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Goal

Model and investigate sublinear-time
algorithms that run on graphs with incomplete
information
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Vertices are users, and Friendships hidden

edges are friendships for privacy
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Adaptation of erasure-resilient model for
testing properties of functions by

[Dixit Raskhodnikova Thakurta Varma 18]

to the case of graphs

 a-erased graph: At most an a € (0,1) fraction of entries in the adjacency lists is

adversarially erased

« A completion is a valid graph obtained by filling in the erased entries
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Erasure-resilient graph algorithms

deg(v) v Adjacency list of v
4 1+——2 (3|7 | 1
1 27— 1
5 n——|314|1L]|8]12

 Algorithm gets parameter a € (0,1) and query access to a-erased graph
« Degree query v is answered with deg(v)

« Neighbor query (v, 1) is answered with i-th entry in adjacency list of v



Erasure-resilient graph algorithms

deg(v)
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Performance of algorithms analyzed in
the worst-case over all a-erased graphs

 Algorithm gets parameter a € (0,1) and query access to a-erased graph
« Degree query v is answered with deg(v)
« Neighbor query (v, 1) is answered with i-th entry in adjacency list of v

Q



Computational tasks that we study

 Graph property testing

LS



Computational tasks that we study

 Graph property testing
— Initiated by [Goldreich Goldwasser Ron 98]

15



Computational tasks that we study

 Graph property testing
— Initiated by [Goldreich Goldwasser Ron 98]

— Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a
generalization of the bounded degree graph model of [Goldreich Ron 02]

16



Computational tasks that we study

 Graph property testing
— Initiated by [Goldreich Goldwasser Ron 98]
— Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a
generalization of the bounded degree graph model of [Goldreich Ron 02]
— Testers in general graph model for many properties [PR02, Alon Kaufman Krivelevich Ron 08,
Kaufman Krivelevich Ron 12, Kusumoto Yoshida 14, Babu Khoury Newman 16,...]

7.



Computational tasks that we study

 Graph property testing
— Initiated by [Goldreich Goldwasser Ron 98]

— Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a
generalization of the bounded degree graph model of [Goldreich Ron 02]

— Testers in general graph model for many properties [PR02, Alon Kaufman Krivelevich Ron 08,
Kaufman Krivelevich Ron 12, Kusumoto Yoshida 14, Babu Khoury Newman 16,...]

- Estimating graph parameters

8



Computational tasks that we study

 Graph property testing
— Initiated by [Goldreich Goldwasser Ron 98]

— Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a
generalization of the bounded degree graph model of [Goldreich Ron 02]

— Testers in general graph model for many properties [PR02, Alon Kaufman Krivelevich Ron 08,
Kaufman Krivelevich Ron 12, Kusumoto Yoshida 14, Babu Khoury Newman 16,...]

- Estimating graph parameters
— Sublinear-time algorithms for estimating:
« Weight of min. spanning tree [Chazelle Rubinfeld Trevisan 05]
Number of connected components [CRTO5, Berenbrink Krayenhoff Mallmann-Trenn 14]
Average degree [Feige 06, Goldreich Ron 08]
Moments of degree distribution [Gonen Ron Shavitt 11, Eden Ron Seshadhri 17]
and more...
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Erasure-resilient testing connectedness of graphs

m
completion of

- Accept with
G that is ptw
bability > 2/3
I connected probaviity = 2/

a-erased graph G
n vertices, m edges

¥y
» a-erasure-resilient e-tester

a, € € (0,1)

Reject with
probability = 2/3

Can be generalized to any property

g-far from
connected




Testing connectedness of graphs

» In the special case of no erasures:
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Testing connectedness of graphs

» In the special case of no erasures:

* Studied by [Goldreich Ron 02, Parnas Ron 02], and
[Berman Raskhodnikova Yaroslavtsev 14]

2 —
* Prior best e-tester [BRY14] has query complexity 0((;1&) ), where d is the average
degree
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a-erasure-resilient -testing connectedness: Our results

Algorithms and lower bounds for a-erasure-resilient e-testing connectedness for
graphs of average degree d

aVs. € Query complexity

a= e Q(n)
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Algorithms and lower bounds for a-erasure-resilient e-testing connectedness for
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a-erasure-resilient -testing connectedness: Our results

Algorithms and lower bounds for a-erasure-resilient e-testing connectedness for
graphs of average degree d

aVs. € Query complexity

a= e Q(n)
X< O | min >
e =¢—a (ed) (8') d
Z S &) 0<min{ 5,77 * 10g 1})
" g” c"'d
o (£"d)
' =-—a
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Erasure-resilient testing connectedness: Our results

Phase transition:
— If a < g, the problem is solvable in time independent of the size of the input
graph
— It @ = g, the problem requires linear time to solve
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Phase transition:
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« In the special case of no erasures, complexity of our tester is
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Erasure-resilient testing connectedness: Our results

Phase transition:
— If a < g, the problem is solvable in time independent of the size of the input
graph
— It @ = g, the problem requires linear time to solve

« In the special case of no erasures, complexity of our tester is
.1 1 12 L
0 (mm{; - log (5) , (—_) }), which is better than

ed

. 1 2
the best prior upper bound 0((5) )

— Our upper bound is tight, as evidenced by a matching lower bound [Pallavoor Raskhodnikova
Varma]
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Estimating the average degree
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e Fore> 0

- (2 + &)-approximation algorithm that makes

0 (g) degree queries [Fos]

— Need Q(n) queries for a 2 — o(1)-approximation,
it one only has degree queries [Fog]
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Estimating the average degree

« In the special case of no erasures, studied by
[Feige 06], [Goldreich Ron 08], [Eden Ron Seshadhri 17], [Eden Ron Seshadhri 19]

e Fore> 0

- (2 + &)-approximation algorithm that makes

0 (@) degree queries [Fos]

— Need Q(n) queries for a 2 — o(1)-approximation,
it one only has degree queries [Fog]

- (1 + &)-approximation algorithm that makes

~

0 (\/ﬁ - poly G)) degree and neighbor gueries [GRo8, ERS17, ERS19]

ab



Estimating the average degree: Our results

Estimating average degree of a-erased graphs
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Estimating average degree of a-erased graphs

Approximation ratio Complexity
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q8:



Estimating the average degree: Our results

Estimating average degree of a-erased graphs

Approximation ratio Complexity
1+ &+ min(2a,1) _ 1
Of+vn- poly( )

£
l+yfory<a Q(n)

* Interpolation between model with only degree queries, and model with
both degree and neighbor queries
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Estimating average degree of a-erased graphs

Approximation ratio Complexity
14+ &+ min(2a,1) _ 1
O|n-poly (E)

l1+yfory<a Q(n)

* Interpolation between model with only degree queries, and model with
both degree and neighbor queries

— When a = 0, our result identical to [GR08, ERS17, ERS19]
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Estimating the average degree: Our results

Estimating average degree of a-erased graphs

Approximation ratio Complexity
14+ &+ min(2a,1) _ 1
O|n-poly (E)

l+yfory<a Q(n)

* Interpolation between model with only degree queries, and model with
both degree and neighbor queries
— When a = 0, our result identical to [GR08, ERS17, ERS19]

- When a = 1/2, "have access to only degree queries” and we obtain a 2 + ¢
approximation like [Foe]
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Erasure-resilient connectedness tester for small a

 Today: Special case: @ = 0, or no erasures
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« Today: Special case: @ = 0, or no erasures /\
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Erasure-resilient connectedness tester for small a

« Today: Special case: @ = 0, or no erasures

Graph G

* Requirement: n vertices; m edges

e,d=2m/n I 1

Tester

» Basic Algorithmic Idea [GRro2]

/Reject only if we are certain that G is not connected

Observation: If G is e-far from connected, then G has
> em connected components (CCs)

o

~

J

m Accept with

probability
connected | "5 5 /3

Reject with
' probability

\/ >2/3

> & - m edges to be added

to make G connected -



Erasure-resilient connectedness tester for small a

« Today: Special case: @ = 0, or no erasures

Graph G

* Requirement: n vertices; m edges

e,d=2m/n | ‘

= Tester

» Basic Algorithmic Idea [GRro2]

/Reject only if we are certain that G is not connected

Observation: If G is e-far from connected, then G has
> em connected components (CCs)

Qjea: Detect CCs via BFSs from random vertices

~

/

connected

\ 4

> & - m edges to be added
to make G connected

Accept with
probability
> 2/3

Reject with
probability

- =>2/3
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Detecting graphs that are far from connected

* QObservation 1 [GRro21: If G is e-far from connected, then G has > em CCs
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Detecting graphs that are far from connected

e QObservation 1[Gro21: If G is e-far from connected, then G has > em CCs

« Observation 2 [Gro2): Not many CCs can have "too many vertices” in them = At
least em/2 small CCs (at most B = 2n/em vertices)
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Detecting graphs that are far from connected

« Observation 1[Gro21: If G is e-far from connected, then G has > em CCs

« Observation 2 [Gro2): Not many CCs can have "too many vertices” in them = At
least em/2 small CCs (at most B = 2n/em vertices)

« Classify small CCs into log B buckets [GRo2]

O{g}@

@ Og

OO

4>

No. of
vertices € [1, 2)

NoO. of
vertices € [2,4) ...

No. of
vertices € [2t71,2Y)....

No. of
vertices € [B/2, B]

a0
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« Observation 1[Gro21: If G is e-far from connected, then G has > em CCs

« Observation 2 [Gro2]: Not many CCs can have "too many vertices” in them = At
least em/2 small CCs (at most B = 2n/em vertices)

« Classify small CCs into log B buckets [GRo2]
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Detecting graphs that are far from connected

« Observation 1[GrRo21: If G is e-far from connected, then G has > em CCs

« Observation 2 [Gro2]: Not many CCs can have "too many vertices” in them = At
least em/2 small CCs (at most B = 2n/em vertices)

« Classify small CCs into log B buckets [GRo2]

°5 o ® Op

OO

4>

No. of No. of
vertices € [1,2) |vertices € [2,4) ...

No. of
vertices € [2t71,2Y)....

No. of
vertices € [B/2, B]

« Detecting a small CC (Work investment strategy [BRY14])

— For i € [log B], sample O (5) uniformly random vertices

— With probability = 2/3, 3i such that some vertex in ith iteration is in ith bucket
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— Repeat O (%) times:
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« Run BFS from v until a small CC is found (reject) or nbr. query budget is over
Query budget; 22 neighbor queries
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. Input: &, d = 2m/n, query access to graph G of average degree d

.« letB=2=2 Work investment strategy [BRY14]

eEm ed . . . T
+ Fori € [log B] . W|th .proba.b|l|ty > 2/3, 3i such that. some vertex in ith
iteration is in bucket with no. of vertices € [2171,2%)

— Repeat O (g) times:
« Sample a vertex v

« Run BFS from v until a small CC is found (reject) or nbr. query budget is over
Query budget; 22 neighbor queries
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Our connectedness tester

. Input: &, d = 2m/n, query access to graph G of average degree d

.« letB=2=2 Work investment strategy [BRY14]

eEm ed . . . T
+ Fori € [log B] . W|th .proba.b|l|ty > 2/3, 3i such that. some vertex in ith
iteration is in bucket with no. of vertices € [2171,2%)

— Repeat O (g) times:
« Sample a vertex v

« Run BFS from v until a small CC is found (reject) or nbr. query budget is over
Query budget: 22t deg(v) - 2 neighbor queries
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iteration is in bucket with no. of vertices € [2171,2%)

— Repeat O (g) times:
« Sample a vertex v

« Run BFS from v until a small CC is found (reject) or nbr. query budget is over
Query budget: 22t deg(v) - 2 neighbor queries

Correctness
« BFS query budget is “sufficient” to see CC




Our connectedness tester

. Input: &, d = 2m/n, query access to graph G of average degree d

.+ letB=2=2 Work investment strategy [BRY14]

em ed . - . C .
+ Fori € [log B] . W|th .proba.b|l|ty > 2/3, 3i such that. some vertex in ith
iteration is in bucket with no. of vertices € [2171,2%)

— Repeat O (g) times:
« Sample a vertex v

« Run BFS from v until a small CC is found (reject) or nbr. query budget is over
Query budget: 22t deg(v) - 2 neighbor queries

Correctness
« BFS query budget is “sufficient” to see CC
« For CC with vertex set € and edge set E¢

1
ﬁz deg(v) - €| = 2|Eq|
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Our connectedness tester

. Input: &, d = 2m/n, query access to graph G of average degree d

.+ letB=2=2 Work investment strategy [BRY14]

em ed . - . I
+ Fori € [log B] . W|th .proba.b|l|ty > 2/3, 3i such that. some vertex in ith
iteration is in bucket with no. of vertices € [2171,2%)

— Repeat O (%) times:
« Sample a vertex v

« Run BFS from v until a small CC is found (reject) or nbr. query budget is over
Query budget: 22t deg(v) - 2 neighbor queries

Correctness Expected query complexity
« BFS query budget is “sufficient” to see CC Z 0 (B

—].92t.
« For CC with vertex set C and edge set E. zi) 2" Eyey|deg(v)]

1 i€[log B]
1 el — _ 1 1
C] Z deg(v) - [C] = 2|Ec| = 0(BdlogB) = 0(_ - log(—))

veC
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Connectedness testing without erasures: What we get

Can &-test connectedness with O(min E - log (:a) , (861_1)2}) gueries
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Connectedness testing without erasures: What we get

Can &-test connectedness with O(min E - log (:a) , (8;)2}) gueries

. : - 1 . .
« Improvement in complexity when d < \E .e., when average degree is small
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Connectedness testing without erasures: What we get

Can &-test connectedness with O(min & - log (gla) , (8;)2}) gueries

. : - 1 . .
« Improvement in complexity when d < \E .e., when average degree is small

« Several large graphs of interest are sparse and have low average degree
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Erasure-resilient connectedness tester

e Fora<e/2
— Several erasure-free small CCs in a graph that is far from connected
— Generalization of the strategy in the case without erasures
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Erasure-resilient connectedness tester

e Fora<e/2
— Several erasure-free small CCs in a graph that is far from connected
— Generalization of the strategy in the case without erasures

e Fora € E,e)

— In a graph that is far from connected, there need not be any CC without
erasures
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Erasure-resilient connectedness tester

e Fora<e/2
— Several erasure-free small CCs in a graph that is far from connected
— Generalization of the strategy in the case without erasures

e Fora € E,s)

— In a graph that is far from connected, there need not be any CC without
erasures

— Find a special subgraph that forms a CC in every completion of the input
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Erasure-resilient connectedness tester

e Fora<e/2
— Several erasure-free small CCs in a graph that is far from connected
— Generalization of the strategy in the case without erasures

e Fora € E,s)
— In a graph that is far from connected, there need not be any CC without
erasures

— Find a special subgraph that forms a CC in every completion of the input
— Larger query complexity
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Open problems

« Secondary phase transition in the complexity of erasure-resilient connectedness
testing

— s the change in complexity at @ = £/2 inherent?
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Open problems

« Secondary phase transition in the complexity of erasure-resilient connectedness
testing

— s the change in complexity at @ = £/2 inherent?
« Erasure-resilient testing of monotone properties

— Property is monotone if it is preserved under deletion of edges and vertices,;
examples: bipartiteness, triangle-freeness
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— s the change in complexity at @ = £/2 inherent?
« Erasure-resilient testing of monotone properties

— Property is monotone if it is preserved under deletion of edges and vertices,;
examples: bipartiteness, triangle-freeness

— Observation: In the bounded degree model with max degree D, the cost of
erasure-resilience is a factor of D% in query complexity.
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Open problems

« Secondary phase transition in the complexity of erasure-resilient connectedness
testing

— s the change in complexity at @ = £/2 inherent?
« Erasure-resilient testing of monotone properties

— Property is monotone if it is preserved under deletion of edges and vertices,;
examples: bipartiteness, triangle-freeness

— Observation: In the bounded degree model with max degree D, the cost of
erasure-resilience is a factor of D% in query complexity.

— How much does erasure-resilience affect query complexity of testing monotone
properties of general graphs?
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Open problems

*  Asymmetric vs. symmetric erasures
— In our model, v can be erased from Adj(u) but u is present in Adj(v)
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— In our model, v can be erased from Adj(u) but u is present in Adj(v)

— Does testing become easier if we assume that erasures are made symmetrically?
« Erasure-resilient vs. tolerant testing of graphs

— For 6 < ¢, a (6, ¢)-tolerant tester [Parnas Ron Rubinfeld 06] Tor a property P must
distinguish, with high probability, between inputs that are §-close to P and
inputs that are e-far

3



Open problems

*  Asymmetric vs. symmetric erasures

— In our model, v can be erased from Adj(u) but u is present in Adj(v)

— Does testing become easier if we assume that erasures are made symmetrically?
« Erasure-resilient vs. tolerant testing of graphs
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erasure-resilient tester with the same query complexity

R



Open problems

*  Asymmetric vs. symmetric erasures

— In our model, v can be erased from Adj(u) but u is present in Adj(v)

— Does testing become easier if we assume that erasures are made symmetrically?
« Erasure-resilient vs. tolerant testing of graphs

— For 6 < ¢, a (6, ¢)-tolerant tester [Parnas Ron Rubinfeld 06] Tor a property P must
distinguish, with high probability, between inputs that are §-close to P and
inputs that are e-far

— Observation [DrRTv18]: Tolerant tester for a property can be converted to an
erasure-resilient tester with the same query complexity
« Works by filling in queried erasures with arbitrary values
« Does not work for graphs represented as adjacency lists containing erasures
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Open problems

*  Asymmetric vs. symmetric erasures

— In our model, v can be erased from Adj(u) but u is present in Adj(v)

— Does testing become easier if we assume that erasures are made symmetrically?
« Erasure-resilient vs. tolerant testing of graphs

— For 6 < ¢, a (6, ¢)-tolerant tester [Parnas Ron Rubinfeld 06] Tor a property P must
distinguish, with high probability, between inputs that are §-close to P and
inputs that are e-far

— Observation [DrRTv18]: Tolerant tester for a property can be converted to an
erasure-resilient tester with the same query complexity

« Works by filling in queried erasures with arbitrary values
« Does not work for graphs represented as adjacency lists containing erasures

— What is the relationship between erasure-resilient and tolerant testing in the
general graph model? Thank you'
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