
SOMETHING FOR ALMOST NOTHING :

A gentle Introduction to

sub linear Algorithms

/THIN VARMA
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Massive Datasets are Everywhere !

☒**¥*¥i

µSatellite Data
÷•¥, EH

Large Networks

Genetic Data
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☒ Can draw useful conclusions

by analyzing such datasets

☒ Main Question : How to efficiently

Targe datasets ?
analyze

Even reading a large dataset

can take a lot of time
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SUB LINEAR -TIME COMPUTATION

① Cannot read the entire input

☒ Running time of algorithm
is

a sub linear function

of input size
n

Do you already know

any
sub linear algorithms ?
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☒ Can we solve more challenging

computational problems in

sublinear - time ?

④ YES ! IF WE ARE ALLOWED TO

☆ Output approximate answers

☆ Fail 1% of the time



To-day : Sublinear - Time Algorithm for
a Fundamental Graph Problem



MASSIVE GRAPHS : SOCIAL NETWORK
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MASSIVE GRAPHS : SOCIAL NETWORK

Vertices : Users

Edges : Friendshipiii.
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Big Goal : Understand community structure

inthe-soa.at network .
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What does this mean ?

☆ Several definitions of
"

community
"

possible

simpler Goal : Is the graph connected

or not ?



Problem : Given a graph , is it

connected or not ?



Problem : Given a graph , is it

connected or not ?

⇔ : Design a sub linear - time

algorithm for the problem



Problem : Given a graph , is it

connected or not ?

⇔ : Design a sub linear - time

algorithm for the problem



Connectedness in sub linear - Time ?

Graph G- = (V. E) n vertices m edges



Connectedness in Sublinear - Time ?

Graph G- = (V. E) n vertices m edges

☆ Represented as adjacency lists

⇒
☒→☒→☒

2 →☒→☐*

-
i -

-
-
- - --→☒→☒→

. .



Connectedness in Sublinear - Time ?

Graph G- = (V. E) n vertices m edges

☆ Represented as adjacency lists

÷??☒→☒☆ Access via queries 2→☒→☐*

11 -
-
- - -

É→☒→☒→ . . .



Connectedness in sub linear - Time ?

Graph G- = (V. E) n vertices m edges

☆ Represented as adjacency lists

☆ Access via queries

§??☒→☒⇒☒→☒
Degree query :

◦wfh%¥e×ᵈ9% , / -
-
- - -

-

☒ Neighbor query :
who is ithnbr of × ?

≤→☒→☒→ . . .
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Can we check if a graph
is connected without examining
the entire adjacency lists ?

No !

Need to
"

approximately
" check

connectedness
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Relaxed Problem

Design an algorithm that

Outputs YES if graph connected

☒ Outputs No if graph
contains

"

many
" connected

components
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Design an algorithm that gets

query access to a graph G. input EE# (0,1m)

Outputs YES if G connected

G
☒ Outputs NO if

contains ≥ Em
connected

components # edges in G

☆ trivial if E > 7m
→ output YES without querying



Problems [Property Testing Problem]

Design an algorithm that gets

query access to a graph G. input E. c-☒ (0,1m)

Outputs YES if G connected

☒ Outputs NO if
G

contains
connected

≥

EMI
, # edges in GComponents

☆ Smaller E ⇒ More challenging problem



Problems [Property Testing Problem]

Design an algorithm that gets

query access to a graph G. input EE# (0,1m)

sufficient
Outputs YES if G connected

to be
G

☒ Outputs NO if { correctcontains
connected

with

≥ᵗʰ↳ # edges in a probabilitycomponents
≥ }
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Towards an Algorithm : How do NO instances

look like ?

Claim : At least EI components that

each contain ≤ I vertices each
Em

P¥ :

#components with } <
I = EMI
2n /Em

7,21m vertices

Remaining ≥ Em
- EI components

are ¥1
"
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A NO instance G

0000 . . .☐≤÷vertices
1 2

3 4 Ey
each

If we can detect one such component ,

we have proof of disconnectedness
.

④ How to detect a component like this ?

☆ A uniformly random vertex belongs

to such a component with

"good
" probability
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Connectedness Testing Algorithm (Goldreiah
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'

02)

Given query
access to G = (vs E) , input E

① Sample U - V uniformly at random

④ Check whether v belongs
to

a component
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Connectedness Testing Algorithm (Goldreiah
Ron

'

02)

Given query
access to G = (VSE) , input E

① Sample v - V uniformly at random

④ Check whether v belongs
to

[ ae-h
vertices

by performing a BFS from *

If True ,

output until seeing
≤ 2dm vertices

NO !
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Analyzing the Algorithm

④ If G is connected
, algo .

never outputs NO

☒ If G has ≥ Em connected

components ,

≥E vertices belong to
" small

" components

•

°

.

Pr [ algo . outputting No] ≥ Ezmxnt
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☆ BFS until seeing 2¥
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can take ≤ ¥n÷ time

e need a correctness probaility ≥} I
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④ Algo . correct with probability ≥ egg

O(É÷n)Time Complexity ?

☆ BFS until seeing 2¥
vertices

can take ≤ ¥n÷ time

Repeat algo .

⊖# ) times independently

⇒ Correctness probability ≥ 3- .
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Theorem : Algo .
to E-test connectedness

of n - vertex m - edge graphs with

time complexity Of?÷m.)
111

Very very small
✓0(¥)

compared to size of
d- : average degree

input
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CAN WE DO BETTER ?

YES !



Connectedness Testing Algorithm (Goldreiah
Ron

'

02)

Given query
access to G = (VSE) , input E

④ Sample U - V uniformly at random

④ Check whether v belongs
to

[ aent
vertices

by performing a BFS from *

If True ,
≤¥verti#output until seeing

NO !



Connectedness Testing Algorithm µ
": Palla

"°%
, ,

Raskhodnikova , Varma)

Given query
access to G = (VSE) , input E

④ Sample U - V uniformly at random

④ Check whether v belongs
to

n≤ vertices

[ acomponent_
by performing a BFS from *

If True ,

output until seeing ≤ }n_m× di,
edges

↓

NO ! degree of ×
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Analyzing the algorithm

④ For a component with ≤ }÷ vertices
,

our BFS
"

budget
" is

sufficient in expectation For ≥ Es success

probability ,

%-)
☒ Expected Time Complexity

= 0¥
- d)≤ 21 . El [ die]

Em v -v

= ◦ (E)
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Theorem : Algo .
to E-test connectedness

of n - vertex m - edge graphs with

time complexity ◦ (min { '¥})
t,# our result

[Goldreich Ron '02] Better when

d- is small

d- : average degree
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test connectedness of graphs



Summey
☆ Sublinear - time computation to

tackle big data challenges

☆ Can solve non-trivial problems
in sub linear _ time

☆ Very efficient algorithms to

test connectedness of graphs

THANK YOU !


