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MODELS AND ALGORITHMS



Algorithms for massive datasets

■ Cannot read the entire dataset 

– Sublinear-time algorithms

■ Performance Metrics

– Speed

– Memory efficiency

– Accuracy

– Resilience to faults in data
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Faults in datasets

■ Wrong Entries (Errors)

– sublinear algorithms

– machine learning 

– error detection and correction

■ Missing Entries (Erasures) : Our Focus
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Occurrence of erasures: Reasons

Data collection

Hidden friend 

relations on social 

networks

Accidental deletionAdversarial deletion
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Large dataset with 
erasures: Access
■ Algorithm queries the 

oracle for dataset entries

■ Algorithm does not know in 
advance what's erased

■ Oracle returns: 

– the nonerased entry, or

– special symbol ⊥ if queried 
point is erased

Functions,

Codewords,

Graphs

Oracle

Algorithm

Interaction

Source, CC BY-SA
Source, CC BY-SA
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Overview of our contributions

■ Erasure-Resilient Testing
[Dixit, Raskhodnikova, 
Thakurta & Varma '18, 
Kalemaj, Raskhodnikova & 
Varma]

■ Local Erasure-Decoding
[Raskhodnikova, Ron-Zewi & 
Varma '19]

– Application to property 
testing

■ Erasure-Resilient 
Sublinear-time 
Algorithms for Graphs
[Levi, Pallavoor, 
Raskhodnikova & Varma]

■ Sensitivity of Graph 
Algorithms to Missing 
Edges 
[Varma & Yoshida]

Functions Codewords Graphs
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Outline

■ Erasures in property testing

■ Erasures in local decoding

■ Average sensitivity of graph algorithms

– Definition

– Main results

■ Average sensitivity of approximate maximum matching

■ Current and future directions
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Decision problem

■ Can't solve nontrivial 
decision problems without 
full access to input

■ Need a notion of 
approximation

Universe

YES

NO

Accept, w.p.

≥ 2/3

Reject, w.p.

≥ 2/3
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Property testing 
problem
[Rubinfeld & Sudan '96,
Goldreich, Goldwasser & Ron '98]

■ 𝜺-far from property

– ≥ 𝜀 fraction of values to be 
changed to satisfy property

Universe

𝜀

Property

𝜀-far from 

the property

𝜀-tester

Reject, w.p.

≥ 2/3

Accept, w.p.

≥ 2/3
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(Error) Tolerant 
testing problem
[Parnas, Ron & Rubinfeld '06]

■ 𝜶-close to property

– ≤ 𝛼 fraction values can be 
changed to satisfy property

Universe

Property

𝜀-far 

from 

property

𝛼

𝜀

≤ 𝜶 fraction of input is wrong

(𝛼, 𝜀)-tolerant tester

Accept, w.p.

≥ 2/3

Reject, w.p.

≥ 2/3
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Erasure-resilient 
testing problem
[Dixit, Raskhodnikova, Thakurta & 
Varma '16]

■ Worst-case erasures, made 
before tester queries

■ Completion

– Fill-in values at erased points

Universe

Can be 

completed 

to satisfy 

property

Every 

completion 

is 𝜀-far

𝜀

≤ 𝜶 fraction of input is erased

(𝛼, 𝜀)-erasure-resilient 

tester

Accept, w.p.

≥ 2/3

Reject, w.p.

≥ 2/3
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Relationship between models

Testing

Erasure-resilient testing

Tolerant testing
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Erasure-resilient testing: Our results

[Dixit, Raskhodnikova, Thakurta, Varma 18]

■ Blackbox transformations

■ Efficient erasure-resilient testers for other properties

■ Separation of standard and erasure-resilient testing
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Our blackbox transformations

■ Makes certain classes of uniform testers erasure-resilient

■ Works by simply repeating the original tester

■ Applies to:

– Monotonicity over general partial orders [FLNRRS02]

– Convexity of black and white images [BMR15]

– Boolean functions having at most 𝑘 alternations in values

Query complexity of (𝜶, 𝜺)-erasure-resilient tester equal to 𝜺-tester 

for 𝛼 ∈ (0,1), 𝜀 ∈ (0,1)
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Main properties that we study

■ Monotonicity, Lipschitz properties, and convexity of real-
valued functions

■ Widely studied in property testing
[EKKRV00,DGLRRS99,LR01,FLNRRS02,PRR03,AC04,F04,HK04,BRW05,PRR06,ACCL07,BGJRW12,BCGM10,
BBM11, AJMS12, DJRT13, JR13, 
CS13a,CS13b,BlRY14,CST14,BB15,CDJS15,CDST15,BB16,CS16,KMS18,BCS18,PRV18,B18,CS19, …]

■ Optimal testers for these properties are not uniform testers

– Our blackbox transformation does not apply
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Optimal erasure-resilient testers

■ For functions 𝑓: 𝑛 → ℝ

– Monotonicity 

– Lipschitz properties

– Convexity

■ For functions 𝑓: 𝑛 𝑑 → ℝ

– Monotonicity

– Lipschitz properties

Query complexity of 𝜶, 𝜺 -

erasure-resilient tester equal 

to 𝜺-tester 

for 𝛼 ∈ (0,1), 𝜀 ∈ (0,1)

Query complexity of (𝜶, 𝜺)-
erasure-resilient tester equal 

to 𝜺-tester 

for 𝜀 ∈ (0,1), 𝛼 = 𝑂(𝜀/𝑑)

17



Separation of erasure-resilient and 
standard testing

Theorem: There exists a property 𝑃 on inputs of size 𝑛 such 

that:

• testing with constant number of queries

• every erasure-resilient tester needs ෩Ω(𝑛) queries
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Relationship between models

Standard Testing

Erasure-resilient testing

Tolerant testing

Some containments are strict:

• [Fischer Fortnow 05]: standard vs. tolerant

• [Dixit Raskhodnikova Thakurta Varma 18]: standard vs. 

erasure-resilient 
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Outline

■ Erasures in property testing

■ Erasures in local decoding

■ Average sensitivity of graph algorithms

– Definition

– Main results

■ Average sensitivity of approximate maximum matching

■ Current and future directions
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■ Error correcting code 𝐶: Σ𝑛 → Σ𝑁, for 𝑁 > 𝑛

■ Decoding: Recover 𝑥 from 𝑤
if not too many errors or erasures

■ Local decoder: Sublinear-time algorithm for decoding

Message 𝑥

Local decoding

Encoder Channel𝐶(𝑥)
Received 

word 𝑤
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Local decoding is extensively studied and has many applications
[GL89,BFLS91,BLR93,GLRSW91,GS92,PS94,BIKR93,KT00,STV01,Y08,E12,DGY11,BET10…]



Local decoding and property testing
[Raskhodnikova, Ron-Zewi, Varma 19]
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Our Results

■ Initiate study of erasures in the context of local decoding

■ Erasures are easier than errors in local decoding

■ Separation between erasure-resilient and (error) tolerant 
testing



Separation of erasure-resilient and 
tolerant testing
[Raskhodnikova, Ron-Zewi, Varma 19]
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Theorem: There exists a property 𝑃 on inputs of size 𝑛 such 

that:

• erasure-resilient testing with constant number of queries

• every (error) tolerant tester needs 𝑛Ω(1) queries



Relationship between models

Testing

Erasure-resilient testing

Tolerant testing

All containments are strict:

• [Fischer Fortnow 05]: standard vs. tolerant

• [Dixit Raskhodnikova Thakurta Varma 18]: standard vs. erasure-resilient 

• [Raskhodnikova Ron-Zewi Varma 19]: erasure-resilient vs. tolerant
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Outline

■ Erasures in property testing

■ Erasures in local decoding

■ Average sensitivity of graph algorithms

– Definition

– Main results

■ Average sensitivity of approximate maximum matching

■ Current and future directions
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Motivation

■ Want to solve optimization problems on large graphs

– Maximum matching, min. vertex cover, min cut, …

■ Cannot assume that we get access to the true graph

– A fraction of the edges , say 1%, might be missing

■ Need algorithms that are robust to missing edges
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Towards average sensitivity
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■ Want to solve problem on 𝐺; only have access to 𝐺′.

■ Similar to robustness notions in differential privacy [Dwork, 

Kenthapadi, McSherry, Mironov & Naor 06, Dwork, McSherry, Nissim & Smith 06],
learning theory [Bosquet & Elisseef 02],….

Algorithm 𝐴

𝐴(𝐺′)

𝐴(𝐺)

𝐺′ = 𝑉, 𝐸′ ; 𝐸′ ⊆ 𝐸

𝐺 = (𝑉, 𝐸)

≈
Algorithm 𝐴



Average sensitivity: Deterministic 
algorithm [Varma & Yoshida]

■ 𝐴 : deterministic graph algorithm outputting a set of edges 
or vertices

– e.g., 𝐴 outputs a maximum matching 

■ 𝑠𝐴: 𝒢 → ℝ, where 𝒢 is the universe of input graphs
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Average sensitivity of deterministic algorithm 𝐴

𝑠𝐴 𝐺 = avg𝑒∈𝐸 [Ham 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]



■ 𝑠𝐴: 𝒢 → ℝ, where 𝒢 is the universe of input graphs

■ Algorithm with low average sensitivity: stable-on-average

Average sensitivity: Randomized 
algorithm [Varma & Yoshida]
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Average sensitivity of randomized algorithm 𝐴

𝑠𝐴 𝐺 = avg𝑒∈𝐸 [Dist 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]

Output 

distributions



Average sensitivity: 
Randomized 
algorithms

30

Average sensitivity of 

randomized algorithm A,  

𝑠𝐴 𝐺 , is defined as:

avg𝑒∈𝐸 [Dist 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]

𝑒 ∈ 𝐸

Optimal cost of moving the probability 

mass from one distribution to the other

Distribution 

𝐴(𝐺)

Distribution 

𝐴(𝐺 − 𝑒)

cost(𝑝, 𝑥 → 𝑦) = 𝑝 ⋅ Ham(𝑥, 𝑦)

𝑥

𝑦



Average sensitivity: 
Randomized 
algorithms
[Varma & Yoshida]
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Average sensitivity of 

randomized algorithm A,  

𝑠𝐴 𝐺 , is defined as:

avg𝑒∈𝐸 [d𝐸𝑀 𝐴 𝐺 , 𝐴 𝐺 − 𝑒 ]

𝑒 ∈ 𝐸

Optimal cost of moving the probability 

mass from one distribution to the other

Distribution 

𝐴(𝐺)

Distribution 

𝐴(𝐺 − 𝑒)

Earth mover's distance

Can extend definition to 

multiple missing edges



Locality implies low 
average sensitivity

32

𝑞 𝐺 ≜ 𝔼𝑒∈𝐸[#queries by 𝐿]

Algorithm 𝐴𝐺 𝐴(𝐺)

Local 

simulator 𝐿

1 if 𝑒 ∈ 𝐴(𝐺)

0, otherwise

𝑒 ∈ 𝐸

Graph 𝐺

Local computation algorithm

[Rubinfeld, Tamir, Vardi, Xie '11]

Our Theorem:

𝑠𝐴 𝐺 ≤ 𝑞(𝐺)



Locality implies low 
average sensitivity
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𝑞 𝐺 ≜ 𝔼𝜋,𝑒∈𝐸[#queries by 𝐿]

Algorithm 𝐴
𝐺

𝐴𝜋(𝐺)

Local 

simulator 𝐿

1 if 𝑒 ∈ 𝐴𝜋(𝐺)

0, otherwise

𝑒 ∈ 𝐸

Graph 𝐺

Local computation algorithm

[Rubinfeld, Tamir, Vardi, Xie '11]

Our Theorem:

𝑠𝐴 𝐺 ≤ 𝑞(𝐺)

𝜋

𝜋

𝜋 is the random string



Main results

■ Approximation algorithms with low average sensitivity for

– Minimum spanning tree 

– Global min cut

– Maximum matching 

– Minimum vertex cover

■ Lower bounds on average sensitivity for 

– Global min cut algorithms

– 2-coloring algorithms
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Outline

■ Erasures in property testing

■ Erasures in local decoding

■ Average sensitivity of graph algorithms

– Properties of the definition

– Main results

■ Average sensitivity of approximate maximum matching

■ Current and open directions
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Average sensitivity of approximating the 
maximum matching: Our results

36

Upper Bound: There exists a polynomial time matching 

algorithm with

Approximation ratio : 
1

2
− 𝑜(1)

Average sensitivity : ෨𝑂(OPT0.75)

Lower Bound: Every exact maximum matching algorithm has 

average sensitivity Ω(OPT).

OPT: size of 

max matching



Average sensitivity of exact maximum 
matching
■ Even cycle 𝐶𝑛

– Exactly two max. matchings

– For every edge 𝑒, the graph 𝐶𝑛 − 𝑒 has exactly 
one max. matching

■ Deterministic max. matching algorithm 𝐴

– For 
𝑛

2
edges 𝑒, outputs 𝐴(𝐶𝑛) and 𝐴(𝐶𝑛 − 𝑒)

differ in Ω(OPT) edges

– Average sensitivity of 𝐴 is Ω(OPT)

37

Average sensitivity of 

exact max. matching 

is Ω(OPT).



Upper bound: Starting point
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On input 𝐺:

• As long as possible, add a fresh uniformly random 

edge of 𝐺 into the matching 𝑀
• Output 𝑀

Local algorithm for 𝐴 with query complexity ≤ Δ 𝐺 [Yoshida, Yamamoto & Ito '12]

[Parnas & Ron '07; Nguyen & Onak '08; Onak, Ron, Rosen & Rubinfeld '12]

Approximation ratio : 1/2
Average sensitivity ≤ Δ(𝐺)

Locality implies low sensitivity

Randomized greedy matching algorithm 𝐴



Improving average sensitivity of 𝐴

Average sensitivity can be high when max. degree is large

Let 𝜀 ∈ (0,1/2)

≤ 𝜀 ⋅ OPT vertices removed ⇒ Approximation ratio is 1/2 − 𝜀
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Average sensitivity of 𝐴 ≤ Δ(𝐺)

Idea: Remove all vertices of degree ≥
𝑚

𝜀⋅OPT
+ Lap(𝜆), and then run 𝐴

Average sensitivity of vertex-removal step can be large

𝑚: Number of edges



Improving average sensitivity of 𝐴

Average sensitivity can be high when max. degree is large

Let 𝜀 ∈ (0,1/2) and 𝜆 = Θ(
𝑚

𝜀⋅OPT
⋅

1

ln 𝑛
)

W.h.p. ≤ 𝜀 ⋅ OPT vertices removed ⇒ W.h.p. Approximation 
ratio is 1/2 − 𝜀
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Average sensitivity of 𝐴 ≤ Δ(𝐺)

Idea: Remove all vertices of degree ≥
𝑚

𝜀⋅OPT
+ Lap(𝜆), and then run 𝐴



Degree-reduction matching algorithm
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On input 𝐺:

• Sample 𝐿 ∼
𝑚

𝜀⋅OPT
+ Lap(

𝑚

𝜀⋅OPT
⋅

1

ln 𝑛
)

• Run 𝐴 on the graph after removing vertices of 

degree at least 𝐿

Algorithm 𝐴′

Approximation ratio  : 1/2 − 𝜀

Average sensitivity : O
𝑚

𝜀⋅OPT

3
Sequential Composition
[Varma & Yoshida]



Lexicographically smallest matching

■ Fix an ordering on vertex pairs

■ Algorithm 𝐴′′ outputs the lexicographically smallest 
maximum matching
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Our Theorem: Average sensitivity of 𝐴′′ ≤ OPT2/𝑚



Final Algorithm 𝐵
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Degree-reduction algorithm 𝐴′

s𝐴′ 𝐺 = O
𝑚

𝜀 ⋅ OPT

3
Lex. smallest matching algorithm 𝐴′′

𝑠𝐴′′ 𝐺 =
OPT2

𝑚

Approximation ratio  : 1/2 − 𝜀

Average sensitivity : O
OPT
𝜀

0.75

Parallel Composition
[Varma & Yoshida]

On input G

• Run 𝐴′ with probability 
𝑠
𝐴′′

𝐺

𝑠𝐴′′ 𝐺 +𝑠𝐴′ 𝐺
and run 𝐴′′ with remaining probability



What we saw
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Theorem: Matching algorithm with

Approximation ratio : 1/2 − 𝑜(1)
Average sensitivity : ෨𝑂(OPT0.75)



Outline

■ Erasures in property testing

■ Erasures in local decoding

■ Average sensitivity of graph algorithms

– Properties of the definition

– Main results

■ Average sensitivity of approximate maximum matching

■ Current and future directions
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Current and future directions

■ Erasure-resilience in other models of sublinear algorithms

■ Erasure-resilient testing under different erasure models

– Ongoing work with Sofya Raskhodnikova and Iden Kalemaj

■ Average sensitivity bounds for other optimization problems
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Current and future directions

■ Erasure-resilience in other models of sublinear algorithms

■ Erasure-resilient testing under different erasure models

– Ongoing work with Sofya Raskhodnikova and Iden Kalemaj

■ Average sensitivity bounds for other optimization problems

Thank You!
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