
1

Erasure-Resilient

Sublinear-Time Graph

Algorithms

Amit Levi Ramesh Krishnan S. Pallavoor Sofya Raskhodnikova Nithin Varma

Goal

2

Model and investigate sublinear-time

algorithms that run on graphs with incomplete

information

Sublinear-time algorithms for graphs

• Typical assumption: Query or sample access to graphs

• Does not accurately reflect reality in some situations

3

Sublinear-time algorithms for graphs

• Typical assumption: Query or sample access to graphs

• Does not accurately reflect reality in some situations

4

Sublinear-time algorithms for graphs

• Typical assumption: Query or sample access to graphs

• Does not accurately reflect reality in some situations

5

Social Network

Vertices are users, and

edges are friendships
Friendships hidden

for privacy

Partially erased graphs: Representation

• 𝜶-erased graph: At most an 𝛼 ∈ (0,1) fraction of entries in the adjacency lists is

adversarially erased

• A completion is a valid graph that agrees on all the nonerased entries

6

4

1

⋮

𝟓

1

2

⋮

𝒏

2 3 7 11

3 4 ⊥ 8 12

1

deg(𝑣) 𝑣 Adjacency list of 𝑣

Partially erased graphs: Representation

• 𝜶-erased graph: At most an 𝛼 ∈ (0,1) fraction of entries in the adjacency lists is

adversarially erased

• A completion is a valid graph that agrees on all the nonerased entries

7

4

1

⋮

𝟓

1

2

⋮

𝒏

2 3 7 11

3 4 ⊥ 8 12

1

deg(𝑣) 𝑣 Adjacency list of 𝑣

Partially erased graphs: Representation

• 𝜶-erased graph: At most an 𝛼 ∈ (0,1) fraction of entries in the adjacency lists is

adversarially erased

• A completion is a valid graph obtained by filling in the erased entries

8

4

1

⋮

𝟓

1

2

⋮

𝒏

2 3 7 11

3 4 ⊥ 8 12

1

deg(𝑣) 𝑣 Adjacency list of 𝑣

Partially erased graphs: Representation

• 𝜶-erased graph: At most an 𝛼 ∈ (0,1) fraction of entries in the adjacency lists is

adversarially erased

• A completion is a valid graph obtained by filling in the erased entries

9

4

1

⋮

𝟓

1

2

⋮

𝒏

2 3 7 11

3 4 ⊥ 8 12

1

deg(𝑣) 𝑣 Adjacency list of 𝑣 Adaptation of erasure-resilient model for

testing properties of functions by

[Dixit Raskhodnikova Thakurta Varma 18]

to the case of graphs

Erasure-resilient graph algorithms

• Algorithm gets parameter 𝛼 ∈ (0,1) and query access to 𝛼-erased graph

• Degree query 𝑣 is answered with deg(𝑣)
• Neighbor query (𝑣, 𝑖) is answered with 𝑖-th entry in

adjacency list of 𝑣

10

4

1

⋮

𝟓

1

2

⋮

𝒏

2 3 7 11

3 4 ⊥ 8 12

1

deg(𝑣) 𝑣 Adjacency list of 𝑣

Erasure-resilient graph algorithms

• Algorithm gets parameter 𝛼 ∈ (0,1) and query access to 𝛼-erased graph

• Degree query 𝑣 is answered with deg(𝑣)
• Neighbor query (𝑣, 𝑖) is answered with 𝑖-th entry in

adjacency list of 𝑣

11

4

1

⋮

𝟓

1

2

⋮

𝒏

2 3 7 11

3 4 ⊥ 8 12

1

deg(𝑣) 𝑣 Adjacency list of 𝑣

Erasure-resilient graph algorithms

• Algorithm gets parameter 𝛼 ∈ (0,1) and query access to 𝛼-erased graph

• Degree query 𝑣 is answered with deg(𝑣)
• Neighbor query (𝑣, 𝑖) is answered with 𝑖-th entry in adjacency list of 𝑣

12

4

1

⋮

𝟓

1

2

⋮

𝒏

2 3 7 11

3 4 ⊥ 8 12

1

deg(𝑣) 𝑣 Adjacency list of 𝑣

Erasure-resilient graph algorithms

• Algorithm gets parameter 𝛼 ∈ (0,1) and query access to 𝛼-erased graph

• Degree query 𝑣 is answered with deg(𝑣)
• Neighbor query (𝑣, 𝑖) is answered with 𝑖-th entry in adjacency list of 𝑣

13

Performance of algorithms analyzed in

the worst-case over all 𝛼-erased graphs

4

1

⋮

𝟓

1

2

⋮

𝒏

2 3 7 11

3 4 ⊥ 8 12

1

deg(𝑣) 𝑣 Adjacency list of 𝑣

Computational tasks that we study

• Graph property testing

– Initiated by [Goldreich Goldwasser Ron 98]

– Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a

generalization of the bounded degree graph model of [Goldreich Ron 02]

– Testers in general graph model for many properties [PR02, Alon Kaufman Krivelevich Ron 08,

Kaufman Krivelevich Ron 12, Kusumoto Yoshida 14, Babu Khoury Newman 16,…]

• Estimating graph parameters

– Sublinear-time algorithms for estimating:

• Weight of min. spanning tree [Chazelle Rubinfeld Trevisan 05]

• Number of connected components [CRT05, Berenbrink Krayenhoff Mallmann-Trenn 14]

• Average degree [Feige 06, Goldreich Ron 08]

• Moments of degree distribution [Gonen Ron Shavitt 11, Eden Ron Seshadhri 17]

• and more…

14

Computational tasks that we study

• Graph property testing

– Initiated by [Goldreich Goldwasser Ron 98]

– Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a

generalization of the bounded degree graph model of [Goldreich Ron 02]

– Testers in general graph model for many properties [PR02, Alon Kaufman Krivelevich Ron 08,

Kaufman Krivelevich Ron 12, Kusumoto Yoshida 14, Babu Khoury Newman 16,…]

• Estimating graph parameters

– Sublinear-time algorithms for estimating:

• Weight of min. spanning tree [Chazelle Rubinfeld Trevisan 05]

• Number of connected components [CRT05, Berenbrink Krayenhoff Mallmann-Trenn 14]

• Average degree [Feige 06, Goldreich Ron 08]

• Moments of degree distribution [Gonen Ron Shavitt 11, Eden Ron Seshadhri 17]

• and more…

15

Computational tasks that we study

• Graph property testing

– Initiated by [Goldreich Goldwasser Ron 98]

– Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a

generalization of the bounded degree graph model of [Goldreich Ron 02]

– Testers in general graph model for many properties [PR02, Alon Kaufman Krivelevich Ron 08,

Kaufman Krivelevich Ron 12, Kusumoto Yoshida 14, Babu Khoury Newman 16,…]

• Estimating graph parameters

– Sublinear-time algorithms for estimating:

• Weight of min. spanning tree [Chazelle Rubinfeld Trevisan 05]

• Number of connected components [CRT05, Berenbrink Krayenhoff Mallmann-Trenn 14]

• Average degree [Feige 06, Goldreich Ron 08]

• Moments of degree distribution [Gonen Ron Shavitt 11, Eden Ron Seshadhri 17]

• and more…

16

Computational tasks that we study

• Graph property testing

– Initiated by [Goldreich Goldwasser Ron 98]

– Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a

generalization of the bounded degree graph model of [Goldreich Ron 02]

– Testers in general graph model for many properties [PR02, Alon Kaufman Krivelevich Ron 08,

Kaufman Krivelevich Ron 12, Kusumoto Yoshida 14, Babu Khoury Newman 16,…]

• Estimating graph parameters

– Sublinear-time algorithms for estimating:

• Weight of min. spanning tree [Chazelle Rubinfeld Trevisan 05]

• Number of connected components [CRT05, Berenbrink Krayenhoff Mallmann-Trenn 14]

• Average degree [Feige 06, Goldreich Ron 08]

• Moments of degree distribution [Gonen Ron Shavitt 11, Eden Ron Seshadhri 17]

• and more…

17

Computational tasks that we study

• Graph property testing

– Initiated by [Goldreich Goldwasser Ron 98]

– Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a

generalization of the bounded degree graph model of [Goldreich Ron 02]

– Testers in general graph model for many properties [PR02, Alon Kaufman Krivelevich Ron 08,

Kaufman Krivelevich Ron 12, Kusumoto Yoshida 14, Babu Khoury Newman 16,…]

• Estimating graph parameters

– Sublinear-time algorithms for estimating:

• Weight of min. spanning tree [Chazelle Rubinfeld Trevisan 05]

• Number of connected components [CRT05, Berenbrink Krayenhoff Mallmann-Trenn 14]

• Average degree [Feige 06, Goldreich Ron 08]

• Moments of degree distribution [Gonen Ron Shavitt 11, Eden Ron Seshadhri 17]

• and more…

18

Computational tasks that we study

• Graph property testing

– Initiated by [Goldreich Goldwasser Ron 98]

– Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a

generalization of the bounded degree graph model of [Goldreich Ron 02]

– Testers in general graph model for many properties [PR02, Alon Kaufman Krivelevich Ron 08,

Kaufman Krivelevich Ron 12, Kusumoto Yoshida 14, Babu Khoury Newman 16,…]

• Estimating graph parameters

– Sublinear-time algorithms for estimating:

• Weight of min. spanning tree [Chazelle Rubinfeld Trevisan 05]

• Number of connected components [CRT05, Berenbrink Krayenhoff Mallmann-Trenn 14]

• Average degree [Feige 06, Goldreich Ron 08]

• Moments of degree distribution [Gonen Ron Shavitt 11, Eden Ron Seshadhri 17]

• and more…

19

Erasure-resilient testing connectedness of graphs

20

𝛼-erasure-resilient 𝜀-tester

𝛼-erased graph 𝐺
𝑛 vertices; 𝑚 edges

𝛼, 𝜀 ∈ (0,1)

Erasure-resilient testing connectedness of graphs

21

edges

to be added to

each

completion of

to make it

connected

Exists

completion of

that is

connected

𝜀
𝛼-erasure-resilient 𝜀-tester

𝛼-erased graph 𝐺
𝑛 vertices; 𝑚 edges

𝛼, 𝜀 ∈ (0,1)

Accept with

probability ≥ 2/3

Erasure-resilient testing connectedness of graphs

22

edges

to be added to

each

completion of

to make it

connected

Exists

completion of

that is

connected

𝜀
𝛼-erasure-resilient 𝜀-tester

𝛼-erased graph 𝐺
𝑛 vertices; 𝑚 edges

𝛼, 𝜀 ∈ (0,1)

Accept with

probability ≥ 2/3

Reject with

probability ≥ 2/3

𝜀-far from

connected

Erasure-resilient testing connectedness of graphs

23

edges

to be added to

each

completion of

to make it

connected

Exists

completion of

that is

connected

𝜀
𝛼-erasure-resilient 𝜀-tester

𝛼-erased graph 𝐺
𝑛 vertices; 𝑚 edges

𝛼, 𝜀 ∈ (0,1)

Accept with

probability ≥ 2/3

Reject with

probability ≥ 2/3Can be generalized to any property

𝜀-far from

connected

Testing connectedness of graphs

• In the special case of no erasures:

• Studied by [Goldreich Ron 02, Parnas Ron 02], and

[Berman Raskhodnikova Yaroslavtsev 14]

• Prior best tester [BRY14] has query complexity 𝑂(
1

𝜀 ത𝑑

2
), where ҧ𝑑 is the average

degree

24

Testing connectedness of graphs

• In the special case of no erasures:

• Studied by [Goldreich Ron 02, Parnas Ron 02], and

[Berman Raskhodnikova Yaroslavtsev 14]

• Prior best 𝜀-tester [BRY14] has query complexity 𝑂(
1

𝜀 ത𝑑

2
), where ҧ𝑑 is the average

degree

25

𝜶-erasure-resilient 𝜺-testing connectedness: Our results

𝛼 vs. 𝜀 Query complexity

𝛼 ≥ 𝜀 Ω(𝑛)

26

Algorithms and lower bounds for 𝜶-erasure-resilient 𝜺-testing connectedness for

graphs of average degree ҧ𝑑

𝜶-erasure-resilient 𝜺-testing connectedness: Our results

𝛼 vs. 𝜀 Query complexity

𝛼 ≥ 𝜀 Ω(𝑛)

𝛼 < 𝜀
𝜀′ = 𝜀 − 𝛼

𝑂 min
1

𝜀′ ҧ𝑑
3 ,

1

𝜀′ 2 ҧ𝑑

27

Algorithms and lower bounds for 𝜶-erasure-resilient 𝜺-testing connectedness for

graphs of average degree ҧ𝑑

𝜶-erasure-resilient 𝜺-testing connectedness: Our results

𝛼 vs. 𝜀 Query complexity

𝛼 ≥ 𝜀 Ω(𝑛)

𝛼 < 𝜀
𝜀′ = 𝜀 − 𝛼

𝑂 min
1

𝜀′ ҧ𝑑
3 ,

1

𝜀′ 2 ҧ𝑑

𝛼 < 𝜀/2

𝜀′′ =
𝜀

2
− 𝛼

𝑂 min
1

𝜀′′ ҧ𝑑
2 ,

1

𝜀′′
⋅ log

1

𝜀′′ ҧ𝑑

28

Algorithms and lower bounds for 𝜶-erasure-resilient 𝜺-testing connectedness for

graphs of average degree ҧ𝑑

• Phase transition:

– If 𝛼 < 𝜀, the problem is solvable in time independent of the size of the input

graph

– If 𝛼 ≥ 𝜀, the problem requires linear time to solve

• In the special case of no erasures, complexity of our tester is 𝑂
1

𝜀
⋅ log

1

𝜀 ത𝑑
,

which is better than the best known upper bound 𝑂(
1

𝜀 ത𝑑

2
)

• Our algorithms always accept connected graphs, i.e., have one-sided error

Erasure-resilient testing connectedness: Our results

29

• Phase transition:

– If 𝛼 < 𝜀, the problem is solvable in time independent of the size of the input

graph

– If 𝛼 ≥ 𝜀, the problem requires linear time to solve

• In the special case of no erasures, complexity of our tester is

𝑂 min{
1

𝜀
⋅ log

1

𝜀 ത𝑑
,

1

𝜀 ത𝑑

2
} , which is better than

the best prior upper bound 𝑂(
1

𝜀 ത𝑑

2
)

– Our upper bound is tight, as evidenced by a matching lower bound [Pallavoor Raskhodnikova

Varma]

• Our algorithms always accept connected graphs, i.e., have one-sided error

Erasure-resilient testing connectedness: Our results

30

• Phase transition:

– If 𝛼 < 𝜀, the problem is solvable in time independent of the size of the input

graph

– If 𝛼 ≥ 𝜀, the problem requires linear time to solve

• In the special case of no erasures, complexity of our tester is

𝑂 min{
1

𝜀
⋅ log

1

𝜀 ത𝑑
,

1

𝜀 ത𝑑

2
} , which is better than

the best prior upper bound 𝑂(
1

𝜀 ത𝑑

2
)

– Our upper bound is tight, as evidenced by a matching lower bound [Pallavoor Raskhodnikova

Varma]

• Our algorithms always accept connected graphs, i.e., have one-sided error

Erasure-resilient testing connectedness: Our results

31

Estimating the average degree

• In the special case of no erasures, studied by
[Feige 06], [Goldreich Ron 08], [Eden Ron Seshadhri 17], [Eden Ron Seshadhri 19]

• For 𝜀 > 0

– 2 + 𝜀 -approximation algorithm that makes

𝑂
𝑛

𝜀
degree queries [F06]

– Need Ω(𝑛) queries for a 2-approximation,

if one only has degree queries [F06]

– (1 + 𝜀)-approximation algorithm that makes

෨𝑂 𝑛 ⋅ 𝑝𝑜𝑙𝑦
1

𝜀
degree and neighbor queries [GR08, ERS17, ERS19]

32

Estimating the average degree

• In the special case of no erasures, studied by
[Feige 06], [Goldreich Ron 08], [Eden Ron Seshadhri 17], [Eden Ron Seshadhri 19]

• For 𝜀 > 0

– 2 + 𝜀 -approximation algorithm that makes

𝑂
𝑛

𝜀
degree queries [F06]

– Need Ω(𝑛) queries for a 2-approximation,

if one only has degree queries [F06]

– (1 + 𝜀)-approximation algorithm that makes

෨𝑂 𝑛 ⋅ 𝑝𝑜𝑙𝑦
1

𝜀
degree and neighbor queries [GR08, ERS17, ERS19]

33

Estimating the average degree

• In the special case of no erasures, studied by
[Feige 06], [Goldreich Ron 08], [Eden Ron Seshadhri 17], [Eden Ron Seshadhri 19]

• For 𝜀 > 0

– 2 + 𝜀 -approximation algorithm that makes

𝑂
𝑛

𝜀
degree queries [F06]

– Need Ω(𝑛) queries for a 2 − 𝑜(1)-approximation,

if one only has degree queries [F06]

– (1 + 𝜀)-approximation algorithm that makes

෨𝑂 𝑛 ⋅ 𝑝𝑜𝑙𝑦
1

𝜀
degree and neighbor queries [GR08, ERS17, ERS19]

34

Estimating the average degree

• In the special case of no erasures, studied by
[Feige 06], [Goldreich Ron 08], [Eden Ron Seshadhri 17], [Eden Ron Seshadhri 19]

• For 𝜀 > 0

– 2 + 𝜀 -approximation algorithm that makes

𝑂
𝑛

𝜀
degree queries [F06]

– Need Ω(𝑛) queries for a 2 − 𝑜(1)-approximation,

if one only has degree queries [F06]

– (1 + 𝜀)-approximation algorithm that makes

෨𝑂 𝑛 ⋅ 𝑝𝑜𝑙𝑦
1

𝜀
degree and neighbor queries [GR08, ERS17, ERS19]

35

Estimating the average degree: Our results

Estimating average degree of 𝛼-erased graphs

• Interpolation between model with only degree queries, and model with

both degree and neighbor queries

– When 𝛼 = 0, our result identical to [GR08, ERS17, ERS19]

– When 𝛼 = 1, “have access to only degree queries” and we obtain a 2 + 𝜀
approximation like [F06]

36

Estimating the average degree: Our results

Estimating average degree of 𝛼-erased graphs

• Interpolation between model with only degree queries, and model with

both degree and neighbor queries

– When 𝛼 = 0, our result identical to [GR08, ERS17, ERS19]

– When 𝛼 = 1, “have access to only degree queries” and we obtain a 2 + 𝜀
approximation like [F06]

37

Approximation ratio Complexity

1 + 𝜀 +min(2𝛼, 1)
෨𝑂 𝑛 ⋅ 𝑝𝑜𝑙𝑦

1

𝜀

Estimating the average degree: Our results

Estimating average degree of 𝛼-erased graphs

• Interpolation between model with only degree queries, and model with

both degree and neighbor queries

– When 𝛼 = 0, our result identical to [GR08, ERS17, ERS19]

– When 𝛼 = 1, “have access to only degree queries” and we obtain a 2 + 𝜀
approximation like [F06]

38

Approximation ratio Complexity

1 + 𝜀 +min(2𝛼, 1)
෨𝑂 𝑛 ⋅ 𝑝𝑜𝑙𝑦

1

𝜀

1 + 𝛾 for 𝛾 < 𝛼 Ω(𝑛)

Estimating the average degree: Our results

Estimating average degree of 𝛼-erased graphs

• Interpolation between model with only degree queries, and model with

both degree and neighbor queries

– When 𝛼 = 0, our result identical to [GR08, ERS17, ERS19]

– When 𝛼 = 1, “have access to only degree queries” and we obtain a 2 + 𝜀
approximation like [F06]

39

Approximation ratio Complexity

1 + 𝜀 +min(2𝛼, 1)
෨𝑂 𝑛 ⋅ 𝑝𝑜𝑙𝑦

1

𝜀

1 + 𝛾 for 𝛾 < 𝛼 Ω(𝑛)

Estimating the average degree: Our results

Estimating average degree of 𝛼-erased graphs

• Interpolation between model with only degree queries, and model with

both degree and neighbor queries

– When 𝛼 = 0, our result identical to [GR08, ERS17, ERS19]

– When 𝛼 = 1, “have access to only degree queries” and we obtain a 2 + 𝜀
approximation like [F06]

40

Approximation ratio Complexity

1 + 𝜀 +min(2𝛼, 1)
෨𝑂 𝑛 ⋅ 𝑝𝑜𝑙𝑦

1

𝜀

1 + 𝛾 for 𝛾 < 𝛼 Ω(𝑛)

Estimating the average degree: Our results

Estimating average degree of 𝛼-erased graphs

• Interpolation between model with only degree queries, and model with

both degree and neighbor queries

– When 𝛼 = 0, our result identical to [GR08, ERS17, ERS19]

– When 𝛼 = 1/2, “have access to only degree queries” and we obtain a 2 + 𝜀
approximation like [F06]

41

Approximation ratio Complexity

1 + 𝜀 +min(2𝛼, 1)
෨𝑂 𝑛 ⋅ 𝑝𝑜𝑙𝑦

1

𝜀

1 + 𝛾 for 𝛾 < 𝛼 Ω(𝑛)

Erasure-resilient connectedness tester for small 𝜶

• Today: Special case: 𝜶 = 𝟎, or no erasures

• Requirement:

• Basic Algorithmic Idea [GR02]

42

Erasure-resilient connectedness tester for small 𝜶

• Today: Special case: 𝜶 = 𝟎, or no erasures

• Requirement:

• Basic Algorithmic Idea [GR02]

43

Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

is -far

from

connected

is

connected

𝜀

≥ 𝜀 ⋅ 𝑚 edges to be added

to make 𝐺 connected

𝜀, ҧ𝑑 = 2𝑚/𝑛
Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

is -far

from

connected

is

connected

𝜀Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

Accept with

probability

≥ 2/3

Reject with

probability

≥ 2/3

Erasure-resilient connectedness tester for small 𝜶

• Today: Special case: 𝜶 = 𝟎, or no erasures

• Requirement:

• Basic Algorithmic Idea [GR02]

44

Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

is -far

from

connected

is

connected

𝜀

≥ 𝜀 ⋅ 𝑚 edges to be added

to make 𝐺 connected

𝜀, ҧ𝑑 = 2𝑚/𝑛
Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

is -far

from

connected

is

connected

𝜀Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

Accept with

probability

≥ 2/3

Reject with

probability

≥ 2/3

Erasure-resilient connectedness tester for small 𝜶

• Today: Special case: 𝜶 = 𝟎, or no erasures

• Requirement:

• Basic Algorithmic Idea [GR02]

45

Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

is -far

from

connected

is

connected

𝜀

Reject only if we are certain that 𝐺 is not connected

Observation: If 𝐺 is 𝜀-far from connected, then 𝐺 has

≥ 𝜀𝑚 connected components (CCs)

Idea: Detect CCs via BFSs from random vertices
≥ 𝜀 ⋅ 𝑚 edges to be added

to make 𝐺 connected

𝜀, ҧ𝑑 = 2𝑚/𝑛
Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

is -far

from

connected

is

connected

𝜀Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

Accept with

probability

≥ 2/3

Reject with

probability

≥ 2/3

Erasure-resilient connectedness tester for small 𝜶

• Today: Special case: 𝜶 = 𝟎, or no erasures

• Requirement:

• Basic Algorithmic Idea [GR02]

46

Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

is -far

from

connected

is

connected

𝜀

Reject only if we are certain that 𝐺 is not connected

Observation: If 𝐺 is 𝜀-far from connected, then 𝐺 has

≥ 𝜀𝑚 connected components (CCs)

Idea: Detect CCs via BFSs from random vertices
≥ 𝜀 ⋅ 𝑚 edges to be added

to make 𝐺 connected

𝜀, ҧ𝑑 = 2𝑚/𝑛
Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

is -far

from

connected

is

connected

𝜀Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

Accept with

probability

≥ 2/3

Reject with

probability

≥ 2/3

Erasure-resilient connectedness tester for small 𝜶

• Today: Special case: 𝜶 = 𝟎, or no erasures

• Requirement:

• Basic Algorithmic Idea [GR02]

47

Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

is -far

from

connected

is

connected

𝜀

Reject only if we are certain that 𝐺 is not connected

Observation: If 𝐺 is 𝜀-far from connected, then 𝐺 has

≥ 𝜀𝑚 connected components (CCs)

Idea: Detect CCs via BFSs from random vertices
≥ 𝜀 ⋅ 𝑚 edges to be added

to make 𝐺 connected

𝜀, ҧ𝑑 = 2𝑚/𝑛
Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

is -far

from

connected

is

connected

𝜀Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

Accept with

probability

≥ 2/3

Reject with

probability

≥ 2/3

Detecting graphs that are far from connected

• Observation 1 [GR02]: If 𝐺 is 𝜀-far from connected, then 𝐺 has ≥ 𝜀𝑚 CCs

• Observation 2: Not many CCs can have “too many vertices” in them ⟹ At least

𝜀𝑚/2 small CCs (at most 𝐵 = 2𝑛/𝜀𝑚 vertices)

• Classify small CCs into log 𝐵 buckets

• Detecting a small CC (Work investment strategy [Berman Raskhodnikova Yaroslavtsev 14])

– For 𝑖 ∈ [log𝐵], sample 𝑂
𝐵

2𝑖
uniformly random vertices

– With probability ≥ 2/3, ∃𝑖 such that some vertex in 𝑖th iteration is in 𝑖th bucket
48

Detecting graphs that are far from connected

• Observation 1 [GR02]: If 𝐺 is 𝜀-far from connected, then 𝐺 has ≥ 𝜀𝑚 CCs

• Observation 2 [GR02]: Not many CCs can have “too many vertices” in them ⟹ At

least 𝜀𝑚/2 small CCs (at most 𝐵 = 2𝑛/𝜀𝑚 vertices)

• Classify small CCs into log 𝐵 buckets

• Detecting a small CC (Work investment strategy [Berman Raskhodnikova Yaroslavtsev 14])

– For 𝑖 ∈ [log𝐵], sample 𝑂
𝐵

2𝑖
uniformly random vertices

– With probability ≥ 2/3, ∃𝑖 such that some vertex in 𝑖th iteration is in 𝑖th bucket
49

Detecting graphs that are far from connected

• Observation 1 [GR02]: If 𝐺 is 𝜀-far from connected, then 𝐺 has ≥ 𝜀𝑚 CCs

• Observation 2 [GR02]: Not many CCs can have “too many vertices” in them ⟹ At

least 𝜀𝑚/2 small CCs (at most 𝐵 = 2𝑛/𝜀𝑚 vertices)

• Classify small CCs into log 𝐵 buckets [GR02]

• Detecting a small CC (Work investment strategy [Berman Raskhodnikova Yaroslavtsev 14])

– For 𝑖 ∈ [log𝐵], sample 𝑂
𝐵

2𝑖
uniformly random vertices

– With probability ≥ 2/3, ∃𝑖 such that some vertex in 𝑖th iteration is in 𝑖th bucket
50

No. of

vertices ∈ [1, 2)
No. of

vertices ∈ [2, 4)

No. of

vertices ∈ [2𝑖−1, 2𝑖)….

No. of

vertices ∈ [𝐵/2, 𝐵]

Detecting graphs that are far from connected

• Observation 1 [GR02]: If 𝐺 is 𝜀-far from connected, then 𝐺 has ≥ 𝜀𝑚 CCs

• Observation 2 [GR02]: Not many CCs can have “too many vertices” in them ⟹ At

least 𝜀𝑚/2 small CCs (at most 𝐵 = 2𝑛/𝜀𝑚 vertices)

• Classify small CCs into log 𝐵 buckets [GR02]

• Detecting a small CC (Work investment strategy [BRY14])

– For 𝑖 ∈ [log𝐵], sample 𝑂
𝐵

2𝑖
uniformly random vertices

– With probability ≥ 2/3, ∃𝑖 such that some vertex in 𝑖th iteration is in 𝑖th bucket
51

No. of

vertices ∈ [1, 2)
No. of

vertices ∈ [2, 4)

No. of

vertices ∈ [2𝑖−1, 2𝑖)….

No. of

vertices ∈ [𝐵/2, 𝐵]

Detecting graphs that are far from connected

• Observation 1 [GR02]: If 𝐺 is 𝜀-far from connected, then 𝐺 has ≥ 𝜀𝑚 CCs

• Observation 2 [GR02]: Not many CCs can have “too many vertices” in them ⟹ At

least 𝜀𝑚/2 small CCs (at most 𝐵 = 2𝑛/𝜀𝑚 vertices)

• Classify small CCs into log 𝐵 buckets [GR02]

• Detecting a small CC (Work investment strategy [BRY14])

– For 𝑖 ∈ [log𝐵], sample 𝑂
𝐵

2𝑖
uniformly random vertices

– With probability ≥ 2/3, ∃𝑖 such that some vertex in 𝑖th iteration is in 𝑖th bucket
52

No. of

vertices ∈ [1, 2)
No. of

vertices ∈ [2, 4)

No. of

vertices ∈ [2𝑖−1, 2𝑖)….

No. of

vertices ∈ [𝐵/2, 𝐵]

Prior best connectedness tester

• Input: 𝜀, ҧ𝑑 = 2𝑚/𝑛, query access to graph 𝐺 of average degree ҧ𝑑

• Let 𝐵 =
2𝑛

𝜀𝑚
=

4

𝜀 ത𝑑

• For 𝑖 ∈ [log 𝐵]

– Repeat 𝑂
𝐵

2𝑖
times:

• Sample a vertex 𝑣

• Run BFS from 𝑣 until a small CC is found or nbr. query budget is exhausted

Query budget: 22𝑖 deg(𝑣) ⋅ 2𝑖 neighbor queries

53

Prior best connectedness tester

• Input: 𝜀, ҧ𝑑 = 2𝑚/𝑛, query access to graph 𝐺 of average degree ҧ𝑑

• Let 𝐵 =
2𝑛

𝜀𝑚
=

4

𝜀 ത𝑑

• For 𝑖 ∈ [log 𝐵]

– Repeat 𝑂
𝐵

2𝑖
times:

• Sample a vertex 𝑣

• Run BFS from 𝑣 until a small CC is found (reject) or nbr. query budget is over

Query budget: 22𝑖 deg(𝑣) ⋅ 2𝑖 neighbor queries

54

Prior best connectedness tester

• Input: 𝜀, ҧ𝑑 = 2𝑚/𝑛, query access to graph 𝐺 of average degree ҧ𝑑

• Let 𝐵 =
2𝑛

𝜀𝑚
=

4

𝜀 ത𝑑

• For 𝑖 ∈ [log 𝐵]

– Repeat 𝑂
𝐵

2𝑖
times:

• Sample a vertex 𝑣

• Run BFS from 𝑣 until a small CC is found (reject) or nbr. query budget is over

Query budget: 22𝑖 deg(𝑣) ⋅ 2𝑖 neighbor queries

55

Work investment strategy [BRY14]

• With probability ≥ 2/3, ∃𝑖 such that some vertex in 𝑖th
iteration is in bucket with no. of vertices ∈ [2𝑖−1, 2𝑖)

Our connectedness tester

• Input: 𝜀, ҧ𝑑 = 2𝑚/𝑛, query access to graph 𝐺 of average degree ҧ𝑑

• Let 𝐵 =
2𝑛

𝜀𝑚
=

4

𝜀 ത𝑑

• For 𝑖 ∈ [log 𝐵]

– Repeat 𝑂
𝐵

2𝑖
times:

• Sample a vertex 𝑣

• Run BFS from 𝑣 until a small CC is found (reject) or nbr. query budget is over

Query budget: 22𝑖 deg(𝑣) ⋅ 2𝑖 neighbor queries

56

Work investment strategy [BRY14]

• With probability ≥ 2/3, ∃𝑖 such that some vertex in 𝑖th
iteration is in bucket with no. of vertices ∈ [2𝑖−1, 2𝑖)

Our connectedness tester

• Input: 𝜀, ҧ𝑑 = 2𝑚/𝑛, query access to graph 𝐺 of average degree ҧ𝑑

• Let 𝐵 =
2𝑛

𝜀𝑚
=

4

𝜀 ത𝑑

• For 𝑖 ∈ [log 𝐵]

– Repeat 𝑂
𝐵

2𝑖
times:

• Sample a vertex 𝑣

• Run BFS from 𝑣 until a small CC is found (reject) or nbr. query budget is over

Query budget: 22𝑖 deg(𝑣) ⋅ 2𝑖 neighbor queries

57

Correctness

• BFS query budget is “sufficient” to see CC

• For CC with vertex set 𝐶 and edge set 𝐸𝐶
1

|𝐶|
෍

𝑣∈𝐶

deg(𝑣) ⋅ 𝐶 = 2|𝐸𝐶|

Work investment strategy [BRY14]

• With probability ≥ 2/3, ∃𝑖 such that some vertex in 𝑖th
iteration is in bucket with no. of vertices ∈ [2𝑖−1, 2𝑖)

Our connectedness tester

• Input: 𝜀, ҧ𝑑 = 2𝑚/𝑛, query access to graph 𝐺 of average degree ҧ𝑑

• Let 𝐵 =
2𝑛

𝜀𝑚
=

4

𝜀 ത𝑑

• For 𝑖 ∈ [log 𝐵]

– Repeat 𝑂
𝐵

2𝑖
times:

• Sample a vertex 𝑣

• Run BFS from 𝑣 until a small CC is found (reject) or nbr. query budget is over

Query budget: 22𝑖 deg(𝑣) ⋅ 2𝑖 neighbor queries

58

Correctness

• BFS query budget is “sufficient” to see CC

• For CC with vertex set 𝐶 and edge set 𝐸𝐶
1

|𝐶|
෍

𝑣∈𝐶

deg(𝑣) ⋅ 𝐶 = 2|𝐸𝐶|

Work investment strategy [BRY14]

• With probability ≥ 2/3, ∃𝑖 such that some vertex in 𝑖th
iteration is in bucket with no. of vertices ∈ [2𝑖−1, 2𝑖)

Our connectedness tester

• Input: 𝜀, ҧ𝑑 = 2𝑚/𝑛, query access to graph 𝐺 of average degree ҧ𝑑

• Let 𝐵 =
2𝑛

𝜀𝑚
=

4

𝜀 ത𝑑

• For 𝑖 ∈ [log 𝐵]

– Repeat 𝑂
𝐵

2𝑖
times:

• Sample a vertex 𝑣

• Run BFS from 𝑣 until a small CC is found (reject) or nbr. query budget is over

Query budget: 22𝑖 deg(𝑣) ⋅ 2𝑖 neighbor queries

59

Correctness

• BFS query budget is “sufficient” to see CC

• For CC with vertex set 𝐶 and edge set 𝐸𝐶
1

|𝐶|
෍

𝑣∈𝐶

deg(𝑣) ⋅ 𝐶 = 2|𝐸𝐶|

Expected query complexity

෍

𝑖∈[log 𝐵]

𝑂
𝐵

2𝑖
⋅ 2𝑖 ⋅ Ε𝑣∈𝑉 deg 𝑣

= 𝑂(𝐵 ҧ𝑑 log𝐵) = 𝑂(
1

𝜀
⋅ log(

1

𝜀 ҧ𝑑
))

Work investment strategy [BRY14]

• With probability ≥ 2/3, ∃𝑖 such that some vertex in 𝑖th
iteration is in bucket with no. of vertices ∈ [2𝑖−1, 2𝑖)

Connectedness testing without erasures: What we get

• Improvement in complexity when ҧ𝑑 ≲
1

𝜀
, i.e., when average degree is small

• Several large graphs of interest are sparse and have low average degree

60

Can 𝜀-test connectedness with 𝑂(min
1

𝜀
⋅ log

1

𝜀 ത𝑑
,

1

𝜀 ത𝑑 2) queries

Connectedness testing without erasures: What we get

• Improvement in complexity when ҧ𝑑 ≲
1

𝜀
, i.e., when average degree is small

• Several large graphs of interest are sparse and have low average degree

61

Can 𝜀-test connectedness with 𝑂(min
1

𝜀
⋅ log

1

𝜀 ത𝑑
,

1

𝜀 ത𝑑 2) queries

Connectedness testing without erasures: What we get

• Improvement in complexity when ҧ𝑑 ≲
1

𝜀
, i.e., when average degree is small

• Several large graphs of interest are sparse and have low average degree

62

Can 𝜀-test connectedness with 𝑂(min
1

𝜀
⋅ log

1

𝜀 ത𝑑
,

1

𝜀 ത𝑑 2) queries

Erasure-resilient connectedness tester

• For 𝛼 < 𝜀/2

– Several erasure-free small CCs in a graph that is far from connected

– Generalization of the strategy in the case without erasures

• For 𝛼 ∈
𝜀

2
, 𝜀

– In a graph that is far from connected, there need not be any CC without

erasures

– Find a special subgraph that forms a CC in every completion of the input

– Larger query complexity

63

Erasure-resilient connectedness tester

• For 𝛼 < 𝜀/2

– Several erasure-free small CCs in a graph that is far from connected

– Generalization of the strategy in the case without erasures

• For 𝛼 ∈
𝜀

2
, 𝜀

– In a graph that is far from connected, there need not be any CC without

erasures

– Find a special subgraph that forms a CC in every completion of the input

– Larger query complexity

64

Erasure-resilient connectedness tester

• For 𝛼 < 𝜀/2

– Several erasure-free small CCs in a graph that is far from connected

– Generalization of the strategy in the case without erasures

• For 𝛼 ∈
𝜀

2
, 𝜀

– In a graph that is far from connected, there need not be any CC without

erasures

– Find a special subgraph that forms a CC in every completion of the input

– Larger query complexity

65

Erasure-resilient connectedness tester

• For 𝛼 < 𝜀/2

– Several erasure-free small CCs in a graph that is far from connected

– Generalization of the strategy in the case without erasures

• For 𝛼 ∈
𝜀

2
, 𝜀

– In a graph that is far from connected, there need not be any CC without

erasures

– Find a special subgraph that forms a CC in every completion of the input

– Larger query complexity

66

Open problems

• Secondary phase transition in the complexity of erasure-resilient connectedness

testing

– Is the change in complexity at 𝛼 = 𝜀/2 inherent?

• Erasure-resilient testing of monotone properties

– Property is monotone if it is preserved under deletion of edges and vertices;

examples: bipartiteness, triangle-freeness

– Observation: In the bounded degree model with max degree 𝐷, the cost of

erasure-resilience is a factor of 𝐷2 in query complexity.

– How much does erasure-resilience affect query complexity of testing monotone

properties of general graphs?

67

Open problems

• Secondary phase transition in the complexity of erasure-resilient connectedness

testing

– Is the change in complexity at 𝛼 = 𝜀/2 inherent?

• Erasure-resilient testing of monotone properties

– Property is monotone if it is preserved under deletion of edges and vertices;

examples: bipartiteness, triangle-freeness

– Observation: In the bounded degree model with max degree 𝐷, the cost of

erasure-resilience is a factor of 𝐷2 in query complexity.

– How much does erasure-resilience affect query complexity of testing monotone

properties of general graphs?

68

Open problems

• Secondary phase transition in the complexity of erasure-resilient connectedness

testing

– Is the change in complexity at 𝛼 = 𝜀/2 inherent?

• Erasure-resilient testing of monotone properties

– Property is monotone if it is preserved under deletion of edges and vertices;

examples: bipartiteness, triangle-freeness

– Observation: In the bounded degree model with max degree 𝐷, the cost of

erasure-resilience is a factor of 𝐷2 in query complexity.

– How much does erasure-resilience affect query complexity of testing monotone

properties of general graphs?

69

Open problems

• Secondary phase transition in the complexity of erasure-resilient connectedness

testing

– Is the change in complexity at 𝛼 = 𝜀/2 inherent?

• Erasure-resilient testing of monotone properties

– Property is monotone if it is preserved under deletion of edges and vertices;

examples: bipartiteness, triangle-freeness

– Observation: In the bounded degree model with max degree 𝐷, the cost of

erasure-resilience is a factor of 𝐷2 in query complexity.

– How much does erasure-resilience affect query complexity of testing monotone

properties of general graphs?

70

Open problems

• Asymmetric vs. symmetric erasures

– In our model, 𝑣 can be erased from 𝐴𝑑𝑗(𝑢) but 𝑢 is present in 𝐴𝑑𝑗(𝑣)

– Does testing become easier if we assume that erasures are made symmetrically?

• Erasure-resilient vs. tolerant testing of graphs

– For 𝛿 < 𝜀, a (𝛿, 𝜀)-tolerant tester [Parnas Ron Rubinfeld 06] for a property 𝑃 must

distinguish, with high probability, between inputs that are 𝛿-close to 𝑃 and

inputs that are 𝜀-far

– Observation [DRTV18]: Tolerant tester for a property can be converted to an

erasure-resilient tester with the same query complexity

• Works by filling in queried erasures with arbitrary values

• Does not work for graphs represented as adjacency lists containing erasures

– What is the relationship between erasure-resilient and tolerant testing in the

general graph model?
71

Open problems

• Asymmetric vs. symmetric erasures

– In our model, 𝑣 can be erased from 𝐴𝑑𝑗(𝑢) but 𝑢 is present in 𝐴𝑑𝑗(𝑣)

– Does testing become easier if we assume that erasures are made symmetrically?

• Erasure-resilient vs. tolerant testing of graphs

– For 𝛿 < 𝜀, a (𝛿, 𝜀)-tolerant tester [Parnas Ron Rubinfeld 06] for a property 𝑃 must

distinguish, with high probability, between inputs that are 𝛿-close to 𝑃 and

inputs that are 𝜀-far

– Observation [DRTV18]: Tolerant tester for a property can be converted to an

erasure-resilient tester with the same query complexity

• Works by filling in queried erasures with arbitrary values

• Does not work for graphs represented as adjacency lists containing erasures

– What is the relationship between erasure-resilient and tolerant testing in the

general graph model?
72

Open problems

• Asymmetric vs. symmetric erasures

– In our model, 𝑣 can be erased from 𝐴𝑑𝑗(𝑢) but 𝑢 is present in 𝐴𝑑𝑗(𝑣)

– Does testing become easier if we assume that erasures are made symmetrically?

• Erasure-resilient vs. tolerant testing of graphs

– For 𝛿 < 𝜀, a (𝛿, 𝜀)-tolerant tester [Parnas Ron Rubinfeld 06] for a property 𝑃 must

distinguish, with high probability, between inputs that are 𝛿-close to 𝑃 and

inputs that are 𝜀-far

– Observation [DRTV18]: Tolerant tester for a property can be converted to an

erasure-resilient tester with the same query complexity

• Works by filling in queried erasures with arbitrary values

• Does not work for graphs represented as adjacency lists containing erasures

– What is the relationship between erasure-resilient and tolerant testing in the

general graph model?
73

Open problems

• Asymmetric vs. symmetric erasures

– In our model, 𝑣 can be erased from 𝐴𝑑𝑗(𝑢) but 𝑢 is present in 𝐴𝑑𝑗(𝑣)

– Does testing become easier if we assume that erasures are made symmetrically?

• Erasure-resilient vs. tolerant testing of graphs

– For 𝛿 < 𝜀, a (𝛿, 𝜀)-tolerant tester [Parnas Ron Rubinfeld 06] for a property 𝑃 must

distinguish, with high probability, between inputs that are 𝛿-close to 𝑃 and

inputs that are 𝜀-far

– Observation [DRTV18]: Tolerant tester for a property can be converted to an

erasure-resilient tester with the same query complexity

• Works by filling in queried erasures with arbitrary values

• Does not work for graphs represented as adjacency lists containing erasures

– What is the relationship between erasure-resilient and tolerant testing in the

general graph model?
74

Open problems

• Asymmetric vs. symmetric erasures

– In our model, 𝑣 can be erased from 𝐴𝑑𝑗(𝑢) but 𝑢 is present in 𝐴𝑑𝑗(𝑣)

– Does testing become easier if we assume that erasures are made symmetrically?

• Erasure-resilient vs. tolerant testing of graphs

– For 𝛿 < 𝜀, a (𝛿, 𝜀)-tolerant tester [Parnas Ron Rubinfeld 06] for a property 𝑃 must

distinguish, with high probability, between inputs that are 𝛿-close to 𝑃 and

inputs that are 𝜀-far

– Observation [DRTV18]: Tolerant tester for a property can be converted to an

erasure-resilient tester with the same query complexity

• Works by filling in queried erasures with arbitrary values

• Does not work for graphs represented as adjacency lists containing erasures

– What is the relationship between erasure-resilient and tolerant testing in the

general graph model?
75

Open problems

• Asymmetric vs. symmetric erasures

– In our model, 𝑣 can be erased from 𝐴𝑑𝑗(𝑢) but 𝑢 is present in 𝐴𝑑𝑗(𝑣)

– Does testing become easier if we assume that erasures are made symmetrically?

• Erasure-resilient vs. tolerant testing of graphs

– For 𝛿 < 𝜀, a (𝛿, 𝜀)-tolerant tester [Parnas Ron Rubinfeld 06] for a property 𝑃 must

distinguish, with high probability, between inputs that are 𝛿-close to 𝑃 and

inputs that are 𝜀-far

– Observation [DRTV18]: Tolerant tester for a property can be converted to an

erasure-resilient tester with the same query complexity

• Works by filling in queried erasures with arbitrary values

• Does not work for graphs represented as adjacency lists containing erasures

– What is the relationship between erasure-resilient and tolerant testing in the

general graph model?
76

Thank you!

