Pairwise Additive Spanners

Nithin M. Varma (Joint work with T. Kavitha)
TIFR Mumbai \rightarrow Penn State
Theory Seminar

September 22, 2014
Appeared in part in the proceedings of ICALP 2013

Graph Spanners

Peleg and Schaffer 1989

$H=\left(V, E^{\prime}\right)$ is a spanner of $G=(V, E)$, an undirected unweighted graph, if

- H is a subgraph of $G\left(E^{\prime} \subseteq E\right)$
- $d_{H}(u, v) \approx d_{G}(u, v)$ for all $u, v \in V(G)$

Graph Spanners

Peleg and Schaffer 1989

$H=\left(V, E^{\prime}\right)$ is a spanner of $G=(V, E)$, an undirected unweighted graph, if

- H is a subgraph of $G\left(E^{\prime} \subseteq E\right)$
- $d_{H}(u, v) \approx d_{G}(u, v)$ for all $u, v \in V(G)$

$$
H=\text { star }
$$

Graph Spanners

Peleg and Schaffer 1989

$H=\left(V, E^{\prime}\right)$ is a spanner of $G=(V, E)$, an undirected unweighted graph, if

- H is a subgraph of $G\left(E^{\prime} \subseteq E\right)$
- $d_{H}(u, v) \approx d_{G}(u, v)$ for all $u, v \in V(G)$

$H=$ star

For all $u, v \in V$

- $d_{H}(u, v) \leq 2 \cdot d_{G}(u, v)$ (multiplicative)
- $d_{H}(u, v) \leq d_{G}(u, v)+1$ (additive)

Why Spanners?

- Fewer edges than the original graph, but roughly preserve shortest distances

Why Spanners?

- Fewer edges than the original graph, but roughly preserve shortest distances
- Algorithms run on spanners can give approximate solutions for problems on original graph

Why Spanners?

- Fewer edges than the original graph, but roughly preserve shortest distances
- Algorithms run on spanners can give approximate solutions for problems on original graph
- Space Efficient Routing Schemes
- Thorup and Zwick (2001)
- Near Shortest Path Algorithms
- Elkin (2001)
- Approximate Distance Oracles
- Patrascu and Roditty (2010)

Additive Spanners

Liestman and Shermer (1991)
H is a $+k$-spanner of G if $d_{H}(u, v) \leq d_{G}(u, v)+k$ for all $u, v \in V$.

Bounds for Additive Spanners

Upper Bounds

- +2-spanner with $O\left(n^{1.5}\right)$ edges
- Dor, Halperin and Zwick (2000, $\tilde{O}\left(n^{1.5}\right)$ edges)
- Elkin and Peleg (2001, $O\left(n^{1.5}\right)$ edges)
- +4-spanner with $\tilde{O}\left(n^{1.4}\right)$ edges
- Chechik (2013)
- +6-spanner with $O\left(n^{1.33}\right)$ edges
- Baswana, Kavitha, Mehlhorn, Pettie (2005)
- $+\tilde{O}\left(n^{\frac{1-3 \delta}{2}}\right)$-spanner with $\tilde{O}\left(n^{1+\delta}\right)$ edges for $\delta \in\left[\frac{3}{17}, \frac{1}{3}\right)$
- Chechik (2013)

Bounds for Additive Spanners

Upper Bounds

- +2-spanner with $O\left(n^{1.5}\right)$ edges
- Dor, Halperin and Zwick (2000, $\tilde{O}\left(n^{1.5}\right)$ edges)
- Elkin and Peleg (2001, $O\left(n^{1.5}\right)$ edges)
- +4-spanner with $\tilde{O}\left(n^{1.4}\right)$ edges
- Chechik (2013)
- +6-spanner with $O\left(n^{1.33}\right)$ edges
- Baswana, Kavitha, Mehlhorn, Pettie (2005)
- $+\tilde{O}\left(n^{\frac{1-3 \delta}{2}}\right)$-spanner with $\tilde{O}\left(n^{1+\delta}\right)$ edges for $\delta \in\left[\frac{3}{17}, \frac{1}{3}\right)$
- Chechik (2013)

Lower Bounds

- $\Omega\left(n^{1+\frac{1}{k}}\right)$ edges necessary, for $+(2 k-1)$-spanners
- Woodruff (2006)

Our Focus: Pairwise Additive Spanners

Our Focus: Pairwise Additive Spanners

Cygan, Grandoni, Kavitha(2013)

A generalization of spanners: not all pairs in $V \times V$ are important here, only certain pairs are critical.

Pairwise Additive Spanners : Two Variants

\mathcal{P}-spanners[Cygan, Grandoni, Kavitha (2013)]

- Set of pairs explicitly given as $\mathcal{P} \subseteq V \times V$.

D-spanners[Kavitha, V. (2013)]

- Set of pairs specified implicitly using a number D
- $\mathcal{P}=\{(u, v): d(u, v) \geq D\}$

Our Results [Kavitha, V. (2013)]

There exist deterministic polynomial time algorithms, which given any graph $G=(V, E)$ on n vertices, construct:

Our Results [Kavitha, V. (2013)]

There exist deterministic polynomial time algorithms, which given any graph $G=(V, E)$ on n vertices, construct: \mathcal{P}-spanners

- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 3}\right)$ edges for any $\mathcal{P} \subseteq V \times V$
- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 4}\right)$ edges when $\mathcal{P}=S \times V$ for any $S \subseteq V$
- A $+4 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 5}\right)=\tilde{O}\left(n^{1.4}\right)$ edges when $\mathcal{P}=V \times V$

Our Results [Kavitha, V. (2013)]

There exist deterministic polynomial time algorithms, which given any graph $G=(V, E)$ on n vertices, construct:
\mathcal{P}-spanners

- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 3}\right)$ edges for any $\mathcal{P} \subseteq V \times V$
- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 4}\right)$ edges when $\mathcal{P}=S \times V$ for any $S \subseteq V$
- A $+4 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 5}\right)=\tilde{O}\left(n^{1.4}\right)$ edges when $\mathcal{P}=V \times V$
D-spanners
- $+4 k D$-spanner with $\tilde{O}\left(n^{1.5} / D^{k /(2 k+2)}\right)$ edges for any integer $k \geq 1$

Our Results [Kavitha, V. (2013)]

There exist deterministic polynomial time algorithms, which given any graph $G=(V, E)$ on n vertices, construct:
\mathcal{P}-spanners

- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 3}\right)$ edges for any $\mathcal{P} \subseteq V \times V$
- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 4}\right)$ edges when $\mathcal{P}=S \times V$ for any $S \subseteq V$
- A $+4 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 5}\right)=\tilde{O}\left(n^{1.4}\right)$ edges when $\mathcal{P}=V \times V$
D-spanners
- $+4 k D$-spanner with $\tilde{O}\left(n^{1.5} / D^{k /(2 k+2)}\right)$ edges for any integer $k \geq 1$
- +4 D-spanner with $\tilde{O}\left(n^{1.5} / D^{0.25}\right)$ edges
- $+4 \log n D$-spanner with $\tilde{O}(n \sqrt{n / D})$ edges

\mathcal{P}-preservers

Coppersmith and Elkin (2006)

H is a \mathcal{P}-preserver of G if $d_{H}(u, v)=d_{G}(u, v)$ whenever $(u, v) \in \mathcal{P}$, where $\mathcal{P} \subseteq V \times V$.

D-preservers

Bollobás, Coppersmith and Elkin (2005)
H is a D-preserver of G if $d_{H}(u, v)=d_{G}(u, v)$ whenever $d_{G}(u, v) \geq D$

Bounds

- D-preserver with $O\left(n^{2} / D\right)$ edges (This is tight.)
- Bollobás, Coppersmith and Elkin (2005)
- \mathcal{P}-preserver with $O(\min (n \sqrt{|\mathcal{P}|},|\mathcal{P}| \sqrt{n}))$ edges
- Coppersmith and Elkin (2006)

Today

\mathcal{P}-spanners

Cygan, Grandoni, Kavitha 2013

H is a $+k \mathcal{P}$-spanner of G if $d_{H}(u, v) \leq d_{G}(u, v)+k$ whenever $(u, v) \in \mathcal{P}$, where $\mathcal{P} \subseteq V \times V$.

D-spanners

Kavitha, V. 2013

H is a $+k D$-spanner of G if $d_{H}(u, v) \leq d_{G}(u, v)+k$ whenever $d_{G}(u, v) \geq D$.

Our Results

There exist deterministic polynomial time algorithms, which given any graph $G=(V, E)$ on n vertices, construct:
\mathcal{P}-spanners

Our Results

There exist deterministic polynomial time algorithms, which given any graph $G=(V, E)$ on n vertices, construct:
\mathcal{P}-spanners

- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 3}\right)$ edges for any $\mathcal{P} \subseteq V \times V$

Our Results

There exist deterministic polynomial time algorithms, which given any graph $G=(V, E)$ on n vertices, construct:
\mathcal{P}-spanners

- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 3}\right)$ edges for any

$$
\mathcal{P} \subseteq V \times V
$$

- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 4}\right)$ edges when $\mathcal{P}=S \times V$ for any $S \subseteq V$

Our Results

There exist deterministic polynomial time algorithms, which given any graph $G=(V, E)$ on n vertices, construct:
\mathcal{P}-spanners

- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 3}\right)$ edges for any

$$
\mathcal{P} \subseteq V \times V
$$

- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 4}\right)$ edges when $\mathcal{P}=S \times V$ for any $S \subseteq V$
- A $+4 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 5}\right)=\tilde{O}\left(n^{1.4}\right)$ edges when $\mathcal{P}=V \times V$

Our Results

There exist deterministic polynomial time algorithms, which given any graph $G=(V, E)$ on n vertices, construct:
\mathcal{P}-spanners

- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 3}\right)$ edges for any $\mathcal{P} \subseteq V \times V$
- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 4}\right)$ edges when $\mathcal{P}=S \times V$ for any $S \subseteq V$
- A $+4 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 5}\right)=\tilde{O}\left(n^{1.4}\right)$ edges when $\mathcal{P}=V \times V$
D-spanners

Our Results

There exist deterministic polynomial time algorithms, which given any graph $G=(V, E)$ on n vertices, construct:
\mathcal{P}-spanners

- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 3}\right)$ edges for any

$$
\mathcal{P} \subseteq V \times V
$$

- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 4}\right)$ edges when $\mathcal{P}=S \times V$ for any $S \subseteq V$
- A $+4 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 5}\right)=\tilde{O}\left(n^{1.4}\right)$ edges when $\mathcal{P}=V \times V$
D-spanners
- $+4 k D$-spanner with $\tilde{O}\left(n^{1.5} / D^{k /(2 k+2)}\right)$ edges for any integer $k \geq 1$

Our Results

There exist deterministic polynomial time algorithms, which given any graph $G=(V, E)$ on n vertices, construct:
\mathcal{P}-spanners

- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 3}\right)$ edges for any $\mathcal{P} \subseteq V \times V$
- A $+2 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 4}\right)$ edges when $\mathcal{P}=S \times V$ for any $S \subseteq V$
- A $+4 \mathcal{P}$-spanner with $\tilde{O}\left(n|\mathcal{P}|^{1 / 5}\right)=\tilde{O}\left(n^{1.4}\right)$ edges when $\mathcal{P}=V \times V$
D-spanners
- $+4 k D$-spanner with $\tilde{O}\left(n^{1.5} / D^{k /(2 k+2)}\right)$ edges for any integer $k \geq 1$
- +4 D-spanner with $\tilde{O}\left(n^{1.5} / D^{0.25}\right)$ edges
- $+4 \log n D$-spanner with $\tilde{O}(n \sqrt{n / D})$ edges

What we are going to prove..

Theorem

There is a polynomial time algorithm which, given any graph $G=(V, E)$ on n nodes and any $\mathcal{P} \subseteq V \times V$, computes a $+2 \mathcal{P}$-spanner of G with $\tilde{O}\left(n|\mathcal{P}|^{1 / 3}\right)$ edges.

$+2 \mathcal{P}$-spanner algorithm

Input

- Graph $G=(V, E)$ on n vertices
- Set $\mathcal{P} \subseteq V \times V$ of pairs to be approximated

Output

- $H=\left(V, E^{\prime}\right)$
- H is a $+2 \mathcal{P}$-spanner of G
- H has $\tilde{O}\left(n|\mathcal{P}|^{1 / 3}\right)$ edges

Main Algorithmic Techniques Used

- Clustering
- [EP01,BKMP05,C13,CGK13]

Main Algorithmic Techniques Used

- Clustering
- [EP01,BKMP05,C13,CGK13]
- Shortest Paths Tree Addition
- [EP01,C13]

Main Algorithmic Techniques Used

- Clustering
- [EP01,BKMP05,C13,CGK13]
- Shortest Paths Tree Addition
- [EP01,C13]
- Path Buying
- [BKMP05,C13,CGK13]

Construction : Initialization

- Initialize H to the empty graph.

Construction : Clustering

Construction : Clustering

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.
- Mark all its unclustered neighbors as clustered and form a cluster.

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.
- Mark all its unclustered neighbors as clustered and form a cluster.

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.
- Mark all its unclustered neighbors as clustered and form a cluster.
- Stop when there are no potential cluster centers

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.
- Mark all its unclustered neighbors as clustered and form a cluster.
- Stop when there are no potential cluster centers

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.
- Mark all its unclustered neighbors as clustered and form a cluster.
- Stop when there are no potential cluster centers

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.
- Mark all its unclustered neighbors as clustered and form a cluster.
- Stop when there are no potential cluster centers

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.
- Mark all its unclustered neighbors as clustered and form a cluster.
- Stop when there are no potential cluster centers

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.
- Mark all its unclustered neighbors as clustered and form a cluster.
- Stop when there are no potential cluster centers

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.
- Mark all its unclustered neighbors as clustered and form a cluster.
- Stop when there are no potential cluster centers

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.
- Mark all its unclustered neighbors as clustered and form a cluster.
- Stop when there are no potential cluster centers

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.
- Mark all its unclustered neighbors as clustered and form a cluster.
- Stop when there are no potential cluster centers

Construction : Clustering

Forming Clusters

- Mark all nodes as unclustered
- Repeat the following steps.
- Mark a node with at least h $\left(=(|\mathcal{P}| \cdot \log n)^{1 / 3}\right)$ unclustered neighbors as a cluster center.
- Mark all its unclustered neighbors as clustered and form a cluster.
- Stop when there are no potential cluster centers
- Some nodes remain unclustered.

Construction : Clustering

Construction : Clustering

Adding edges

- Add the edges between cluster centers and nodes in their cluster to H.

Construction : Clustering

Adding edges

- Add the edges between cluster centers and nodes in their cluster to H.

Construction : Clustering

Adding edges

- Add the edges between cluster centers and nodes in their cluster to H.
- Add all the edges incident on unclustered nodes to H.

Construction : Clustering

Adding edges

- Add the edges between cluster centers and nodes in their cluster to H.
- Add all the edges incident on unclustered nodes to H.

After Clustering

Shortest paths in the G between pairs in \mathcal{P}

Construction : Shortest Paths Tree Addition

A heavy path intersects many
($\geq n \log n / 3 h^{2}$) clusters

Construction : Shortest Paths Tree Addition

A heavy path intersects many
($\geq n \log n / 3 h^{2}$) clusters
\Downarrow
\exists a collection of $O(h)$ clusters \mathcal{C} such that every heavy path intersects some cluster in \mathcal{C}.

Construction : Shortest Paths Tree Addition

A heavy path intersects many
($\geq n \log n / 3 h^{2}$) clusters
\Downarrow
\exists a collection of $O(h)$ clusters \mathcal{C} such that every heavy path intersects some cluster in \mathcal{C}.

Construction : Shortest Paths Tree Addition

A heavy path intersects many
($\geq n \log n / 3 h^{2}$) clusters
\Downarrow
\exists a collection of $O(h)$ clusters \mathcal{C} such that every heavy path intersects some cluster in \mathcal{C}.

- Add the edges in the union of SPTs in G rooted at these cluster

Construction : Shortest Paths Tree Addition

A heavy path intersects many
($\geq n \log n / 3 h^{2}$) clusters
\Downarrow
\exists a collection of $O(h)$ clusters \mathcal{C} such that every heavy path intersects some cluster in \mathcal{C}.

- Add the edges in the union of SPTs in G rooted at these cluster

Construction : Path Buying

A light path has a few
($<n \log n / h^{2}$) clustered nodes

Construction : Path Buying

A light path has a few ($<n \log n / h^{2}$) clustered nodes

$$
\Downarrow
$$

Except a few $\left(<n \log n / h^{2}\right)$ edges, most of the edges are already present in H.

Construction : Path Buying

A light path has a few ($<n \log n / h^{2}$) clustered nodes

$$
\Downarrow
$$

Except a few $\left(<n \log n / h^{2}\right)$ edges, most of the edges are already present in H.

Construction : Path Buying

A light path has a few
($<n \log n / h^{2}$) clustered nodes

$$
\Downarrow
$$

Except a few $\left(<n \log n / h^{2}\right)$ edges, most of the edges are already present in H.

- Add every light path to H.

Construction : Path Buying

A light path has a few
($<n \log n / h^{2}$) clustered nodes

$$
\Downarrow
$$

Except a few $\left(<n \log n / h^{2}\right)$ edges, most of the edges are already present in H.

- Add every light path to H.

Analyzing Stretch

Heavy Path

Path of stretch +2 between u and v in H.

Analyzing Stretch

Heavy Path

Path of stretch +2 between u and v in H.

Light Path

Path of stretch 0 between u and v in H.

Stretch of Spanner

Size of the Spanner

- Clustering.
- Edges between cluster centers and clustered nodes form a forest.
- At most $n h$ edges incident on unclustered nodes, after all clusters are formed.
- Clustering adds $O(n h)$ edges.

Size of the Spanner

- Clustering.
- Edges between cluster centers and clustered nodes form a forest.
- At most $n h$ edges incident on unclustered nodes, after all clusters are formed.
- Clustering adds $O(n h)$ edges.
- SPT Addition.
- Only $O(h)$ trees are added.
- At most $O(n h)$ edges get added.

Size of the Spanner

- Clustering.
- Edges between cluster centers and clustered nodes form a forest.
- At most $n h$ edges incident on unclustered nodes, after all clusters are formed.
- Clustering adds $O(n h)$ edges.
- SPT Addition.
- Only $O(h)$ trees are added.
- At most $O(n h)$ edges get added.
- Adding light paths.
- At most $|\mathcal{P}|$ light shortest paths added.
- Each path contributes $\leq n \log n / h^{2}$ edges to H.

Size of the Spanner

- Clustering.
- Edges between cluster centers and clustered nodes form a forest.
- At most $n h$ edges incident on unclustered nodes, after all clusters are formed.
- Clustering adds $O(n h)$ edges.
- SPT Addition.
- Only $O(h)$ trees are added.
- At most $O(n h)$ edges get added.
- Adding light paths.
- At most $|\mathcal{P}|$ light shortest paths added.
- Each path contributes $\leq n \log n / h^{2}$ edges to H.

$$
\text { Size of } H \text { is } O\left(n(|\mathcal{P}| \cdot \log n)^{1 / 3}\right) \text {. }
$$

We have proved..

Theorem

There is a polynomial time algorithm which, given any graph $G=(V, E)$ on n nodes and any set $\mathcal{P} \subseteq V \times V$, computes a $+2 \mathcal{P}$-spanner of G with $\tilde{O}\left(n|\mathcal{P}|^{1 / 3}\right)$ edges.

Conclusion

Central Question on Additive Spanners
Sparsest constant/polylogarithmic-stretch additive spanner is +6 -spanner with $O\left(n^{1.33}\right)$ edges.

Conclusion

Central Question on Additive Spanners
Sparsest constant/polylogarithmic-stretch additive spanner is +6 -spanner with $O\left(n^{1.33}\right)$ edges.
Can we do better ?

Conclusion

Central Question on Additive Spanners

Sparsest constant/polylogarithmic-stretch additive spanner is +6 -spanner with $O\left(n^{1.33}\right)$ edges.
Can we do better ?

- Our $+2 \mathcal{P}$-spanner is sparser for "small" enough $|\mathcal{P}|$.

Conclusion

Central Question on Additive Spanners

Sparsest constant/polylogarithmic-stretch additive spanner is +6 -spanner with $O\left(n^{1.33}\right)$ edges.
Can we do better ?

- Our $+2 \mathcal{P}$-spanner is sparser for "small" enough $|\mathcal{P}|$.
- Our $+2 S \times V$-spanner is sparser for "small" enough $|S|$.

Conclusion

Central Question on Additive Spanners

Sparsest constant/polylogarithmic-stretch additive spanner is +6 -spanner with $O\left(n^{1.33}\right)$ edges.
Can we do better ?

- Our $+2 \mathcal{P}$-spanner is sparser for "small" enough $|\mathcal{P}|$.
- Our $+2 S \times V$-spanner is sparser for "small" enough $|S|$.
- Our $+4 k D$-spanner is sparser for "large" enough D.

Thank You!!

KV13 T. Kavitha and Nithin M. Varma. Small stretch pairwise spanners. In $\operatorname{ICALP}(1)$, pages 601-612, 2013.

