity definition for graph algorithms

Talk Outline

■ Our definition of sensitivity for graph algorithms
■ Key properties of our definition

- Main results

■ Algorithm with low sensitivity for the global minimum cut problem

- Conclusions and open directions

Average Sensitivity: Intuitive Definition

$$
G=(V, E) \quad \Longrightarrow \text { Algorithm } A
$$

Average Sensitivity: Intuitive Definition

G^{\prime} is a large subgraph of G obtained by removing a few random edges

Average Sensitivity: Intuitive Definition

G^{\prime} is a large subgraph of G obtained by removing a few random edges

$$
\text { Sensitivity of } A \text { on } G=\left|S \Delta S^{\prime}\right|=\operatorname{Ham}\left(S, S^{\prime}\right)
$$

Why Sensitivity?

- Natural notion of

$$
G^{\prime}=\left(V, E^{\prime}\right) \Longrightarrow \text { Algorithm } A \Longrightarrow S^{\prime} \subseteq V
$$ performance of algorithms

$$
G=(V, E) \Longrightarrow \text { Algorithm } A \Longrightarrow S \subseteq V
$$

G^{\prime} is a large subgraph of G obtained by removing a few random edges

Sensitivity of $A=\left|S \Delta S^{\prime}\right|=\operatorname{Ham}\left(S, S^{\prime}\right)$

Why Sensitivity?

- Natural notion of

$$
G^{\prime}=\left(V, E^{\prime}\right) \Longrightarrow \text { Algorithm } A \Longrightarrow S^{\prime} \subseteq V
$$ performance of algorithms

- Answer questions about G by answering questions about G^{\prime}
- Useful in cases where one has access only to G^{\prime}

$$
G=(V, E) \Longrightarrow \text { Algorithm } A \Longrightarrow S \subseteq V
$$

G^{\prime} is a large subgraph of G obtained by removing a few random edges

Sensitivity of $A=\left|S \Delta S^{\prime}\right|=\operatorname{Ham}\left(S, S^{\prime}\right)$

Average Sensitivity: Deterministic Algorithms

Deterministic graph algorithm A outputs a set of edges or vertices

Average Sensitivity: Deterministic Algorithms

Deterministic graph algorithm A outputs a set of edges or vertices

Average sensitivity of A on graph $G=(V, E)$

$$
\operatorname{avg}_{e \in E}[\operatorname{Ham}(A(G), A(G-e))]
$$

Average Sensitivity: Deterministic Algorithms

Deterministic graph algorithm A outputs a set of edges or vertices

Average sensitivity of A on graph $G=(V, E)$

$$
\operatorname{avg}_{e \in E}[\operatorname{Ham}(A(G), A(G-e))]
$$

Algorithm with low average sensitivity: stable-on-average algorithm

Average Sensitivity: Deterministic Algorithms

Deterministic graph algorithm A outputs a set of edges or vertices

Average sensitivity of A on graph $G=(V, E)$

$$
\operatorname{avg}_{e \in E}[\operatorname{Ham}(A(G), A(G-e))]
$$

Algorithm with low average sensitivity: stable-on-average algorithm Generalization to k-average sensitivity for the removal of k random edges (without replacement)

Average Sensitivity: Deterministic Algorithms

- Averaging over edges: Models random edge deletion from input graphs

Deterministic graph algorithm A outputs a set of edges or vertices

Average sensitivity of A on graph $G=(V, E)$

Average Sensitivity: Deterministic Algorithms

- Averaging over edges: Models random edge deletion from input graphs

$$
\operatorname{avg}_{e \in E}[\operatorname{Ham}(A(G), A(G-e))]
$$

Deterministic graph algorithm A outputs a set of edges or vertices

Average sensitivity of A on graph $G=(V, E)$

- Sensitivity of solutions, not values: Solutions may be used in further processing

Example 1: Average Sensitivity of Outputting Large Degree Vertices

Large Degree Vertices

On input G of n vertices:

- Output all vertices of degree at least $n / 2$.

Example 1: Average Sensitivity of Outputting Large Degree Vertices

Large Degree Vertices

On input G of n vertices:

- Output all vertices of degree at least $n / 2$.

Removing any edge affects the degrees of at most 2 vertices

Example 1: Average Sensitivity of Outputting Large Degree Vertices

Large Degree Vertices

On input G of n vertices:

- Output all vertices of degree at least $n / 2$.

Removing any edge affects the degrees of at most 2 vertices
Average sensitivity at most 2

Example 2: Average Sensitivity of s-t Shortest Path

Problem: Given a graph G on n vertices and two vertices s, t, output the $s-t$ shortest path

Example 2: Average Sensitivity of s-t Shortest Path

Problem: Given a graph G on n vertices and two vertices s, t, output the s - t shortest path

Average sensitivity of outputting $s-t$ shortest paths is $\Theta(n)$

Example 2: Average Sensitivity of s-t Shortest Path

Problem: Given a graph G on n vertices and two vertices s, t, output the s - t shortest path

Average sensitivity of outputting $s-t$ shortest paths is $\Theta(n)$

Example 2: Average Sensitivity of s-t Shortest Path

Problem: Given a graph G on n vertices and two vertices s, t, output the $s-t$ shortest path

Example 2: Average Sensitivity of s-t Shortest Path

Problem: Given a graph G on n vertices and two vertices s, t, output the $s-t$ shortest path

Average sensitivity of outputting $s-t$ shortest paths is $\Theta(n)$

For any of the $n / 2$ edges removed
t from P, the algorithm has to output Q

Average Sensitivity: Randomized Algorithms

Distribution over solutions

Average sensitivity of randomized algorithm A on graph $G=(V, E)$ $\operatorname{avg}_{e \in E}[\operatorname{Dist}(A(G), A(G-e))]$

Average Sensitivity: Randomized Algorithms

- Earth Mover's Distance
- Generalization of L_{1} distance that penalizes "significant differences" in probabilities on "really different" solutions

Average Sensitivity: Randomized Algorithms

- Earth Mover's Distance
- Generalization of L_{1} distance that penalizes "significant differences" in probabilities on "really different" solutions

Average Sensitivity: Randomized Algorithms

Average sensitivity of randomized algorithm A on graph $G=(V, E)$
$\operatorname{avg}_{e \in E}\left[\mathrm{~d}_{\mathrm{EM}}(A(G), A(G-e))\right]$

Distribution D_{1} over solutions

Distribution D_{2} over solutions

Average Sensitivity: Randomized Algorithms

Average sensitivity of

 randomized algorithm A on graph $G=(V, E)$$\operatorname{avg}_{e \in E}\left[\mathrm{~d}_{\mathrm{EM}}(A(G), A(G-e))\right]$

Distribution D_{1} over solutions
Cost of moving prob. p from S_{i} to S_{j} is $p \cdot \operatorname{Ham}\left(S_{i}, S_{j}\right)$

Distribution D_{2} over solutions

Average Sensitivity: Randomized Algorithms

Average sensitivity of

 randomized algorithm A on graph $G=(V, E)$$\operatorname{avg}_{e \in E}\left[\mathrm{~d}_{\mathrm{EM}}(A(G), A(G-e))\right]$

Distribution D_{1} over solutions

Distribution D_{2}
over solutions

Optimal cost of moving the probability mass from one distribution to the other

Average Sensitivity: Randomized Algorithms

Average sensitivity of randomized algorithm A on graph $G=(V, E)$

```
avg}\mp@subsup{e}{e\inE}{[d\mp@subsup{d}{\mathrm{ EM }}{}(A(G),A(G-e))]
```

Generalization to k-average sensitivity for the removal of k random edges (without replacement)

Distribution D_{1} over solutions

Distribution D_{2}
over solutions

Optimal cost of moving the probability mass from one distribution to the other

Related Sensitivity Notions

■ Differential Privacy [Dwork McSherry Nissim Smith '06]

Related Sensitivity Notions

■ Differential Privacy [Dwork McSherry Nissim Smith '06]

- Edge Differential Privacy [Nissim Raskhodnikova Smith '07]
- An algorithm A on a graph G is differentially private if for all $e \in E$ the distributions $A(G)$ and $A(G-e)$ are close to each other

Related Sensitivity Notions

■ Differential Privacy [Dwork McSherry Nissim Smith '06]

- Edge Differential Privacy [Nissim Raskhodnikova Smith '07]
- An algorithm A on a graph G is differentially private if for all $e \in E$ the distributions $A(G)$ and $A(G-e)$ are close to each other
- Much stricter notion than average sensitivity

Related Sensitivity Notions

■ Differential Privacy [Dwork McSherry Nissim Smith '06]

- Edge Differential Privacy [Nissim Raskhodnikova Smith '07]
- An algorithm A on a graph G is differentially private if for all $e \in E$ the distributions $A(G)$ and $A(G-e)$ are close to each other
- Much stricter notion than average sensitivity
- Some of our algorithms inspired by differentially private algorithms

Related Sensitivity Notions

■ Differential Privacy [Dwork McSherry Nissim Smith '06]

- Edge Differential Privacy [Nissim Raskhodnikova Smith '07]
- An algorithm A on a graph G is differentially private if for all $e \in E$ the distributions $A(G)$ and $A(G-e)$ are close to each other
- Much stricter notion than average sensitivity
- Some of our algorithms inspired by differentially private algorithms
- Stability of Learning Algorithms [Bousquet Elisseeff '02]

Related Sensitivity Notions

■ Differential Privacy [Dwork McSherry Nissim Smith '06]

- Edge Differential Privacy [Nissim Raskhodnikova Smith '07]
- An algorithm A on a graph G is differentially private if for all $e \in E$ the distributions $A(G)$ and $A(G-e)$ are close to each other
- Much stricter notion than average sensitivity
- Some of our algorithms inspired by differentially private algorithms
- Stability of Learning Algorithms [Bousquet Elisseeff '02]
- A learner is stable if empirical loss does not change much by replacing any sample in the training data

Related Sensitivity Notions

- Differential Privacy [Dwork Mcsherry Nissim Smith '06]
- Edge Differential Privacy [Nissim Raskhodnikova Smith '07]
- An algorithm A on a graph G is differentially private if for all $e \in E$ the distributions $A(G)$ and $A(G-e)$ are close to each other
- Much stricter notion than average sensitivity
- Some of our algorithms inspired by differentially private algorithms
- Stability of Learning Algorithms [Bousquet Elisseeff '02]
- A learner is stable if empirical loss does not change much by replacing any sample in the training data
- Stable learners have low generalization error

Talk Outline

- Our definition of average sensitivity for graph algorithms
- Key properties of our definition
- Main results
- Algorithm with low sensitivity for the global minimum cut problem
- Conclusions and open directions

k-Average Sensitivity from Average Sensitivity

Theorem: If A has average sensitivity $f(n, m)$, it has k-average sensitivity at most $\sum_{i \in[k]} f(n, m-i+1)$.

Average Sensitivity Composes

Algorithms A, B, C such that $A(G)=B(G, C(G))$

Average Sensitivity Composes

Algorithms A, B, C such that $A(G)=B(G, C(G))$
Theorem (Informal): Average sensitivity of A on $G=(V, E)$ can be bounded by the sum of:

- a term for average sensitivity of B, and
- a term for average sensitivity of C.

Average Sensitivity Composes

Algorithms A, B, C such that $A(G)=B(G, C(G))$
Theorem (Informal): Average sensitivity of A on $G=(V, E)$ can be bounded by the sum of:

- a term for average sensitivity of B, and
- a term for average sensitivity of C.

Can be used to bound the average sensitivity of a distribution over multiple stable-on-average algorithms.

Connection to Sublinear Algorithms

Connection to Sublinear Algorithms

Connection to Sublinear Algorithms

Connection to Sublinear Algorithms

$q(G) \triangleq \mathbb{E}_{e \in E}[$ \#queries by $L]$

Connection to Sublinear Algorithms

$q(G) \triangleq \mathbb{E}_{e \in E}[$ \#queries by $L]$
Average sensitivity of A on G is $\leq q(G)$

π is the random string

Connection to
 Sublinear Algorithms

$q(G) \triangleq \mathbb{E}_{\pi, e \in E}[$ \#queries by $L]$
Average sensitivity of A on G is $\leq q(G)$

Connection to Local Computation Algorithms (LCAs)

Graph problem P

Answers of L are consistent with a single feasible solution of P on G

Connection to Local Computation Algorithms (LCAs)

If a problem P has an LCA of query complexity $q(G)$, then it has an algorithm with average sensitivity $\leq q(G)$

Graph problem P

Answers of L are consistent with a single feasible solution of P on G

Connection to Local Computation Algorithms (LCAs)

If a problem P has an LCA of query complexity $q(G)$, then it has an algorithm with average sensitivity $\leq q(G)$

Lower bound on average sensitivity implies lower bound on LCA query complexity!

Graph problem P

Answers of L are consistent with a single feasible solution of P on G

Talk Outline

- Our definition of average sensitivity for graph algorithms

■ Key properties of our definition

- Main results
- Algorithm with low sensitivity for the global minimum cut problem
- Conclusions and open directions

Minimum Spanning Forest

For graphs on n vertices and m edges

Algorithm	Average Sensitivity
Kruskal's Algorithm	
Prim's Algorithm	

Minimum Spanning Forest

For graphs on n vertices and m edges

Algorithm	Average Sensitivity
Kruskal's Algorithm	$O(n / m)$
Prim's Algorithm	

Minimum Spanning Forest

For graphs on n vertices and m edges

Algorithm	Average Sensitivity
Kruskal's Algorithm	$O(n / m)$
Prim's Algorithm	$\Omega(n)$

For a specific tiebreaking rule

Other Problems We Study

- Maximum Cardinality Matching
- Output an independent set of edges with maximum cardinality

Other Problems We Study

- Maximum Cardinality Matching
- Output an independent set of edges with maximum cardinality
- Global Minimum Cut
- Output a subset S of vertices with minimum number of edges between S and $V \backslash S$

Other Problems We Study

- Maximum Cardinality Matching
- Output an independent set of edges with maximum cardinality
- Global Minimum Cut
- Output a subset S of vertices with minimum number of edges between S and $V \backslash S$
- $s-t$ Minimum Cut

■ 2-Coloring

Maximum Cardinality Matching

For graphs on n vertices with max. matching size OPT

Maximum Cardinality Matching

For graphs on n vertices with max. matching size OPT

Approximation Ratio	Average Sensitivity
1	$\Omega(n)$

Maximum Cardinality Matching

For graphs on n vertices with max. matching size OPT

Approximation Ratio	Average Sensitivity
1	$\Omega(n)$
$1 / 2$	1

Maximum Cardinality Matching

For graphs on n vertices with max. matching size OPT

Approximation Ratio	Average Sensitivity
1	$\Omega(n)$
$1 / 2$	1

Corollary: 2-approximation algorithm for minimum vertex cover with average sensitivity 2.

Maximum Cardinality Matching

For graphs on n vertices with max. matching size OPT

Approximation Ratio	Average Sensitivity
1	$\Omega(n)$
$1 / 2$	1
$1-\epsilon$	$O\left(\left(\frac{O P T}{\epsilon^{3}}\right)^{\frac{1}{1+\epsilon^{2}}}\right)$

Corollary: 2-approximation algorithm for minimum vertex cover with average sensitivity 2.

Global Minimum Cut

For graphs on n vertices with global min. cut of size OPT

Global Minimum Cut

For graphs on n vertices with global min. cut of size OPT

Approximation Ratio	Average Sensitivity
1	$\Omega(n)$

Global Minimum Cut

For graphs on n vertices with global min. cut of size OPT

Approximation Ratio	Average Sensitivity
1	$\Omega(n)$
$2+\epsilon$	$n^{O\left(\frac{1}{\epsilon \mathrm{OPT}}\right)}$

Global Minimum Cut

For graphs on n vertices with global min. cut of size OPT

Approximation Ratio	Average Sensitivity
1	$\Omega(n)$
$2+\epsilon$	$n^{o\left(\frac{1}{\epsilon \mathrm{OPT}}\right)}$

If OPT $=\omega(\log n)$, average sensitivity is $O(1)$

Global Minimum Cut

For graphs on n vertices with global min. cut of size OPT

Approximation Ratio	Average Sensitivity
1	$\Omega(n)$
$2+\epsilon$	$n^{o\left(\frac{1}{\epsilon \mathrm{OPT}}\right)}$
$<\infty$	$\Omega\left(n^{1 / \mathrm{OPT}} / \mathrm{OPT}^{2}\right)$

If OPT $=\omega(\log n)$, average sensitivity is $O(1)$

Global Minimum Cut

For graphs on n vertices with global min. cut of size OPT

Approximation Ratio	Average Sensitivity
1	$\Omega(n)$
$2+\epsilon$	$n^{o\left(\frac{1}{\epsilon \mathrm{OPT}}\right)}$
$<\infty$	$\Omega\left(n^{1 / \mathrm{OPT}} / \mathrm{OPT}^{2}\right)$

If OPT $=\omega(\log n)$, average sensitivity is $O(1)$
If OPT $=0(\log n)$, average sensitivity is (nearly) optimal

s-t Minimum Cut

Problem: Given graph G and vertices s, t, find output a subset S of vertices with minimum number of edges between S and $V \backslash S$ such that $s \in S$ and $t \in V \backslash S$

Approximation (multiplicative, additive)	Average Sensitivity
$\left(1, O\left(n^{2 / 3}\right)\right)$	$O\left(n^{2 / 3}\right)$

2-Coloring

Problem: Given a bipartite graph G, output the set of vertices in one of the bipartitions.

Approximation (multiplicative, additive)	Average Sensitivity
-	$\Omega(n)$

Every LCA for 2-coloring has query complexity $\Omega(n)$
Answers an open question raised by [Czumaj, Mansour, Vardi 18] on existence of sublinear-query LCAs for the problem of 2-coloring.

Talk Outline

- Our definition of average sensitivity for graph algorithms

■ Key properties of our definition

- Main results

■ Algorithm with low sensitivity for the global minimum cut problem

- Conclusions and Open directions

Global Minimum Cut Problem

Given $G=(V, E)$ and $S \subseteq V$, size (S, G) : number of edges crossing $(S, V \backslash S)$

Global Minimum Cut Problem

Given $G=(V, E)$ and $S \subseteq V$,
$\operatorname{size}(S, G)$: number of edges crossing $(S, V \backslash S)$
Problem: Output set $S \subseteq V$ with the minimum size.

Global Minimum Cut Problem

Given $G=(V, E)$ and $S \subseteq V$,
$\operatorname{size}(S, G)$: number of edges crossing $(S, V \backslash S)$
Problem: Output set $S \subseteq V$ with the minimum size.
Polynomial time exact algorithms exist.

Global Minimum Cut Problem

Given $G=(V, E)$ and $S \subseteq V$,
$\operatorname{size}(S, G)$: number of edges crossing $(S, V \backslash S)$
Problem: Output set $S \subseteq V$ with the minimum size.
Polynomial time exact algorithms exist.
Theorem [Karger 93]: For $\alpha \geq 1$, the number of cuts of size at most α. OPT is at most $n^{2 \alpha}$ and they can be enumerated in polynomial time (per cut).

Global Minimum Cut

Theorem: There exists a polynomial time
$(2+\epsilon)$-approximation algorithm with average sensitivity
$n^{o\left(\frac{1}{\epsilon \mathrm{OPT}}\right)}$ for the global minimum cut problem for all $\epsilon>0$.

Stable Algorithm for Global Minimum Cut

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;

Stable Algorithm for Global Minimum Cut

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;

Stable Algorithm for Global Minimum Cut

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;
- Enumerate all cuts of size at most $(2+\epsilon) \cdot$ OPT;

Stable Algorithm for Global Minimum Cut

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;
- Enumerate all cuts of size at most $(2+\epsilon) \cdot$ OPT;
- Output a cut $S \subseteq V$ with probability proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$

Stable Algorithm for Global Minimum Cut

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;

Sampling from an approximate Gibbs
distribution

- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;
- Enumerate all cuts of size at most $(2+\epsilon) \cdot$ OPT;
- Output a cut $S \subseteq V$ with probability proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$

Stable Algorithm for Global Minimum Cut

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;
- Enumerate all cuts of size at most $(2+\epsilon) \cdot$ OPT;
- Output a cut $S \subseteq V$ with probability proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$

Inspired from a differentially private algorithm for global minimum cut [Gupta Ligett Mcsherry Roth Talwar '10]

Analysis

Approximation Ratio	Clear from algorithm description
Running time	Follows from Karger's theorem
Average Sensitivity	Will analyze now

Analysis: A (Slightly) Different Algorithm

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;
- Output cut $S \subseteq V$ with prob. proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$

Analysis: A (Slightly) Different Algorithm

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;

Sampling from Gibbs distribution

- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;
- Output cut $S \subseteq V$ with prob. proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$

Observation: Enough to bound average sensitivity of above inefficient algorithm, since its output distribution is close to original algorithm

Analysis Overview

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;
- Output cut $S \subseteq V$ with prob. proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$

Denote the inefficient algorithm using A

- Average sensitivity = Average (over $e \in E$) earth mover's distance between $A(G)$ and $A(G-e)$

Analysis Overview

$p(S, G)$:Probability that A outputs cut S

on input G

Fix $e \in E$.

Analysis Overview

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon O P T}\right)$;
- Output cut $S \subseteq V$ with prob. proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$
$p(S, G)$:Probability that A outputs cut S on input G

Fix $e \in E$.

- For cuts S such that e crosses S, $p(S, G-e) \approx p(S, G) \cdot \exp (\alpha)$

Analysis Overview

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;
- Output cut $S \subseteq V$ with prob. proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$
$p(S, G)$:Probability that A outputs cut S on input G
Fix $e \in E$.
- For cuts S such that e crosses S, $p(S, G-e) \approx p(S, G) \cdot \exp (\alpha)$
- Earth mover's distance between $A(G)$ and $A(G-e)$

Analysis Overview

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;
- Output cut $S \subseteq V$ with prob. proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$
$p(S, G)$:Probability that A outputs cut S on input G
Fix $e \in E$.
- For cuts S such that e crosses S,

$$
p(S, G-e) \approx p(S, G) \cdot \exp (\alpha)
$$

■ Earth mover's distance between $A(G)$ and $A(G-e)$

$$
\approx n \cdot \sum_{S: e \text { crosses } S} p(S, G-e)-p(S, G)
$$

Analysis Overview

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;
- Output cut $S \subseteq V$ with prob. proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$
$p(S, G)$:Probability that A outputs cut S on input G

Fix $e \in E$.

- For cuts S such that e crosses S, $p(S, G-e) \approx p(S, G) \cdot \exp (\alpha)$
- Earth mover's distance between $A(G)$ and $A(G-e)$

$$
\begin{aligned}
& \approx n \cdot \sum_{S: e} p(S, G-e)-p(S, G) \\
& =n \cdot(\operatorname{expsses} \alpha-1) \cdot \sum_{S: e} p(S, G)
\end{aligned}
$$

Analysis Overview

- Average sensitivity of A is

$$
\begin{aligned}
& \approx \frac{n}{m} \cdot(\exp \alpha-1) \\
& \sum_{e} \sum_{S: e} p(S, G)
\end{aligned}
$$

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon O P T}\right)$;
- Output cut $S \subseteq V$ with prob. proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$

Analysis Overview

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;
- Output cut $S \subseteq V$ with prob. proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$
- Average sensitivity of A is

$$
\begin{aligned}
& \approx \frac{n}{m} \cdot(\exp \alpha-1) \\
& \cdot \sum_{e} \sum_{S: e} p(S, G)
\end{aligned}
$$

- Average sensitivity of A is

$$
\leq \frac{n}{m} \cdot(\exp \alpha-1) \cdot(\text { Expected }
$$

size of cut output by A)

Analysis Overview

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;
- Output cut $S \subseteq V$ with prob. proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$
- Average sensitivity of A is

$$
\begin{aligned}
& \approx \frac{n}{m} \cdot(\exp \alpha-1) \\
& \cdot \sum_{e} \sum_{S: e} p(S, G)
\end{aligned}
$$

- Average sensitivity of A is

$$
\leq \frac{n}{m} \cdot(\exp \alpha-1) \cdot(\text { Expected }
$$

size of cut output by A)

- Expected size of cut
$\leq(2+\epsilon) \cdot \mathrm{OPT}+o(1)$

Analysis Overview

On input $G=(V, E)$ and parameter $\epsilon>0$:

- Compute the value OPT;
- Let $\alpha \leftarrow \theta\left(\frac{\log n}{\epsilon \mathrm{OPT}}\right)$;
- Output cut $S \subseteq V$ with prob. proportional to $\exp (-\alpha \cdot \operatorname{size}(S, G))$
- Average sensitivity of A is

$$
\begin{aligned}
& \approx \frac{n}{m} \cdot(\exp \alpha-1) \\
& \cdot \sum_{e} \sum_{s: e} p(S, G)
\end{aligned}
$$

- Average sensitivity of A is

$$
\leq \frac{n}{m} \cdot(\exp \alpha-1) \cdot(\text { Expected }
$$

size of cut output by A)

- Expected size of cut
$\leq(2+\epsilon) \cdot \mathrm{OPT}+o(1)$
- OPT $\leq \frac{2 m}{n}$, as min. cut size at most average degree

Global Minimum Cut

Theorem: There exists a polynomial time
$(2+\epsilon)$-approximation algorithm with average sensitivity
$n^{o\left(\frac{1}{\epsilon \mathrm{OPT}}\right)}$ for the global minimum cut problem for all $\epsilon>0$.

Global Minimum Cut

Theorem: There exists a polynomial time
$(2+\epsilon)$-approximation algorithm with average sensitivity
$n^{o\left(\frac{1}{\epsilon \mathrm{OPT}}\right)}$ for the global minimum cut problem for all $\epsilon>0$.

> Sampling from Gibbs distribution gives stability

Talk Outline

- Our definition of average sensitivity for graph algorithms

■ Key properties of our definition

- Main results

■ Algorithm with low sensitivity for the global minimum cut problem

- Conclusions and open directions

Summary of our contributions

- Introduced a definition of sensitivity of graph algorithms with several useful properties

Summary of our contributions

- Introduced a definition of sensitivity of graph algorithms with several useful properties
- Design of stable algorithms for various combinatorial problems

Summary of our contributions

- Introduced a definition of sensitivity of graph algorithms with several useful properties
- Design of stable algorithms for various combinatorial problems
- Techniques for design of stable algorithms:

Summary of our contributions

- Introduced a definition of sensitivity of graph algorithms with several useful properties
- Design of stable algorithms for various combinatorial problems
- Techniques for design of stable algorithms:
- Sampling from Gibbs distribution (Global Mincut)

Summary of our contributions

- Introduced a definition of sensitivity of graph algorithms with several useful properties
- Design of stable algorithms for various combinatorial problems
- Techniques for design of stable algorithms:
- Sampling from Gibbs distribution (Global Mincut)
- Notion of average sensitivity for LPs and stable LP solvers (s-t Mincut)

Summary of our contributions

- Introduced a definition of sensitivity of graph algorithms with several useful properties
- Design of stable algorithms for various combinatorial problems
- Techniques for design of stable algorithms:
- Sampling from Gibbs distribution (Global Mincut)
- Notion of average sensitivity for LPs and stable LP solvers (s-t Mincut)
- Reusing analyses of existing sublinear-time algorithms and dynamic algorithms (Maximum Matching \& Min. Vertex Cover)

Open Directions

- Stable-on-average algorithms for other combinatorial problems

Open Directions

- Stable-on-average algorithms for other combinatorial problems
- Further applications of our techniques for design of stable algorithms

Open Directions

- Stable-on-average algorithms for other combinatorial problems
- Further applications of our techniques for design of stable algorithms
■ New stable-on-average procedures for building stable algorithms

Open Directions

- Stable-on-average algorithms for other combinatorial problems
- Further applications of our techniques for design of stable algorithms
■ New stable-on-average procedures for building stable algorithms
- Average sensitivity analyses of existing approximation algorithms

Open Directions

■ Stable-on-average algorithms for other combinatorial problems

- Further applications of our techniques for design of stable algorithms
■ New stable-on-average procedures for building stable algorithms
- Average sensitivity analyses of existing approximation algorithms
- Average sensitivity lower bounds

THANK YOU!

APPENDIX

Example 3: Average Sensitivity of s-t Shortest Path

Average sensitivity of outputting $s-t$ shortest paths is $\Theta(n)$

Average Sensitivity Composes

- Algorithms A, B, C such that $A(G)=B(G, C(G))$
- H - Max. cardinality among solutions of A on n node graphs
- For $x \in C(G)$,

Sens $_{B}(G, x)$ - avg. sensitivity of algo. $B(\cdot, x)$ on G
Theorem: Average sensitivity of A on $G=(V, E)$ is at most:
$\mathbb{E}_{x \sim C(G)}\left[\operatorname{Sens}_{B}(G, x)\right]+\mathrm{H} \cdot \operatorname{avg}_{e \in E}\left[\mathrm{~d}_{\mathrm{TV}}(C(G), C(G-e))\right]$

Analysis: Expected Size of Cut Output

Denote the inefficient algorithm using A

■ Expected size of cut output by A is at most $(2+\epsilon) \cdot$ OPT + $o(1)$.

- Proof Idea: Total probability mass assigned to cuts of size more than $(2+\epsilon) \cdot$ OPT is $o(1)$.

Analysis: Average Sensitivity

■ $Z=\sum_{T \subseteq V} \exp (-\alpha \cdot \operatorname{size}(T, G)) ;$

- Z_{e} defined similarly;
- Probability that A outputs cut S on input G,

$$
p(S, G)=\frac{\exp (-\alpha \cdot \operatorname{size}(S, G))}{Z}
$$

■ For $e \in E, p(S, G) \cdot Z / Z_{e} \leq p(S, G-e)$
Claim: For $e \in E$, we have $\mathrm{d}_{\mathrm{EM}}(A(G), A(G-e)) \leq n \cdot\left(\frac{Z_{e}}{Z}-1\right)$

Analysis: Average Sensitivity

- $Z=\sum_{T \subseteq V} \exp (-\alpha \cdot \operatorname{size}(T, G))$
- $p(S, G)=\frac{\exp (-\alpha \cdot \operatorname{size}(S, G))}{Z}$
- $p(S, G) \cdot Z / Z_{e} \leq p(S, G-e)$

Claim: For $e \in E$, we have
$\mathrm{d}_{\mathrm{EM}}(A(G), A(G-e)) \leq n \cdot\left(\frac{Z_{e}}{Z}-1\right)$
Proof: Total Cost

$$
\leq n\left(1-\frac{Z}{z_{e}}\right) \leq n\left(\frac{z_{e}}{Z}-1\right) .
$$

(1) Send $P(S, G) \cdot \frac{Z}{Z_{e}}$ at 0 cost

(2) Send $p(S, G) \cdot\left(1-\frac{Z_{Z}}{Z_{e}}\right)$ at cost $\leqslant n \cdot p(S, G) \cdot\left(1-\frac{z}{Z_{e}}\right)$
Total Cost $\leqslant n\left(1-\frac{z}{Z_{e}}\right) \sum_{s} p(S, G)=n\left(1-\frac{z}{Z_{e}}\right)$

Analysis: Average Sensitivity

- Claim: Average sensitivity of A is

$$
\leq \frac{n}{m} \cdot(\exp \alpha-1) \cdot(\text { Expected size of cut output by } A)
$$

- Proof: Average sensitivity

$$
\begin{aligned}
& \leqslant \frac{n}{m} \sum_{e \in E}\left(\frac{z_{e}}{z}-1\right)=\frac{n}{m z} \sum_{e \in E} z_{e}-z \\
& =\frac{n}{m z} \sum_{e \in E} \sum_{\substack{S \subseteq v: \\
e \text { crosses } S}}[\exp (-\alpha \cdot \operatorname{size}(S, G-e))-\exp (-\alpha \cdot \operatorname{size}(S, G))]
\end{aligned}
$$

Analysis: Average Sensitivity

- Claim: Average sensitivity of A is $\leq \frac{n}{m} \cdot(\exp \alpha-1) \cdot($ Expected size of cut output by $A)$
- Proof (contd.):

$$
\begin{aligned}
& =\frac{n \cdot(\exp (\alpha)-1)}{m z} \cdot \sum_{e \in E} \sum_{S \subseteq v:} \exp (-\alpha \cdot \operatorname{size}(S, G)) \\
& =\frac{n}{m} \cdot(\exp (\alpha)-1) \cdot \sum_{S \subseteq V} \operatorname{srosses} S \\
& =\frac{n}{m}\left(\exp (S, G) \cdot \frac{\exp (-\alpha \cdot \operatorname{size}(S, G))}{2}\right. \\
& (\text { Expected size of cut output by } A)
\end{aligned}
$$

Analysis: Average Sensitivity

- Average sensitivity of A is
$\leq \frac{n}{m} \cdot(\exp \alpha-1) \cdot($ Expected size of cut output by $A)$
- Expected size of cut output by $A \leq(2+\epsilon) \cdot$ OPT $+o(1)$
- OPT $\leq \frac{2 m}{n}$, as mincut size at most average degree
- $\alpha=\theta(\log n / \epsilon \mathrm{OPT})$, by our setting

Theorem: Average sensitivity of A is $n^{O(1 / \epsilon \mathrm{OPT}) \text {. }}$

Why not total variation distance?

■ Consider algorithms A and B that output subsets of vertices
■ Given a graph G, edge $e \in E, v \in V$ and $S \subseteq V$ be a set containing v

- $A(G)=S$ w.p. $\frac{3}{4}$ and $A(G)=S \backslash\{v\}$ w.p. $\frac{1}{4}$
- $A(G-e)=S$ w.p. $\frac{1}{4}$ and $A(G-e)=S \backslash\{v\}$ w.p. $\frac{3}{4}$
- TV distance ≤ 1
- Earth mover's distance = 1

Why not total variation distance?

■ Consider algorithms A and B that output subsets of vertices
■ Given a graph G, edge $e \in E, v \in V$ and $S \subseteq V$ be a set containing v

- $B(G)=S$ w.p. $\frac{3}{4}$ and $B(G)=S \backslash\{v\}$ w.p. $\frac{1}{4}$
- $B(G-e)=S$ w.p. $\frac{1}{4 \cdot 2^{n}}, B(G-e)=S \backslash\{\mathcal{V}\}$ w.p. $\frac{3}{4}+\frac{1}{4 \cdot 2^{n}}$, and

$$
B(G-e)=T \text { w.p. } \frac{4 \cdot \mathrm{r}^{n}}{4 \cdot 2^{n}}
$$

- TV distance ≤ 1
- Earth mover's distance $=\Omega(n)$

