Improved Sublinear Algorithms for Testing Permutation Freeness

Ordered Patterns in Arrays
array A of length n

Let $\pi:[k] \rightarrow[k]$ be a bijection

Ordered Patterns in Arrays
array A of length n

Let $\pi:[k] \rightarrow[k]$ be a bijection
A has a π-appearance if \exists indices $i_{1}<i_{2}<\ldots<i_{k}$ such that

$$
A\left[i_{a}\right]>A\left[i_{b}\right] \quad \text { if } \pi(a)>\pi(b) \quad \forall a, b \in[k]
$$

Ordered Patterns in Arrays
array A of length n

Let $\pi:[k] \rightarrow[k]$ be a bijection
A has a π-appearance if \exists indices $i_{1}<i_{2}<\ldots<i_{k}$ such that

$$
A\left[i_{a}\right]>A\left[i_{b}\right] \text { if } \pi(a)>\pi(b) \quad \forall a, b \in[k]
$$

A is π-free if it has no π-appearance

Examples

100	98	723	1.2	5.88

Examples

100	98	723	1.2	5.88

has a $(2,1,3)$ - appearance

Examples

100	98	723	1.2	5.88

has a $(2,1,3)$ - appearance

$$
\begin{array}{ll}
& (3,1,2)-\text { appearance } \\
& (3,4,1,2) \text { - appearance } \\
& (2,3,1) \text { - appearance }
\end{array}
$$

Problem
Given array A, permutation πIs $A \pi$-free?Is A ε-far from π-free?

Problem
Hamming distance of A to every π-free array is $\geqslant \varepsilon n$
Given array A, permutation π
Is $A \pi$-free?Is $A \varepsilon$-far from π-free? $\varepsilon \in(0,1)$

Problem
Hamming distance of A to every π-free array is $\geqslant \varepsilon n$
Given array A, permutation π
I\& $A \pi$-free?
Is A-far from π-free?
Generalization of monotonicity testing on arrays
[EKKRVOO, DGLRRP99,... PRVI8]

HistoryInitiated by [NRRS'19]

HistoryInitiated by [NRRS'19]Studied extensively for monotone patterns

$$
(1,2, \ldots, k) \text { or }(k, k-1, \ldots, 2,1)
$$

[NRRS'19, BCLW'19, BL W'19]

Highlights
OPTIMAL
$O(\log n)$ - query tester for monotone patterns of constant length [BLW'Iq]

Highlights
$O(\log n)$-query tester for monotone patterns of constant length
[BLW'Iq]
polylog n query tester for arbitrary patterns of length 3
[NRRS'19]

$$
1234665 \cdots 10
$$

Highlights
$O(\log n)$-query tester for monotone patterns of constant length
[BLW'19]
polylog n query tester for arbitrary patterns of length 3 [NRRS'19]
What about nonmonotone patterns of length >3 ?Nonadaptive testers $O\left(n^{1-\frac{1}{k-1}}\right)$ queries [NRRS '19]Nonadaptive testers $O\left(n^{1-\frac{1}{k-1}}\right)$ queries [MRS' 19$]$

- Nonadaptive testers cannot do better! [$\left.B C^{\prime} 18\right]$Nonadaptive testers $O\left(n^{1-\frac{1}{k-1}}\right)$ queries [NRRS'19]
- Nonadaptive testers cannot do better!

$$
[B C \cdot 18]
$$

What about adaptive testers?

Our Result
Let $\varepsilon \in(0,1), k \in \mathbb{N}$ and $\pi \in S_{k}$.
There is an ε-tester for π-freeness with query complexity $\tilde{O}\left(n^{\circ(1)}\right)$.

Our Result
Let $\varepsilon \in(0,1), k \in \mathbb{N}$ and $\pi \in S_{k}$.
There is an ε-tester for π-freeness with query complexity $\tilde{O}\left(n^{0(1)}\right)$.

The tester has one-sided error. always accepts π-free arrays

Features of our resultStrong sublinear-time guarantee

Features of our resultStrong sublinear-time guaranteeOur techniques are general and work for all π

Today: $\tilde{O}(\sqrt{n})$-query algorithm for testing π-freeness of $\pi \in S_{4}$
\longrightarrow every $n \cdot a$. algo. for this problem has q.C.

$$
\Omega\left(n^{2 / 3}\right)
$$

Today: $\tilde{O}(\sqrt{n})$-query algorithm for testing π-freeness of $\pi \in S_{4}$
$\left\{\begin{array}{l}\text { Find a } \pi \text {-appearance in an } \\ \text { array that is } \varepsilon \text {-far from } \\ \pi \text {-free }\end{array}\right.$

First Useful Fact
Array A is ε-far from π-free \Rightarrow

Matching of π-appearances of size $\geqslant \frac{\varepsilon_{n}}{4}$

First Useful Fact
Used by all algorithms to test π-freeness
Array A is ε-far from π-free \Rightarrow

Matching of π-appearances of size $\geqslant \frac{\varepsilon_{n}}{4}$

Used by all
First Useful Fact algorithms to test π-freeness
Array A is ε-far from π-free \Rightarrow

Matching of π-appearances of size $\geqslant \frac{\varepsilon_{n}}{4}$

Eg. (100), (99) 78,98$) 77,97,76,21$

Key Ingredient
View the array as a grid of n points in $[n] \times \mathbb{R}$

Grid of Points
Our algorithm makes use of an $m \times m$ partition of the main grid.

Grid of Points
Our algorithm makes use of an $m \times m$ partition of the main grid.

Grid of Points
Our algorithm makes use of an $m \times m$ partition of the main grid.

Gridding
Determine layers so that each layer has $\sim \frac{n}{m}$ points

Partition [n] into m stripes of $\tilde{O}(m)$ queries $\frac{n}{m}$ indices

Gridding
Determine layers so that each layer has $\sim \frac{n}{m}$ points

Partition [n] into m stripes of

Set $m \leftarrow \sqrt{n}$
$\tilde{O}(m)$ queries

Boxes in the grid

Boxes in the grid

Boxes in the grid
Next Goal: Determine the distribution of points among the boxes by sampling

Gridding: Part 2

From each stripe, sample $\tilde{0}(1)^{-1} \log ^{100}$ points \& mark
 the boxes with at least one sampled point

Gridding: Part 2

From each stripe, sample \tilde{O} (1) points \& mark the boxes with at least one sampled point

There are m^{2} boxes, out of which we mark $\tilde{O}(m)$ boxes only

Marcus - Tardos Helps Us
Lemma [M T'O4]: For any $\pi \in S_{k}, \exists a$ constant $K(K)$ such that for any $r \in \mathbb{N}$, if grid $G_{r, r}$ has $\geqslant K(k) \cdot r$ marked cells, then there is a π-appearance among the cells.

Gridding: Part 2
From each stripe, sample \tilde{O} (1) points \& mark the boxes with at least one sampled point
Reject if π-appearance found

Suppose $\pi=(3,2,1,4)$
There is a π-appearance among marked boxes

Gridding: Part 2
From each stripe, sample \tilde{O} (1) points \& mark the boxes with at least one sampled point
Reject if π-appearance found

Suppose $\pi=(3,2,1,4)$
There is a π-appearance among marked boxes

After marking boxes
If there are more than $K(4) \cdot m$ marked boxes, we are done! \rightarrow imm. detect a T- app.
Assume we have $\leqslant K_{1}(4) \cdot m$ marked boxes

After marking boxes
If there are more than $K(4) \cdot m$ marked boxes, we are done!

Assume we have $\leqslant K_{1}(4) \cdot m$ marked boxes

Can we ignore the unmarked boxes?

After marking boxes
Lemma : With high probability, for each stripe S

- either has $\tilde{\Omega}(1)$ marked boxes

After marking boxes
Lemma : With high probability, for each stripe S
$\Omega(n) \quad$ either has $\tilde{\Omega}(1)$ marked boxes

- or union of marked boxes contain $(1-0(1)) \cdot|S|$ points $\}$

$O(1) \cdot|S|$
$0(1) \cdot x$

After marking boxes
Lemma : With high probability, for each stripe S

- either has $\tilde{\Omega}(1)$ marked boxes
- or union of marked boxes contain $(1-0(1)) \cdot|S|$ points

OK to ignore unmarked boxes!

After marking boxes
OK to ignore unmarked boxes

After marking boxes
OK to ignore unmarked boxes
Ignore boxes with "low" density

After marking boxes
OK to ignore unmarked boxes
Ignore boxes with "low" density $O(m)$ dense boxes overall

After marking boxes
OK to ignore unmarked boxes
Ignore boxes with "low" density $O(m)$ dense boxes overall
Only a small constant fraction of layers \& stripes have $>d(\varepsilon)$ dense boxes

After marking boxes
OK to ignore unmarked boxes
Ignore boxes with "low" density $O(m)$ dense boxes overall
Only a small constant fraction of layers \& stripes have $>d(\varepsilon)$ dense boxes

Ignore points in such layers \& stripes

After Gridding
$m \times m$ grid with $O(m)$ dense boxes

After Gridding
$m \times m$ grid with $O(m)$ dense boxes
Each layer/stripe has $\leqslant d$ dense boxes

After Gridding
$m \times m$ grid with $O(m)$ dense boxes
Each layer/stripe has $\leqslant d$ dense boxes
There is a matching of π-appearances of size $\Omega(\varepsilon n)$ among dense boxes

After Gridding
$m \times m$ grid with $O(m)$ dense boxes
Each layer/stripe has $\leqslant d$ dense boxes
There is a matching of π-appearances of size $\Omega\left(\varepsilon_{n}\right)$

Where in the grid do these appear?

If Gridding step did not reject...
Most π-appearances have more than one leg in boxes that share a stripe or layer

If Gridding step did not reject...
Most π-appearances have more than one leg in boxes that share a stripe or layer

Different types of π-appearances
Configuration: Arrangement of $\leqslant 4$ boxes and a mapping of legs of π-appearance into themTwo boxes B, B^{\prime} in a configuration are directly-connected if they share a layer or a stripe

Connected components in configuration
Transitive closure of directly-connected relation is the connected relation

How to detect these?

Only constantly many distinct types of configurations

How to detect these?: High-level Schema
for each configuration
Detect a π-appearance among dense boxes forming the configuration

Case 1

$\Omega\left(\varepsilon_{n}\right) \pi$-appearances have all four legs in a single dense box

Case 1

$\Omega\left(\varepsilon_{n}\right) \pi$-appearances have all four legs in a single dense box
$O(m)$ dense boxes overall
$\Rightarrow \Omega\left(\frac{n}{m}\right) \pi$-appearances per dense box

Case 1

$\Omega\left(\varepsilon_{n}\right) \pi$-appearances have all four legs in a single dense box
$O(m)$ dense boxes overall

$$
\Rightarrow \Omega\left(\frac{n}{m}\right) \quad \pi \text {-appearances }
$$ per dense box

Algorithm: Sample a random dense box and query all points in it

Case 1

$\Omega\left(\varepsilon_{n}\right) \pi$-appearances have all four legs in a single dense box
$O(m)$ dense boxes overall
$\Rightarrow \Omega\left(\frac{n}{m}\right) \pi$-appearances per dense box
Algorithm: Sample a random dense box and query all points in it

Case La: $\Omega(\varepsilon n) \pi$-appearances are present as

Case Ia: $\Omega(\varepsilon n) \pi$-appearances are present as
 1-component configurationEach dense box belongs to $O\left(d^{3}\right)$ "copies" of such box-arrangements in grid <d
\square
\square

$$
\leq d
$$

Case La: $\Omega(\varepsilon n) \pi$-appearances are present as

1-component configurationEach dense box belongs to $O\left(d^{3}\right)$ "copies" of such box-arrangements in gridA random dense box participates in $\Omega(n / m)$ such appearances

Case La: $\Omega(\varepsilon n) \pi$-appearances are present as
Sample a uniformly random dense box B and query all points in all copies of 1-component configurations involving B

Case Ia: $\Omega(\varepsilon n) \pi$-appearances are present as

O
$O(\sqrt{n})$

1-component configurationSample a uniformly random dense box B and query all points in all copies of 1-component configurations involving B

Case $2: \Omega\left(\varepsilon_{n}\right) \pi$-appearances in

$$
\begin{array}{ccc}
3 \square & & \square^{4} \\
& \square^{2} \square_{1}^{\square}
\end{array}
$$

Case $2: \Omega(\varepsilon n) \pi$-appearances in
for each pair of dense boxes sharing a layer:

* Test (1,2)-freeness \& $(2,1)$-freeness

Solving a more general problem

- Detect a ν-appearance with a specific leg mapping, where ν is a subpattern of π

Many more ideas needed
Reducing the complexity to $n^{0(1)}$

Generalizing to larger patterns

Open Problems

- True complexity of testing π-freeness

Open Problems

- True complexity of testing π-freeness
- What about patterns of super constant length?

Open Problems

- True complexity of testing π-freeness
- What about patterns of super constant length?
(1) Approximating the distance of an array to π-freeness \leftarrow

Open Problems

- True complexity of testing π-freeness
- What about patterns of super constant length?
(1) Approximating the distance of an array to π-freeness

Thank You!

