Erasure-Resilient Sublinear-Time Graph Algorithms

אוניברסיטת חיפה

University of Haifa

جامعة حيفا

Amit Levi Ramesh Krishnan S. Pallavoor Sofya Raskhodnikova

Model and investigate sublinear-time algorithms that run on graphs with incomplete information

Sublinear-time algorithms for graphs

• Typical assumption: Query or sample access to graphs

Sublinear-time algorithms for graphs

- Typical assumption: Query or sample access to graphs
- Does not accurately reflect reality in some situations

Sublinear-time algorithms for graphs

- Typical assumption: Query or sample access to graphs
- Does not accurately reflect reality in some situations

• α -erased graph: At most an $\alpha \in (0,1)$ fraction of entries in the adjacency lists is <u>adversarially erased</u>

- α -erased graph: At most an $\alpha \in (0,1)$ fraction of entries in the adjacency lists is <u>adversarially erased</u>
- A completion is a valid graph obtained by filling in the erased entries

Adaptation of erasure-resilient model for testing properties of functions by [Dixit Raskhodnikova Thakurta Varma 18] to the case of graphs

- α -erased graph: At most an $\alpha \in (0,1)$ fraction of entries in the adjacency lists is <u>adversarially erased</u>
- A completion is a valid graph obtained by filling in the erased entries

• Algorithm gets parameter $\alpha \in (0,1)$ and query access to α -erased graph

- Algorithm gets parameter $\alpha \in (0,1)$ and query access to α -erased graph
- Degree query v is answered with deg(v)

- Algorithm gets parameter $\alpha \in (0,1)$ and query access to α -erased graph
- Degree query v is answered with deg(v)
- Neighbor query (v, i) is answered with *i*-th entry in adjacency list of v

- Algorithm gets parameter $\alpha \in (0,1)$ and query access to α -erased graph
- Degree query v is answered with deg(v)
- Neighbor query (v, i) is answered with *i*-th entry in adjacency list of v

• Graph property testing

- Graph property testing
 - Initiated by [Goldreich Goldwasser Ron 98]

- Graph property testing
 - Initiated by [Goldreich Goldwasser Ron 98]
 - Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a generalization of the bounded degree graph model of [Goldreich Ron 02]

• Graph property testing

- Initiated by [Goldreich Goldwasser Ron 98]
- Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a generalization of the bounded degree graph model of [Goldreich Ron 02]
- Testers in general graph model for many properties [PR02, Alon Kaufman Krivelevich Ron 08, Kaufman Krivelevich Ron 12, Kusumoto Yoshida 14, Babu Khoury Newman 16,...]

• Graph property testing

- Initiated by [Goldreich Goldwasser Ron 98]
- Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a generalization of the bounded degree graph model of [Goldreich Ron 02]
- Testers in general graph model for many properties [PR02, Alon Kaufman Krivelevich Ron 08, Kaufman Krivelevich Ron 12, Kusumoto Yoshida 14, Babu Khoury Newman 16,...]
- Estimating graph parameters

• Graph property testing

- Initiated by [Goldreich Goldwasser Ron 98]
- Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a generalization of the bounded degree graph model of [Goldreich Ron 02]
- Testers in general graph model for many properties [PR02, Alon Kaufman Krivelevich Ron 08, Kaufman Krivelevich Ron 12, Kusumoto Yoshida 14, Babu Khoury Newman 16,...]

• Estimating graph parameters

- Sublinear-time algorithms for estimating:
 - Weight of min. spanning tree [Chazelle Rubinfeld Trevisan 05]
 - Number of connected components [CRT05, Berenbrink Krayenhoff Mallmann-Trenn 14]
 - Average degree [Feige 06, Goldreich Ron 08]
 - Moments of degree distribution [Gonen Ron Shavitt 11, Eden Ron Seshadhri 17]
 - and more...

 α -erased graph G*n* vertices; *m* edges $\alpha, \varepsilon \in (0,1)$ α -erasure-resilient ϵ -tester

• In the **special case of no erasures**:

Testing connectedness of graphs

- In the special case of no erasures:
 - Studied by [Goldreich Ron 02, Parnas Ron 02], and [Berman Raskhodnikova Yaroslavtsev 14]
 - Prior best ε -tester [BRY14] has query complexity $O(\left(\frac{1}{\varepsilon \bar{d}}\right)^2)$, where \bar{d} is the average degree

α -erasure-resilient ε -testing connectedness: Our results

Algorithms and lower bounds for α -erasure-resilient ε -testing connectedness for graphs of average degree \overline{d}

α VS. ε	Query complexity
$\alpha \geq \varepsilon$	$\Omega(n)$

α -erasure-resilient ε -testing connectedness: Our results

Algorithms and lower bounds for α -erasure-resilient ε -testing connectedness for graphs of average degree \overline{d}

α VS. ε	Query complexity
$\alpha \geq \varepsilon$	$\Omega(n)$
$\alpha < \varepsilon$ $\varepsilon' = \varepsilon - \alpha$	$O\left(\min\left\{\frac{1}{\left(\varepsilon'\bar{d}\right)^3},\frac{1}{\left(\varepsilon'\right)^2\bar{d}}\right\}\right)$

α -erasure-resilient ε -testing connectedness: Our results

Algorithms and lower bounds for α -erasure-resilient ε -testing connectedness for graphs of average degree \overline{d}

α VS. ε	Query complexity
$\alpha \geq \varepsilon$	$\Omega(n)$
$\alpha < \varepsilon$ $\varepsilon' = \varepsilon - \alpha$	$O\left(\min\left\{\frac{1}{\left(\varepsilon'\bar{d}\right)^3},\frac{1}{\left(\varepsilon'\right)^2\bar{d}}\right\}\right)$
$\alpha < \varepsilon/2$	$O\left(\min\left\{\frac{1}{\left(\varepsilon''\bar{d}\right)^2},\frac{1}{\varepsilon''}\cdot\log\frac{1}{\varepsilon''\bar{d}}\right\}\right)$
$\varepsilon'' = \frac{\varepsilon}{2} - \alpha$	

Erasure-resilient testing connectedness: Our results

- Phase transition:
 - If $\alpha < \varepsilon$, the problem is solvable in time independent of the size of the input graph
 - If $\alpha \geq \varepsilon$, the problem requires linear time to solve

Erasure-resilient testing connectedness: Our results

- Phase transition:
 - If $\alpha < \varepsilon$, the problem is solvable in time independent of the size of the input graph
 - If $\alpha \geq \varepsilon$, the problem requires linear time to solve
- In the special case of no erasures, complexity of our tester is $O\left(\min\{\frac{1}{\varepsilon} \cdot \log\left(\frac{1}{\varepsilon \overline{d}}\right), \left(\frac{1}{\varepsilon \overline{d}}\right)^2\}\right)$, which is better than

the best prior upper bound $O(\left(\frac{1}{\varepsilon \bar{d}}\right)^2)$

Erasure-resilient testing connectedness: Our results

- Phase transition:
 - If $\alpha < \varepsilon$, the problem is solvable in time independent of the size of the input graph
 - If $\alpha \geq \varepsilon$, the problem requires linear time to solve
- In the special case of no erasures, complexity of our tester is $O\left(\min\{\frac{1}{\varepsilon} \cdot \log\left(\frac{1}{\varepsilon \bar{d}}\right), \left(\frac{1}{\varepsilon \bar{d}}\right)^2\}\right), \text{ which is better than}$

the best prior upper bound $O(\left(\frac{1}{\epsilon \bar{d}}\right)^2)$

Our upper bound is tight, as evidenced by a matching lower bound [Pallavoor Raskhodnikova Varma]

• In the **special case of no erasures,** studied by [Feige 06], [Goldreich Ron 08], [Eden Ron Seshadhri 17], [Eden Ron Seshadhri 19]

- In the **special case of no erasures,** studied by [Feige 06], [Goldreich Ron 08], [Eden Ron Seshadhri 17], [Eden Ron Seshadhri 19]
- For $\varepsilon > 0$
 - $(2 + \varepsilon)$ -approximation algorithm that makes $O\left(\frac{\sqrt{n}}{\varepsilon}\right)$ degree queries [F06]

- In the **special case of no erasures,** studied by [Feige 06], [Goldreich Ron 08], [Eden Ron Seshadhri 17], [Eden Ron Seshadhri 19]
- For $\varepsilon > 0$
 - $(2 + \varepsilon)$ -approximation algorithm that makes $O\left(\frac{\sqrt{n}}{\varepsilon}\right)$ degree queries [F06]
 - Need $\Omega(n)$ queries for a 2 o(1)-approximation, if one only has degree queries [F06]

- In the **special case of no erasures,** studied by [Feige 06], [Goldreich Ron 08], [Eden Ron Seshadhri 17], [Eden Ron Seshadhri 19]
- For $\varepsilon > 0$

-
$$(2 + \varepsilon)$$
-approximation algorithm that makes $O\left(\frac{\sqrt{n}}{\varepsilon}\right)$ degree queries [F06]

- Need $\Omega(n)$ queries for a 2 - o(1)-approximation, if one only has degree queries [F06]

-
$$(1 + \varepsilon)$$
-approximation algorithm that makes
 $\tilde{O}\left(\sqrt{n} \cdot poly\left(\frac{1}{\varepsilon}\right)\right)$ degree and neighbor queries [GR08, ERS17, ERS19]

Estimating the average degree: Our results

Estimating average degree of α -erased graphs

Estimating average degree of α -erased graphs

Approximation ratio	Complexity
$1 + \varepsilon + \min(2\alpha, 1)$	$\tilde{O}\left(\sqrt{n} \cdot poly\left(\frac{1}{\varepsilon}\right)\right)$

Estimating average degree of α -erased graphs

Approximation ratio	Complexity
$1 + \varepsilon + \min(2\alpha, 1)$	$\tilde{O}\left(\sqrt{n} \cdot poly\left(\frac{1}{\varepsilon}\right)\right)$
$1+\gamma$ for γ	$\Omega(n)$

Estimating average degree of α -erased graphs

Approximation ratio	Complexity
$1 + \varepsilon + \min(2\alpha, 1)$	$\tilde{O}\left(\sqrt{n} \cdot poly\left(\frac{1}{\varepsilon}\right)\right)$
$1+\gamma$ for γ	$\Omega(n)$

• Interpolation between model with only degree queries, and model with both degree and neighbor queries

Estimating average degree of α -erased graphs

Approximation ratio	Complexity
$1 + \varepsilon + \min(2\alpha, 1)$	$\tilde{O}\left(\sqrt{n} \cdot poly\left(\frac{1}{\varepsilon}\right)\right)$
$1+\gamma$ for γ	$\Omega(n)$

- Interpolation between model with only degree queries, and model with both degree and neighbor queries
 - When $\alpha = 0$, our result identical to [GR08, ERS17, ERS19]

Estimating average degree of α -erased graphs

Approximation ratio	Complexity
$1 + \varepsilon + \min(2\alpha, 1)$	$\tilde{O}\left(\sqrt{n} \cdot poly\left(\frac{1}{\varepsilon}\right)\right)$
$1+\gamma$ for γ	$\Omega(n)$

- Interpolation between model with only degree queries, and model with both degree and neighbor queries
 - When $\alpha = 0$, our result identical to [GR08, ERS17, ERS19]
 - When $\alpha = 1/2$, "have access to only degree queries" and we obtain a $2 + \varepsilon$ approximation like [F06]

• Today: Special case: $\alpha = 0$, or no erasures

44

• Observation 1 [GR02]: If G is ε -far from connected, then G has $\geq \varepsilon m$ CCs

- Observation 1 [GR02]: If G is ε -far from connected, then G has $\geq \varepsilon m$ CCs
- Observation 2 [GR02]: Not many CCs can have "too many vertices" in them \Rightarrow At least $\epsilon m/2$ small CCs (at most $B = 2n/\epsilon m$ vertices)

- Observation 1 [GR02]: If G is ε -far from connected, then G has $\geq \varepsilon m$ CCs
- Observation 2 [GR02]: Not many CCs can have "too many vertices" in them \Rightarrow At least $\epsilon m/2$ small CCs (at most $B = 2n/\epsilon m$ vertices)
- Classify small CCs into log B buckets [GR02]

- Observation 1 [GR02]: If G is ε -far from connected, then G has $\geq \varepsilon m$ CCs
- Observation 2 [GR02]: Not many CCs can have "too many vertices" in them \Rightarrow At least $\epsilon m/2$ small CCs (at most $B = 2n/\epsilon m$ vertices)
- Classify small CCs into log B buckets [GR02]

• Detecting a small CC (Work investment strategy [BRY14])

- Observation 1 [GR02]: If G is ε -far from connected, then G has $\geq \varepsilon m$ CCs
- Observation 2 [GR02]: Not many CCs can have "too many vertices" in them \Rightarrow At least $\epsilon m/2$ small CCs (at most $B = 2n/\epsilon m$ vertices)
- Classify small CCs into log B buckets [GR02]

- Detecting a small CC (Work investment strategy [BRY14])
 - For $i \in [\log B]$, sample $O\left(\frac{B}{2^i}\right)$ uniformly random vertices

- With probability $\geq 2/3$, $\exists i$ such that some vertex in *i*th iteration is in *i*th bucket

Prior best connectedness tester

• Input: $\varepsilon, \overline{d} = 2m/n$, query access to graph G of average degree \overline{d}

Prior best connectedness tester

- Input: $\varepsilon, \bar{d} = 2m/n$, query access to graph G of average degree \bar{d}
- Let $B = \frac{2n}{\varepsilon m} = \frac{4}{\varepsilon \bar{d}}$
- For $i \in [\log B]$
 - Repeat $O\left(\frac{B}{2^i}\right)$ times:
 - Sample a vertex v
 - Run BFS from v until a small CC is found (**reject**) or nbr. query budget is over Query budget: 2^{2i} neighbor queries

Prior best connectedness tester

- Input: $\varepsilon, \overline{d} = 2m/n$, query access to graph G of average degree \overline{d}
- Let $B = \frac{2n}{\varepsilon m} = \frac{4}{\varepsilon \bar{d}}$
- For $i \in [\log B]$
 - Repeat $O\left(\frac{B}{2^i}\right)$ times:
 - Sample a vertex v

Work investment strategy [BRY14]

• With probability $\geq 2/3$, $\exists i$ such that some vertex in *i*th iteration is in bucket with no. of vertices $\in [2^{i-1}, 2^i)$

• Run BFS from v until a small CC is found (**reject**) or nbr. query budget is over Query budget: 2^{2i} neighbor queries

- Input: $\varepsilon, \overline{d} = 2m/n$, query access to graph G of average degree \overline{d}
- Let $B = \frac{2n}{\varepsilon m} = \frac{4}{\varepsilon \bar{d}}$
- For $i \in [\log B]$
 - Repeat $O\left(\frac{B}{2^i}\right)$ times:
 - Sample a vertex v

Work investment strategy [BRY14]

• With probability $\geq 2/3$, $\exists i$ such that some vertex in *i*th iteration is in bucket with no. of vertices $\in [2^{i-1}, 2^i)$

• Run BFS from v until a small CC is found (**reject**) or nbr. query budget is over Query budget: $\frac{2^{2i}}{2} - \deg(v) \cdot 2^i$ neighbor queries

- Input: $\varepsilon, \overline{d} = 2m/n$, query access to graph G of average degree \overline{d}
- Let $B = \frac{2n}{\varepsilon m} = \frac{4}{\varepsilon \bar{d}}$
- For $i \in [\log B]$
 - Repeat $O\left(\frac{B}{2^{i}}\right)$ times:
 - Sample a vertex v

Work investment strategy [BRY14]

• With probability $\geq 2/3$, $\exists i$ such that some vertex in *i*th iteration is in bucket with no. of vertices $\in [2^{i-1}, 2^i)$

• Run BFS from v until a small CC is found (**reject**) or nbr. query budget is over Query budget: $\frac{2^{2i}}{2} - \deg(v) \cdot 2^i$ neighbor queries

Correctness

• BFS query budget is "sufficient" to see CC

- Input: $\varepsilon, \overline{d} = 2m/n$, query access to graph G of average degree \overline{d}
- Let $B = \frac{2n}{\varepsilon m} = \frac{4}{\varepsilon \bar{d}}$
- For $i \in [\log B]$
 - Repeat $O\left(\frac{B}{2^i}\right)$ times:
 - Sample a vertex v

Work investment strategy [BRY14]

• With probability $\geq 2/3$, $\exists i$ such that some vertex in *i*th iteration is in bucket with no. of vertices $\in [2^{i-1}, 2^i)$

• Run BFS from v until a small CC is found (**reject**) or nbr. query budget is over Query budget: $\frac{2^{2i}}{2} - \deg(v) \cdot 2^i$ neighbor queries

Correctness

- BFS query budget is "sufficient" to see CC
- For CC with vertex set C and edge set E_C

$$\frac{1}{|C|} \sum_{v \in C} \deg(v) \cdot |C| = 2|E_C|$$

- Input: $\varepsilon, \overline{d} = 2m/n$, query access to graph G of average degree \overline{d}
- Let $B = \frac{2n}{\varepsilon m} = \frac{4}{\varepsilon \bar{d}}$
- For $i \in [\log B]$
 - Repeat $O\left(\frac{B}{2^i}\right)$ times:
 - Sample a vertex v

Work investment strategy [BRY14]

• With probability $\geq 2/3$, $\exists i$ such that some vertex in *i*th iteration is in bucket with no. of vertices $\in [2^{i-1}, 2^i)$

• Run BFS from v until a small CC is found (**reject**) or nbr. query budget is over Query budget: $\frac{2^{2i}}{2} - \deg(v) \cdot 2^i$ neighbor queries

Correctness

- BFS query budget is "sufficient" to see CC
- For CC with vertex set *C* and edge set *E_C*

$$\frac{1}{|C|} \sum_{v \in C} \deg(v) \cdot |C| = 2|E_C|$$

Expected query complexity

$$\sum_{i \in [\log B]} O\left(\frac{B}{2^{i}}\right) \cdot 2^{i} \cdot E_{v \in V}[\deg(v)]$$

$$= O(B\bar{d}\log B) = O\left(\frac{1}{\varepsilon} \cdot \log(\frac{1}{\varepsilon\bar{d}})\right)$$

Connectedness testing without erasures: What we get

Can ε -test connectedness with $O(\min\left\{\frac{1}{\varepsilon \bar{d}}, \log\left(\frac{1}{\varepsilon \bar{d}}\right), \frac{1}{(\varepsilon \bar{d})^2}\right\})$ queries

Can
$$\varepsilon$$
-test connectedness with $O(\min\left\{\frac{1}{\varepsilon \bar{d}} \cdot \log\left(\frac{1}{\varepsilon \bar{d}}\right), \frac{1}{(\varepsilon \bar{d})^2}\right\})$ queries

• Improvement in complexity when $\bar{d} \lesssim \sqrt{\frac{1}{\epsilon}}$, i.e., when average degree is small

Can ε -test connectedness with $O(\min\left\{\frac{1}{\varepsilon \bar{d}}, \log\left(\frac{1}{\varepsilon \bar{d}}\right), \frac{1}{(\varepsilon \bar{d})^2}\right\})$ queries

- Improvement in complexity when $\bar{d} \lesssim \sqrt{\frac{1}{\epsilon}}$, i.e., when average degree is small
- Several large graphs of interest are sparse and have low average degree

- For $\alpha < \varepsilon/2$
 - Several erasure-free small CCs in a graph that is far from connected
 - Generalization of the strategy in the case without erasures

- For $\alpha < \varepsilon/2$
 - Several erasure-free small CCs in a graph that is far from connected
 - Generalization of the strategy in the case without erasures
- For $\alpha \in \left[\frac{\varepsilon}{2}, \varepsilon\right)$
 - In a graph that is far from connected, there need not be any CC without erasures

- For $\alpha < \varepsilon/2$
 - Several erasure-free small CCs in a graph that is far from connected
 - Generalization of the strategy in the case without erasures
- For $\alpha \in \left[\frac{\varepsilon}{2}, \varepsilon\right)$
 - In a graph that is far from connected, there need not be any CC without erasures
 - Find a special subgraph that forms a CC in every completion of the input

- For $\alpha < \varepsilon/2$
 - Several erasure-free small CCs in a graph that is far from connected
 - Generalization of the strategy in the case without erasures
- For $\alpha \in \left[\frac{\varepsilon}{2}, \varepsilon\right)$
 - In a graph that is far from connected, there need not be any CC without erasures
 - Find a special subgraph that forms a CC in every completion of the input
 - Larger query complexity

- Secondary phase transition in the complexity of erasure-resilient connectedness testing
 - Is the change in complexity at $\alpha = \epsilon/2$ inherent?

- Secondary phase transition in the complexity of erasure-resilient connectedness testing
 - Is the change in complexity at $\alpha = \varepsilon/2$ inherent?
- Erasure-resilient testing of monotone properties
 - Property is monotone if it is preserved under deletion of edges and vertices; examples: bipartiteness, triangle-freeness

- Secondary phase transition in the complexity of erasure-resilient connectedness testing
 - Is the change in complexity at $\alpha = \varepsilon/2$ inherent?
- Erasure-resilient testing of monotone properties
 - Property is monotone if it is preserved under deletion of edges and vertices; examples: bipartiteness, triangle-freeness
 - Observation: In the bounded degree model with max degree D, the cost of erasure-resilience is a factor of D^2 in query complexity.

- Secondary phase transition in the complexity of erasure-resilient connectedness testing
 - Is the change in complexity at $\alpha = \varepsilon/2$ inherent?
- Erasure-resilient testing of monotone properties
 - Property is monotone if it is preserved under deletion of edges and vertices; examples: bipartiteness, triangle-freeness
 - Observation: In the bounded degree model with max degree D, the cost of erasure-resilience is a factor of D^2 in query complexity.
 - How much does erasure-resilience affect query complexity of testing monotone properties of general graphs?

- Asymmetric vs. symmetric erasures
 - In our model, v can be erased from Adj(u) but u is present in Adj(v)

- Asymmetric vs. symmetric erasures
 - In our model, v can be erased from Adj(u) but u is present in Adj(v)
 - Does testing become easier if we assume that erasures are made symmetrically?
- Asymmetric vs. symmetric erasures
 - In our model, v can be erased from Adj(u) but u is present in Adj(v)
 - Does testing become easier if we assume that erasures are made symmetrically?
- Erasure-resilient vs. tolerant testing of graphs
 - For $\delta < \varepsilon$, a (δ, ε) -tolerant tester [Parnas Ron Rubinfeld 06] for a property P must distinguish, with high probability, between inputs that are δ -close to P and inputs that are ε -far

- Asymmetric vs. symmetric erasures
 - In our model, v can be erased from Adj(u) but u is present in Adj(v)
 - Does testing become easier if we assume that erasures are made symmetrically?
- Erasure-resilient vs. tolerant testing of graphs
 - For $\delta < \varepsilon$, a (δ, ε) -tolerant tester [Parnas Ron Rubinfeld 06] for a property P must distinguish, with high probability, between inputs that are δ -close to P and inputs that are ε -far
 - Observation [DRTV18]: Tolerant tester for a property can be converted to an erasure-resilient tester with the same query complexity

- Asymmetric vs. symmetric erasures
 - In our model, v can be erased from Adj(u) but u is present in Adj(v)
 - Does testing become easier if we assume that erasures are made symmetrically?
- Erasure-resilient vs. tolerant testing of graphs
 - For $\delta < \varepsilon$, a (δ, ε) -tolerant tester [Parnas Ron Rubinfeld 06] for a property P must distinguish, with high probability, between inputs that are δ -close to P and inputs that are ε -far
 - Observation [DRTV18]: Tolerant tester for a property can be converted to an erasure-resilient tester with the same query complexity
 - Works by filling in queried erasures with arbitrary values
 - Does not work for graphs represented as adjacency lists containing erasures

- Asymmetric vs. symmetric erasures
 - In our model, v can be erased from Adj(u) but u is present in Adj(v)
 - Does testing become easier if we assume that erasures are made symmetrically?
- Erasure-resilient vs. tolerant testing of graphs
 - For $\delta < \varepsilon$, a (δ, ε) -tolerant tester [Parnas Ron Rubinfeld 06] for a property P must distinguish, with high probability, between inputs that are δ -close to P and inputs that are ε -far
 - Observation [DRTV18]: Tolerant tester for a property can be converted to an erasure-resilient tester with the same query complexity
 - Works by filling in queried erasures with arbitrary values
 - Does not work for graphs represented as adjacency lists containing erasures
 - What is the relationship between erasure-resilient and tolerant testing in the general graph model?
 Thank you!