
ANALYZING MASSIVE DATASETS
WITH MISSING ENTRIES

Nithin Varma

Thesis Advisor: Sofya Raskhodnikova

1

MODELS AND ALGORITHMS

Algorithms for massive datasets

■ Cannot read the entire dataset

– Sublinear-time algorithms

■ Performance Metrics

– Speed

– Memory efficiency

– Accuracy

– Resilience to faults in data

2

Faults in datasets

■ Wrong Entries (Errors)

– sublinear algorithms

– machine learning

– error detection and correction

■ Missing Entries (Erasures) : Our Focus

3

Occurrence of erasures: Reasons

Data collection

Hidden friend

relations on social

networks

Accidental deletionAdversarial deletion

4

Large dataset with
erasures: Access
■ Algorithm queries the

oracle for dataset entries

■ Algorithm does not know in
advance what's erased

■ Oracle returns:

– the nonerased entry, or

– special symbol ⊥ if queried
point is erased

Functions,

Codewords,

Graphs

Oracle

Algorithm

Interaction

Source, CC BY-SA
Source, CC BY-SA
5

https://commons.wikimedia.org/wiki/File:Ei-lock.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://es.m.wikipedia.org/wiki/Archivo:Database-152091_960_720.png
https://creativecommons.org/licenses/by-sa/3.0/

Overview of our contributions

■ Erasure-Resilient Testing
[Dixit, Raskhodnikova,
Thakurta & Varma '18,
Kalemaj, Raskhodnikova &
Varma]

■ Local Erasure-Decoding
[Raskhodnikova, Ron-Zewi &
Varma '19]

– Application to property
testing

■ Erasure-Resilient
Sublinear-time
Algorithms for Graphs
[Levi, Pallavoor,
Raskhodnikova & Varma]

■ Sensitivity of Graph
Algorithms to Missing
Edges
[Varma & Yoshida]

Functions Codewords Graphs

6

Outline

■ Erasures in property testing

■ Erasures in local decoding

■ Average sensitivity of graph algorithms

– Definition

– Main results

■ Average sensitivity of approximate maximum matching

■ Current and future directions

7

Outline

■ Erasures in property testing

■ Erasures in local decoding

■ Average sensitivity of graph algorithms

– Definition

– Main results

■ Average sensitivity of approximate maximum matching

■ Current and future directions

8

Decision problem

■ Can't solve nontrivial
decision problems without
full access to input

■ Need a notion of
approximation

Universe

YES

NO

Accept, w.p.

≥ 2/3

Reject, w.p.

≥ 2/3

9

Property testing
problem
[Rubinfeld & Sudan '96,
Goldreich, Goldwasser & Ron '98]

■ 𝜺-far from property

– ≥ 𝜀 fraction of values to be
changed to satisfy property

Universe

𝜀

Property

𝜀-far from

the property

𝜀-tester

Reject, w.p.

≥ 2/3

Accept, w.p.

≥ 2/3

10

(Error) Tolerant
testing problem
[Parnas, Ron & Rubinfeld '06]

■ 𝜶-close to property

– ≤ 𝛼 fraction values can be
changed to satisfy property

Universe

Property

𝜀-far

from

property

𝛼

𝜀

≤ 𝜶 fraction of input is wrong

(𝛼, 𝜀)-tolerant tester

Accept, w.p.

≥ 2/3

Reject, w.p.

≥ 2/3

11

Erasure-resilient
testing problem
[Dixit, Raskhodnikova, Thakurta &
Varma '16]

■ Worst-case erasures, made
before tester queries

■ Completion

– Fill-in values at erased points

Universe

Can be

completed

to satisfy

property

Every

completion

is 𝜀-far

𝜀

≤ 𝜶 fraction of input is erased

(𝛼, 𝜀)-erasure-resilient

tester

Accept, w.p.

≥ 2/3

Reject, w.p.

≥ 2/3

12

Relationship between models

Testing

Erasure-resilient testing

Tolerant testing

13

Erasure-resilient testing: Our results

[Dixit, Raskhodnikova, Thakurta, Varma 18]

■ Blackbox transformations

■ Efficient erasure-resilient testers for other properties

■ Separation of standard and erasure-resilient testing

14

Our blackbox transformations

■ Makes certain classes of uniform testers erasure-resilient

■ Works by simply repeating the original tester

■ Applies to:

– Monotonicity over general partial orders [FLNRRS02]

– Convexity of black and white images [BMR15]

– Boolean functions having at most 𝑘 alternations in values

Query complexity of (𝜶, 𝜺)-erasure-resilient tester equal to 𝜺-tester

for 𝛼 ∈ (0,1), 𝜀 ∈ (0,1)

15

Main properties that we study

■ Monotonicity, Lipschitz properties, and convexity of real-
valued functions

■ Widely studied in property testing
[EKKRV00,DGLRRS99,LR01,FLNRRS02,PRR03,AC04,F04,HK04,BRW05,PRR06,ACCL07,BGJRW12,BCGM10,
BBM11, AJMS12, DJRT13, JR13,
CS13a,CS13b,BlRY14,CST14,BB15,CDJS15,CDST15,BB16,CS16,KMS18,BCS18,PRV18,B18,CS19, …]

■ Optimal testers for these properties are not uniform testers

– Our blackbox transformation does not apply

16

Optimal erasure-resilient testers

■ For functions 𝑓: 𝑛 → ℝ

– Monotonicity

– Lipschitz properties

– Convexity

■ For functions 𝑓: 𝑛 𝑑 → ℝ

– Monotonicity

– Lipschitz properties

Query complexity of 𝜶, 𝜺 -

erasure-resilient tester equal

to 𝜺-tester

for 𝛼 ∈ (0,1), 𝜀 ∈ (0,1)

Query complexity of (𝜶, 𝜺)-
erasure-resilient tester equal

to 𝜺-tester

for 𝜀 ∈ (0,1), 𝛼 = 𝑂(𝜀/𝑑)

17

Separation of erasure-resilient and
standard testing

Theorem: There exists a property 𝑃 on inputs of size 𝑛 such

that:

• testing with constant number of queries

• every erasure-resilient tester needs ෩Ω(𝑛) queries

18

Relationship between models

Standard Testing

Erasure-resilient testing

Tolerant testing

Some containments are strict:

• [Fischer Fortnow 05]: standard vs. tolerant

• [Dixit Raskhodnikova Thakurta Varma 18]: standard vs.

erasure-resilient

19

Outline

■ Erasures in property testing

■ Erasures in local decoding

■ Average sensitivity of graph algorithms

– Definition

– Main results

■ Average sensitivity of approximate maximum matching

■ Current and future directions

20

■ Error correcting code 𝐶: Σ𝑛 → Σ𝑁, for 𝑁 > 𝑛

■ Decoding: Recover 𝑥 from 𝑤
if not too many errors or erasures

■ Local decoder: Sublinear-time algorithm for decoding

Message 𝑥

Local decoding

Encoder Channel𝐶(𝑥)
Received

word 𝑤

21

Local decoding is extensively studied and has many applications
[GL89,BFLS91,BLR93,GLRSW91,GS92,PS94,BIKR93,KT00,STV01,Y08,E12,DGY11,BET10…]

Local decoding and property testing
[Raskhodnikova, Ron-Zewi, Varma 19]

22

Our Results

■ Initiate study of erasures in the context of local decoding

■ Erasures are easier than errors in local decoding

■ Separation between erasure-resilient and (error) tolerant
testing

Separation of erasure-resilient and
tolerant testing
[Raskhodnikova, Ron-Zewi, Varma 19]

23

Theorem: There exists a property 𝑃 on inputs of size 𝑛 such

that:

• erasure-resilient testing with constant number of queries

• every (error) tolerant tester needs 𝑛Ω(1) queries

Relationship between models

Testing

Erasure-resilient testing

Tolerant testing

All containments are strict:

• [Fischer Fortnow 05]: standard vs. tolerant

• [Dixit Raskhodnikova Thakurta Varma 18]: standard vs. erasure-resilient

• [Raskhodnikova Ron-Zewi Varma 19]: erasure-resilient vs. tolerant

24

Outline

■ Erasures in property testing

■ Erasures in local decoding

■ Average sensitivity of graph algorithms

– Definition

– Main results

■ Average sensitivity of approximate maximum matching

■ Current and future directions

25

Motivation

■ Want to solve optimization problems on large graphs

– Maximum matching, min. vertex cover, min cut, …

■ Cannot assume that we get access to the true graph

– A fraction of the edges , say 1%, might be missing

■ Need algorithms that are robust to missing edges

26

Towards average sensitivity

27

■ Want to solve problem on 𝐺; only have access to 𝐺′.

■ Similar to robustness notions in differential privacy [Dwork,

Kenthapadi, McSherry, Mironov & Naor 06, Dwork, McSherry, Nissim & Smith 06],
learning theory [Bosquet & Elisseef 02],….

Algorithm 𝐴

𝐴(𝐺′)

𝐴(𝐺)

𝐺′ = 𝑉, 𝐸′ ; 𝐸′ ⊆ 𝐸

𝐺 = (𝑉, 𝐸)

≈
Algorithm 𝐴

Average sensitivity: Deterministic
algorithm [Varma & Yoshida]

■ 𝐴 : deterministic graph algorithm outputting a set of edges
or vertices

– e.g., 𝐴 outputs a maximum matching

■ 𝑠𝐴: 𝒢 → ℝ, where 𝒢 is the universe of input graphs

28

Average sensitivity of deterministic algorithm 𝐴

𝑠𝐴 𝐺 = avg𝑒∈𝐸 [Ham 𝐴 𝐺 , 𝐴 𝐺 − 𝑒]

■ 𝑠𝐴: 𝒢 → ℝ, where 𝒢 is the universe of input graphs

■ Algorithm with low average sensitivity: stable-on-average

Average sensitivity: Randomized
algorithm [Varma & Yoshida]

29

Average sensitivity of randomized algorithm 𝐴

𝑠𝐴 𝐺 = avg𝑒∈𝐸 [Dist 𝐴 𝐺 , 𝐴 𝐺 − 𝑒]

Output

distributions

Average sensitivity:
Randomized
algorithms

30

Average sensitivity of

randomized algorithm A,

𝑠𝐴 𝐺 , is defined as:

avg𝑒∈𝐸 [Dist 𝐴 𝐺 , 𝐴 𝐺 − 𝑒]

𝑒 ∈ 𝐸

Optimal cost of moving the probability

mass from one distribution to the other

Distribution

𝐴(𝐺)

Distribution

𝐴(𝐺 − 𝑒)

cost(𝑝, 𝑥 → 𝑦) = 𝑝 ⋅ Ham(𝑥, 𝑦)

𝑥

𝑦

Average sensitivity:
Randomized
algorithms
[Varma & Yoshida]

31

Average sensitivity of

randomized algorithm A,

𝑠𝐴 𝐺 , is defined as:

avg𝑒∈𝐸 [d𝐸𝑀 𝐴 𝐺 , 𝐴 𝐺 − 𝑒]

𝑒 ∈ 𝐸

Optimal cost of moving the probability

mass from one distribution to the other

Distribution

𝐴(𝐺)

Distribution

𝐴(𝐺 − 𝑒)

Earth mover's distance

Can extend definition to

multiple missing edges

Locality implies low
average sensitivity

32

𝑞 𝐺 ≜ 𝔼𝑒∈𝐸[#queries by 𝐿]

Algorithm 𝐴𝐺 𝐴(𝐺)

Local

simulator 𝐿

1 if 𝑒 ∈ 𝐴(𝐺)

0, otherwise

𝑒 ∈ 𝐸

Graph 𝐺

Local computation algorithm

[Rubinfeld, Tamir, Vardi, Xie '11]

Our Theorem:

𝑠𝐴 𝐺 ≤ 𝑞(𝐺)

Locality implies low
average sensitivity

33

𝑞 𝐺 ≜ 𝔼𝜋,𝑒∈𝐸[#queries by 𝐿]

Algorithm 𝐴
𝐺

𝐴𝜋(𝐺)

Local

simulator 𝐿

1 if 𝑒 ∈ 𝐴𝜋(𝐺)

0, otherwise

𝑒 ∈ 𝐸

Graph 𝐺

Local computation algorithm

[Rubinfeld, Tamir, Vardi, Xie '11]

Our Theorem:

𝑠𝐴 𝐺 ≤ 𝑞(𝐺)

𝜋

𝜋

𝜋 is the random string

Main results

■ Approximation algorithms with low average sensitivity for

– Minimum spanning tree

– Global min cut

– Maximum matching

– Minimum vertex cover

■ Lower bounds on average sensitivity for

– Global min cut algorithms

– 2-coloring algorithms

34

Outline

■ Erasures in property testing

■ Erasures in local decoding

■ Average sensitivity of graph algorithms

– Properties of the definition

– Main results

■ Average sensitivity of approximate maximum matching

■ Current and open directions

35

Average sensitivity of approximating the
maximum matching: Our results

36

Upper Bound: There exists a polynomial time matching

algorithm with

Approximation ratio :
1

2
− 𝑜(1)

Average sensitivity : ෨𝑂(OPT0.75)

Lower Bound: Every exact maximum matching algorithm has

average sensitivity Ω(OPT).

OPT: size of

max matching

Average sensitivity of exact maximum
matching
■ Even cycle 𝐶𝑛

– Exactly two max. matchings

– For every edge 𝑒, the graph 𝐶𝑛 − 𝑒 has exactly
one max. matching

■ Deterministic max. matching algorithm 𝐴

– For
𝑛

2
edges 𝑒, outputs 𝐴(𝐶𝑛) and 𝐴(𝐶𝑛 − 𝑒)

differ in Ω(OPT) edges

– Average sensitivity of 𝐴 is Ω(OPT)

37

Average sensitivity of

exact max. matching

is Ω(OPT).

Upper bound: Starting point

38

On input 𝐺:

• As long as possible, add a fresh uniformly random

edge of 𝐺 into the matching 𝑀
• Output 𝑀

Local algorithm for 𝐴 with query complexity ≤ Δ 𝐺 [Yoshida, Yamamoto & Ito '12]

[Parnas & Ron '07; Nguyen & Onak '08; Onak, Ron, Rosen & Rubinfeld '12]

Approximation ratio : 1/2
Average sensitivity ≤ Δ(𝐺)

Locality implies low sensitivity

Randomized greedy matching algorithm 𝐴

Improving average sensitivity of 𝐴

Average sensitivity can be high when max. degree is large

Let 𝜀 ∈ (0,1/2)

≤ 𝜀 ⋅ OPT vertices removed ⇒ Approximation ratio is 1/2 − 𝜀

39

Average sensitivity of 𝐴 ≤ Δ(𝐺)

Idea: Remove all vertices of degree ≥
𝑚

𝜀⋅OPT
+ Lap(𝜆), and then run 𝐴

Average sensitivity of vertex-removal step can be large

𝑚: Number of edges

Improving average sensitivity of 𝐴

Average sensitivity can be high when max. degree is large

Let 𝜀 ∈ (0,1/2) and 𝜆 = Θ(
𝑚

𝜀⋅OPT
⋅

1

ln 𝑛
)

W.h.p. ≤ 𝜀 ⋅ OPT vertices removed ⇒ W.h.p. Approximation
ratio is 1/2 − 𝜀

40

Average sensitivity of 𝐴 ≤ Δ(𝐺)

Idea: Remove all vertices of degree ≥
𝑚

𝜀⋅OPT
+ Lap(𝜆), and then run 𝐴

Degree-reduction matching algorithm

41

On input 𝐺:

• Sample 𝐿 ∼
𝑚

𝜀⋅OPT
+ Lap(

𝑚

𝜀⋅OPT
⋅

1

ln 𝑛
)

• Run 𝐴 on the graph after removing vertices of

degree at least 𝐿

Algorithm 𝐴′

Approximation ratio : 1/2 − 𝜀

Average sensitivity : O
𝑚

𝜀⋅OPT

3
Sequential Composition
[Varma & Yoshida]

Lexicographically smallest matching

■ Fix an ordering on vertex pairs

■ Algorithm 𝐴′′ outputs the lexicographically smallest
maximum matching

42

Our Theorem: Average sensitivity of 𝐴′′ ≤ OPT2/𝑚

Final Algorithm 𝐵

43

Degree-reduction algorithm 𝐴′

s𝐴′ 𝐺 = O
𝑚

𝜀 ⋅ OPT

3
Lex. smallest matching algorithm 𝐴′′

𝑠𝐴′′ 𝐺 =
OPT2

𝑚

Approximation ratio : 1/2 − 𝜀

Average sensitivity : O
OPT
𝜀

0.75

Parallel Composition
[Varma & Yoshida]

On input G

• Run 𝐴′ with probability
𝑠
𝐴′′

𝐺

𝑠𝐴′′ 𝐺 +𝑠𝐴′ 𝐺
and run 𝐴′′ with remaining probability

What we saw

44

Theorem: Matching algorithm with

Approximation ratio : 1/2 − 𝑜(1)
Average sensitivity : ෨𝑂(OPT0.75)

Outline

■ Erasures in property testing

■ Erasures in local decoding

■ Average sensitivity of graph algorithms

– Properties of the definition

– Main results

■ Average sensitivity of approximate maximum matching

■ Current and future directions

45

Current and future directions

■ Erasure-resilience in other models of sublinear algorithms

■ Erasure-resilient testing under different erasure models

– Ongoing work with Sofya Raskhodnikova and Iden Kalemaj

■ Average sensitivity bounds for other optimization problems

46

Thanks to my Wonderful Collaborators

Kashyap Dixit Iden Kalemaj Amit Levi Ramesh Pallavoor

Sofya Raskhodnikova Noga Ron-Zewi Abhradeep Thakurta Yuichi Yoshida

47

Current and future directions

■ Erasure-resilience in other models of sublinear algorithms

■ Erasure-resilient testing under different erasure models

– Ongoing work with Sofya Raskhodnikova and Iden Kalemaj

■ Average sensitivity bounds for other optimization problems

Thank You!

48

