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Graph Spanners

Peleg and Schaffer 1989

H = (V,E′) is a spanner of G = (V,E), an undirected
unweighted graph, if

H is a subgraph of G (E′ ⊆ E)

dH(u, v) ≈ dG(u, v) for all u, v ∈ V (G)

G = K6

H = star

For all u, v ∈ V
dH(u, v) ≤ 2 · dG(u, v)
(multiplicative)

dH(u, v) ≤ dG(u, v) + 1
(additive)
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Why Spanners?

Fewer edges than the original graph, but roughly preserve
shortest distances

Algorithms run on spanners can give approximate solutions
for problems on original graph

Space Efficient Routing Schemes

Thorup and Zwick (2001)

Near Shortest Path Algorithms

Elkin (2001)

Approximate Distance Oracles

Patrascu and Roditty (2010)
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Additive Spanners

u

v

d

G

Dense

u

v

≤ d+ k

H

Sparse

Liestman and Shermer (1991)

H is a +k-spanner of G if dH(u, v) ≤ dG(u, v) + k for all
u, v ∈ V .
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Bounds for Additive Spanners

Upper Bounds

+2-spanner with O(n1.5) edges

Dor, Halperin and Zwick (2000, Õ(n1.5) edges)

Elkin and Peleg (2001, O(n1.5) edges)

+4-spanner with Õ(n1.4) edges

Chechik (2013)

+6-spanner with O(n1.33) edges

Baswana, Kavitha, Mehlhorn, Pettie (2005)

+Õ(n
1−3δ

2 )-spanner with Õ(n1+δ) edges for δ ∈ [ 3
17 ,

1
3)

Chechik (2013)

Lower Bounds

Ω(n1+ 1
k ) edges necessary, for +(2k − 1)-spanners

Woodruff (2006)
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Our Focus: Pairwise Additive Spanners

d1

G

Dense

d2

d3

≤ d1 + k

H

Sparse

≤ d2 + k

≤ d3 + k

Cygan, Grandoni, Kavitha(2013)

A generalization of spanners: not all pairs in V × V are
important here, only certain pairs are critical.
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Pairwise Additive Spanners : Two Variants

P-spanners[Cygan, Grandoni, Kavitha (2013)]

Set of pairs explicitly given as P ⊆ V × V .

D-spanners[Kavitha, V. (2013)]

Set of pairs specified implicitly using a number D

P = {(u, v) : d(u, v) ≥ D}
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Our Results [Kavitha, V. (2013)]

There exist deterministic polynomial time algorithms, which
given any graph G = (V,E) on n vertices, construct:

P-spanners

A +2 P-spanner with Õ(n|P|1/3) edges for any P ⊆ V × V
A +2 P-spanner with Õ(n|P|1/4) edges when P = S × V
for any S ⊆ V
A +4 P-spanner with Õ(n|P|1/5) = Õ(n1.4) edges when
P = V × V

D-spanners

+4k D-spanner with Õ(n1.5/Dk/(2k+2)) edges for any
integer k ≥ 1

+4 D-spanner with Õ(n1.5/D0.25) edges

+4 log n D-spanner with Õ(n
√
n/D) edges
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A +2 P-spanner with Õ(n|P|1/4) edges when P = S × V
for any S ⊆ V
A +4 P-spanner with Õ(n|P|1/5) = Õ(n1.4) edges when
P = V × V

D-spanners
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P-preservers

d1

G

Dense

d2

d3

d1

H

Sparse

d2

d3

Coppersmith and Elkin (2006)

H is a P-preserver of G if dH(u, v) = dG(u, v) whenever
(u, v) ∈ P, where P ⊆ V × V .
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D-preservers

d1

G

Dense

d2

d3

d1

H

Sparse

d2

d3

Bollobás, Coppersmith and Elkin (2005)

H is a D-preserver of G if dH(u, v) = dG(u, v) whenever
dG(u, v) ≥ D
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Bounds

D-preserver with O(n2/D) edges (This is tight.)

Bollobás, Coppersmith and Elkin (2005)

P-preserver with O(min(n
√
|P|, |P|√n)) edges

Coppersmith and Elkin (2006)
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Today

P-spanners or
D-spanners

Additive Spanners
P-preservers or
D-preservers
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P-spanners

d1

G

Dense

d2

d3

≤ d1 + k

H

Sparse
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Cygan, Grandoni, Kavitha 2013
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D-spanners

d1

G

Dense

d2

d3

≤ d1 + k

H

Sparse

≤ d2 + k

≤ d3 + k

Kavitha, V. 2013

H is a +k D-spanner of G if dH(u, v) ≤ dG(u, v) + k whenever
dG(u, v) ≥ D.
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Our Results

There exist deterministic polynomial time algorithms, which
given any graph G = (V,E) on n vertices, construct:

P-spanners

A +2 P-spanner with Õ(n|P|1/3) edges for any
P ⊆ V × V
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+4k D-spanner with Õ(n1.5/Dk/(2k+2)) edges for any
integer k ≥ 1

+4 D-spanner with Õ(n1.5/D0.25) edges
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+4 D-spanner with Õ(n1.5/D0.25) edges

+4 log n D-spanner with Õ(n
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What we are going to prove..

Theorem

There is a polynomial time algorithm which, given any
graph G = (V,E) on n nodes and any P ⊆ V × V ,
computes a +2 P-spanner of G with Õ(n|P|1/3) edges.
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+2 P-spanner algorithm

Input

Graph G = (V,E) on n
vertices

Set P ⊆ V × V of pairs
to be approximated

Output

H = (V,E′)

H is a +2 P-spanner of
G

H has Õ(n|P|1/3) edges
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Main Algorithmic Techniques Used

Clustering
[EP01,BKMP05,C13,CGK13]

Shortest Paths Tree Addition
[EP01,C13]

Path Buying
[BKMP05,C13,CGK13]
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Construction : Initialization

Initialize H to the empty graph.
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Construction : Clustering

Forming Clusters

Mark all nodes as unclustered

Repeat the following steps.

Mark a node with at least h
(= (|P| · log n)1/3) unclustered
neighbors as a cluster center.

Mark all its unclustered neighbors
as clustered and form a cluster.

Stop when there are no potential
cluster centers

Some nodes remain unclustered.

20 / 30
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Construction : Clustering

Adding edges

Add the edges between cluster
centers and nodes in their cluster to
H.

Add all the edges incident on
unclustered nodes to H.
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After Clustering

Shortest paths in the G between pairs in P

Light Path Heavy Path

< n log n/h2

clustered nodes
≥ n log n/h2

clustered nodes
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Construction : Shortest Paths Tree Addition

A heavy path intersects many

(≥ n log n/3h2) clusters

⇓

∃ a collection of O(h) clusters C
such that every heavy path

intersects some cluster in C.

Add the edges in the

union of SPTs in G

rooted at these cluster

centers to H.
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Construction : Path Buying

A light path has a few

(< n log n/h2) clustered nodes

⇓

Except a few (< n log n/h2) edges,

most of the edges are already

present in H.

Add every light path to

H.
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Analyzing Stretch

Heavy Path

u v

c

w

Path of stretch +2 between u and v in H.

Light Path

u v

Path of stretch 0 between u and v in H.
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Stretch of Spanner

Paths between pairs in P

Light Path Heavy Path

No Stretch in H Stretch at most +2 in H

H is a +2 P-spanner of G
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Size of the Spanner

Clustering.

Edges between cluster centers and clustered nodes form a
forest.
At most nh edges incident on unclustered nodes, after all
clusters are formed.
Clustering adds O(nh) edges.

SPT Addition.

Only O(h) trees are added.
At most O(nh) edges get added.

Adding light paths.

At most |P| light shortest paths added.
Each path contributes ≤ n log n/h2 edges to H.

Size of H is O(n(|P| · log n)1/3).
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We have proved..

Theorem

There is a polynomial time algorithm which, given any
graph G = (V,E) on n nodes and any set P ⊆ V × V ,
computes a +2 P-spanner of G with Õ(n|P|1/3) edges.
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Conclusion

Central Question on Additive Spanners

Sparsest constant/polylogarithmic-stretch additive spanner is
+6-spanner with O(n1.33) edges.

Can we do better ?

Our +2 P-spanner is sparser for “small” enough |P|.
Our +2 S × V -spanner is sparser for “small” enough |S|.
Our +4k D-spanner is sparser for “large” enough D.
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Thank You!!

KV13 T. Kavitha and Nithin M. Varma. Small stretch pairwise
spanners. In ICALP(1), pages 601-612, 2013.
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