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Goal

2

Model and investigate sublinear-time 

algorithms that run on graphs with incomplete 

information



Sublinear-time algorithms for graphs

• Typical assumption: Query or sample access to graphs

• Does not accurately reflect reality in some situations
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Social Network

Vertices are users, and 

edges are friendships
Friendships hidden 

for privacy



Partially erased graphs: Representation

• 𝜶-erased graph: At most an 𝛼 ∈ (0,1) fraction of entries in the adjacency lists is 

adversarially erased

• A completion is a valid graph that agrees on all the nonerased entries
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testing properties of functions by 
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Erasure-resilient graph algorithms

• Algorithm gets parameter 𝛼 ∈ (0,1) and query access to 𝛼-erased graph

• Degree query 𝑣 is answered with deg(𝑣)
• Neighbor query (𝑣, 𝑖) is answered with 𝑖-th entry in 

adjacency list of 𝑣
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Performance of algorithms analyzed in 

the worst-case over all 𝛼-erased graphs
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Computational tasks that we study

• Graph property testing

– Initiated by [Goldreich Goldwasser Ron 98]

– Our model is a generalization of general graph model of [Parnas Ron 02] which is in turn a 

generalization of the bounded degree graph model of [Goldreich Ron 02]

– Testers in general graph model for many properties [PR02, Alon Kaufman Krivelevich Ron 08, 

Kaufman Krivelevich Ron 12, Kusumoto Yoshida 14, Babu Khoury Newman 16,…]

• Estimating graph parameters

– Sublinear-time algorithms for estimating:

• Weight of min. spanning tree [Chazelle Rubinfeld Trevisan 05]

• Number of connected components [CRT05, Berenbrink Krayenhoff Mallmann-Trenn 14]

• Average degree [Feige 06, Goldreich Ron 08]

• Moments of degree distribution [Gonen Ron Shavitt 11, Eden Ron Seshadhri 17]

• and more…
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Erasure-resilient testing connectedness of graphs

20

𝛼-erasure-resilient 𝜀-tester

𝛼-erased graph 𝐺
𝑛 vertices; 𝑚 edges

𝛼, 𝜀 ∈ (0,1)



Erasure-resilient testing connectedness of graphs
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Erasure-resilient testing connectedness of graphs
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Testing connectedness of graphs

• In the special case of no erasures:

• Studied by [Goldreich Ron 02, Parnas Ron 02], and 

[Berman Raskhodnikova Yaroslavtsev 14]

• Prior best tester [BRY14] has query complexity 𝑂(
1

𝜀 ത𝑑

2
), where ҧ𝑑 is the average 

degree 
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𝜶-erasure-resilient 𝜺-testing connectedness: Our results

𝛼 vs. 𝜀 Query complexity

𝛼 ≥ 𝜀 Ω(𝑛)
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Algorithms and lower bounds for 𝜶-erasure-resilient 𝜺-testing connectedness for 

graphs of average degree ҧ𝑑
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Algorithms and lower bounds for 𝜶-erasure-resilient 𝜺-testing connectedness for 

graphs of average degree ҧ𝑑



• Phase transition:

– If 𝛼 < 𝜀, the problem is solvable in time independent of the size of the input 

graph

– If 𝛼 ≥ 𝜀, the problem requires linear time to solve

• In the special case of no erasures, complexity of our tester is 𝑂
1

𝜀
⋅ log

1

𝜀 ത𝑑
, 

which is better than the best known upper bound 𝑂(
1

𝜀 ത𝑑

2
)

• Our algorithms always accept connected graphs, i.e., have one-sided error

Erasure-resilient testing connectedness: Our results
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Estimating the average degree

• In the special case of no erasures, studied by 
[Feige 06], [Goldreich Ron 08], [Eden Ron Seshadhri 17], [Eden Ron Seshadhri 19]

• For 𝜀 > 0

– 2 + 𝜀 -approximation algorithm that makes 

𝑂
𝑛

𝜀
degree queries [F06]

– Need Ω(𝑛) queries for a 2-approximation, 

if one only has degree queries [F06]

– (1 + 𝜀)-approximation algorithm that makes 

෨𝑂 𝑛 ⋅ 𝑝𝑜𝑙𝑦
1

𝜀
degree and neighbor queries [GR08, ERS17, ERS19]
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Estimating the average degree: Our results

Estimating average degree of 𝛼-erased graphs

• Interpolation between model with only degree queries, and model with 

both degree and neighbor queries

– When 𝛼 = 0, our result identical to [GR08, ERS17, ERS19]

– When 𝛼 = 1, “have access to only degree queries” and we obtain a 2 + 𝜀
approximation like [F06]
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Estimating average degree of 𝛼-erased graphs

• Interpolation between model with only degree queries, and model with 

both degree and neighbor queries
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Erasure-resilient connectedness tester for small 𝜶

• Today: Special case: 𝜶 = 𝟎, or no erasures

• Requirement: 

• Basic Algorithmic Idea [GR02]
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Erasure-resilient connectedness tester for small 𝜶

• Today: Special case: 𝜶 = 𝟎, or no erasures

• Requirement: 

• Basic Algorithmic Idea [GR02]

46

Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

is -far 

from 

connected

is 

connected

𝜀

Reject only if we are certain that 𝐺 is not connected

Observation: If 𝐺 is 𝜀-far from connected, then 𝐺 has 

≥ 𝜀𝑚 connected components (CCs)

Idea: Detect CCs via BFSs from random vertices
≥ 𝜀 ⋅ 𝑚 edges to be added 

to make 𝐺 connected

𝜀, ҧ𝑑 = 2𝑚/𝑛
Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

is -far 

from 

connected

is 

connected

𝜀Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

Accept with 

probability

≥ 2/3

Reject with 

probability

≥ 2/3



Erasure-resilient connectedness tester for small 𝜶

• Today: Special case: 𝜶 = 𝟎, or no erasures

• Requirement: 

• Basic Algorithmic Idea [GR02]

47

Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

is -far 

from 

connected

is 

connected

𝜀

Reject only if we are certain that 𝐺 is not connected

Observation: If 𝐺 is 𝜀-far from connected, then 𝐺 has 

≥ 𝜀𝑚 connected components (CCs)

Idea: Detect CCs via BFSs from random vertices
≥ 𝜀 ⋅ 𝑚 edges to be added 

to make 𝐺 connected

𝜀, ҧ𝑑 = 2𝑚/𝑛
Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

is -far 

from 

connected

is 

connected

𝜀Tester

Graph 𝐺
𝑛 vertices; 𝑚 edges

𝜀, ҧ𝑑 = 2𝑚/𝑛

Accept with 

probability

≥ 2/3

Reject with 

probability

≥ 2/3



Detecting graphs that are far from connected

• Observation 1 [GR02]: If 𝐺 is 𝜀-far from connected, then 𝐺 has ≥ 𝜀𝑚 CCs

• Observation 2: Not many CCs can have “too many vertices” in them ⟹ At least 

𝜀𝑚/2 small CCs (at most 𝐵 = 2𝑛/𝜀𝑚 vertices)

• Classify small CCs into log 𝐵 buckets

• Detecting a small CC (Work investment strategy [Berman Raskhodnikova Yaroslavtsev 14])

– For 𝑖 ∈ [log𝐵], sample 𝑂
𝐵

2𝑖
uniformly random vertices

– With probability ≥ 2/3, ∃𝑖 such that some vertex in 𝑖th iteration is in 𝑖th bucket
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Prior best connectedness tester

• Input: 𝜀, ҧ𝑑 = 2𝑚/𝑛, query access to graph 𝐺 of average degree ҧ𝑑

• Let 𝐵 =
2𝑛

𝜀𝑚
=

4

𝜀 ത𝑑

• For 𝑖 ∈ [log 𝐵]

– Repeat 𝑂
𝐵

2𝑖
times: 

• Sample a vertex 𝑣

• Run BFS from 𝑣 until a small CC is found or nbr. query budget is exhausted

Query budget: 22𝑖 deg(𝑣) ⋅ 2𝑖 neighbor queries
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Correctness

• BFS query budget is “sufficient” to see CC

• For CC with vertex set 𝐶 and edge set 𝐸𝐶
1

|𝐶|
෍

𝑣∈𝐶

deg(𝑣) ⋅ 𝐶 = 2|𝐸𝐶|

Expected query complexity

෍

𝑖∈[log 𝐵]

𝑂
𝐵

2𝑖
⋅ 2𝑖 ⋅ Ε𝑣∈𝑉 deg 𝑣

= 𝑂(𝐵 ҧ𝑑 log𝐵) = 𝑂(
1

𝜀
⋅ log(

1

𝜀 ҧ𝑑
))

Work investment strategy [BRY14]

• With probability ≥ 2/3, ∃𝑖 such that some vertex in 𝑖th
iteration is in bucket with no. of vertices ∈ [2𝑖−1, 2𝑖)



Connectedness testing without erasures: What we get

• Improvement in complexity when ҧ𝑑 ≲
1

𝜀
, i.e., when average degree is small

• Several large graphs of interest are sparse and have low average degree
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Erasure-resilient connectedness tester

• For 𝛼 < 𝜀/2

– Several erasure-free small CCs in a graph that is far from connected

– Generalization of the strategy in the case without erasures

• For 𝛼 ∈
𝜀

2
, 𝜀

– In a graph that is far from connected, there need not be any CC without 

erasures

– Find a special subgraph that forms a CC in every completion of the input

– Larger query complexity
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Open problems

• Secondary phase transition in the complexity of erasure-resilient connectedness 

testing

– Is the change in complexity at 𝛼 = 𝜀/2 inherent?

• Erasure-resilient testing of monotone properties

– Property is monotone if it is preserved under deletion of edges and vertices; 

examples: bipartiteness, triangle-freeness 

– Observation: In the bounded degree model with max degree 𝐷, the cost of 

erasure-resilience is a factor of 𝐷2 in query complexity.

– How much does erasure-resilience affect query complexity of testing monotone 

properties of general graphs?
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Open problems

• Asymmetric vs. symmetric erasures

– In our model, 𝑣 can be erased from 𝐴𝑑𝑗(𝑢) but 𝑢 is present in 𝐴𝑑𝑗(𝑣)

– Does testing become easier if we assume that erasures are made symmetrically?

• Erasure-resilient vs. tolerant testing of graphs

– For 𝛿 < 𝜀, a (𝛿, 𝜀)-tolerant tester [Parnas Ron Rubinfeld 06] for a property 𝑃 must 

distinguish, with high probability, between inputs that are 𝛿-close to 𝑃 and 

inputs that are 𝜀-far

– Observation [DRTV18]: Tolerant tester for a property can be converted to an 

erasure-resilient tester with the same query complexity

• Works by filling in queried erasures with arbitrary values

• Does not work for graphs represented as adjacency lists containing erasures

– What is the relationship between erasure-resilient and tolerant testing in the 

general graph model?
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– Observation [DRTV18]: Tolerant tester for a property can be converted to an 

erasure-resilient tester with the same query complexity

• Works by filling in queried erasures with arbitrary values

• Does not work for graphs represented as adjacency lists containing erasures

– What is the relationship between erasure-resilient and tolerant testing in the 

general graph model?
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Thank you!


