BIPARTITE GRAPHS OF SMALL READABILITY

Rayan Chikhi, Vladan Jovičić, Stefan Kratsch, Paul Medvedev, Martin Milanič, Sofya Raskhodnikova, **Nithin Varma**

COCOON 2018

Appetizer - A Puzzle!

```
1, 2

1, 3, 2

1, 4, 3, 2

1, 5, 4, 3, 5, 2

1, 6, 5, 4, 3, 5, 2

1, 7, 6, 5, 4, 7, 3, 5, 7, 2
```

• Rule to form a new line?

• Number of elements in the i^{th} line?

Hint: Think prime numbers!

Answer?

Towards the end of the talk:)

BIPARTITE GRAPHS OF SMALL READABILITY

Bipartite Graphs and Strings

Assign strings to vertices of the bipartite graph

- edges ⇒ overlapping strings
- nonedges ⇒ nonoverlapping strings

Readability

- Parameter of bipartite graphs
 [Chikhi Medvedev Milanič Raskhodnikova '16]
- •Captures the assignment of strings to vertices such that string overlaps represent vertex adjacencies
- •Arises from the study of overlap graphs in bioinformatics
 - •Overlap digraphs (de Bruijn graphs, string graphs) of DNA strings have several applications in the context of genome assembly

Readability: Definition

No restriction on alphabet

- Overlapping strings: Nonempty suffix of first string equals a prefix of second string
- Overlap labeling: Assignment of strings to vertices:
 - An edge corresponds to overlapping strings
 - A non-edge (across the bipartition) corresponds to nonoverlapping strings
- Length of an overlap labeling: Maximum over lengths of all strings in the labeling

Readability: Min. over lengths of all overlap labelings •

Overlap labeling: Examples

Complexity of Computing Readability

Is the following problem in NP?

Given graph G and integer k, does G have readability at most k?

Trivial for k = 1; G has readability 1 iff G is a disjoint union of bicliques (complete bipartite graphs).

Our Results 1: Readability 2 Algorithm

Polynomial-time algorithm to decide whether a graph G has readability at most 2

G has readability at most $2 \Rightarrow$ Algorithm produces an overlap labeling of length at most 2.

Key idea: We characterize bipartite graphs of readability at most 2 as having a matching with particular properties.

Readability Bounds

- •Readability of a graph G is at most $2^{\Delta+1}$, where Δ is the maximum degree of G [Braga Meidanis'02, Chikhi Medvedev Milanič Raskhodnikova '16]
- •Readability of almost all bipartite graphs (on n vertices in each part) is $\Omega(n/\log n)$ [CMMR'16]
- •Explicit graph family (on n vertices in each part) with readability $\Omega(n)$ [CMMR'16]

What graph families have small readability?

Our Results 2: Graph Families with Small Readability

Graph Family	Upper	Lower
	Bound	Bound
Bipartite chain graphs	$O(\sqrt{n})$	$\Omega(\log n)$
Grids and grid graphs	3	3

A Grid Graph

11

Today: Readability of Bipartite Chain Graphs

Bipartite Chain Graph $C_{n,n}$

$$\forall i \in [n] \quad N(a_i) = \{b_i, b_{i+1}, \dots, b_n\}$$

Readability of $C_{n,n}$ is $O(\sqrt{n})$ using labels of 3 characters.

Forward-Matching Sequences

Bipartite Chain Graph $C_{n,n}$

Sequence of strings $s_1, s_2, ..., s_n$ such that:

• s_i overlaps s_j iff i < j

Overlap Labeling for $C_{n,n}$

For all r, forward-matching sequence of $\Omega(r^2)$ strings each of length at most r

Readability of $C_{n,n}$ is $O(\sqrt{n})$

Constructing Forward-Matching Sequences

20, 0, 01 is a forward-matching sequence

Concatenation preserves forward-matching property.

$$s_1, \dots s_i \dots, s_t \Rightarrow s_1, \dots s_i, \underbrace{s_i \cdot s_{i+1}}, s_{i+1} \dots, s_t$$

Round 2 20, 0, 01

Round 3 20, 200, 0, 001, 01

Round 4 20, 200, 2000, 0, 0001, 001, 01

Round r All strings of length $\leq r$ using concatenation

Lower bound on # strings in round r?

Number of Strings in the Forward-Matching Sequence (Puzzle Solved!)

Right half of sequences

Right half of lengths

 l_2 l_2

1, 3, 2 L_3

1, 4, 3, 2 L_4

1, 5, 4, 3, 5, 2 L_5

0,01

0,0001,001,01

0, 00001, 0001, 001, 00101, 01

Cool Claim: For $r \geq 2$, $|L_r| = \sum_{k=1}^r \varphi(k)/2$.

 $\Omega(r^2)$

Euler's totient function

 $\varphi(k)$: number of integers relatively prime (co-prime) with k

Cool Claim: For $r \geq 2$, $|L_r| = \sum_{k=1}^r \varphi(k)/2$.

For $k \le r$, # of occurrences of k in L_k is $\varphi(k)/2$.

$$L_{k-1}$$
 1, ..., x , y , ..., 2

$$L_k$$
1, ..., x , k , y , ..., 2

```
# of occurrences of k in L_k
= # neighbors x, y in L_{k-1} such that x + y = k
```

Cool Claim: For $r \geq 2$, $|L_r| = \sum_{k=1}^r \varphi(k)/2$.

Sub-Claim 1: Any two neighboring elements of L_{k-1} are co-prime (relatively prime). [Proof by Induction]

$$L_{k-1}$$
 1, ..., x , y , ..., 2

$$L_k$$

1, ..., x , k , y , ..., 2

```
# of occurrences of k in L_k
= # neighbors x, y in L_{k-1} such that x + y = k
```

Cool Claim: For $r \geq 2$, $|L_r| = \sum_{k=1}^r \varphi(k)/2$.

Sub-Claim 1: Any two neighboring elements of L_{k-1} are co-prime (relatively prime). [Proof by Induction]

$$L_{k-1}$$
 1, ..., x , y , ..., 2

$$L_k$$

1, ..., x , k , y , ..., 2

- # of occurrences of k in L_k
- = # neighbors x, y in L_{k-1} such that x + y = k
- = # neighbors x, y such that x, y are co-prime and x + y = k

Cool Claim: For $r \geq 2$, $|L_r| = \sum_{k=1}^r \varphi(k)/2$.

Sub-Claim 2: Numbers x, y such that x + y = k occur as neighbors exactly once in L_{k-1} . [Proof by strong induction].

$$L_{k-1}$$
 1, ..., x , y , ..., 2

$$L_k$$

1, ..., x , k , y , ..., 2

- # of occurrences of k in L_k
- = # neighbors x, y in L_{k-1} such that x + y = k
- = # neighbors x, y such that x, y are co-prime and x + y = k

Cool Claim: For $r \geq 2$, $|L_r| = \sum_{k=1}^r \varphi(k)/2$.

Sub-Claim 2: Numbers x, y such that x + y = k occur as neighbors exactly once in L_{k-1} . [Proof by strong induction].

$$L_{k-1}$$
 1, ..., x , y , ..., 2

$$L_k$$

1, ..., x , k , y , ..., 2

- # of occurrences of k in L_k
- = # neighbors x, y in L_{k-1} such that x + y = k
- = # neighbors x, y such that x, y are co-prime and x + y = k
- = # co-prime pairs x, y such that x + y = k.

Cool Claim: For $r \geq 2$, $|L_r| = \sum_{k=1}^r \varphi(k)/2$.

Fact: If x and y are co-prime, then x and y are co-prime to x + y.

$$L_{k-1}$$
 1, ..., x , y , ..., 2

$$L_k$$

1, ..., x , k , y , ..., 2

- # of occurrences of k in L_k
- = # neighbors x, y in L_{k-1} such that x + y = k
- = # neighbors x, y such that x, y are co-prime and x + y = k
- = # co-prime pairs x, y such that x + y = k

Cool Claim: For $r \geq 2$, $|L_r| = \sum_{k=1}^r \varphi(k)/2$.

Fact: If x and y are co-prime, then x and y are co-prime to x + y.

$$L_{k-1}$$
 1, ..., x , y , ..., 2

$$L_k$$

1, ..., x , k , y , ..., 2

- # of occurrences of k in L_k
- = # neighbors x, y in L_{k-1} such that x + y = k
- = # neighbors x, y such that x, y are co-prime and x + y = k
- = # co-prime pairs x, y such that x + y = k
- = # pairs x, y such that x + y = k and x, y co-prime to k

Cool Claim: For
$$r \geq 2$$
, $|L_r| = \sum_{k=1}^r \varphi(k)/2$.

$$L_{k-1}$$
 1, ..., x , y , ..., 2

$$L_k$$

1, ..., x , k , y , ..., 2

```
# of occurrences of k in L_k
```

- = # neighbors x, y in L_{k-1} such that x + y = k
- = # neighbors x, y such that x, y are co-prime and x + y = k
- = # co-prime pairs x, y such that x + y = k
- = # pairs x, y such that x + y = k and x, y co-prime to k
- $= \varphi(k)/2$

Cool Claim: For
$$r \geq 2$$
, $|L_r| = \sum_{k=1}^r \varphi(k)/2$.

of occurrences of k in $L_k = \varphi(k)/2$

$$\Rightarrow |L_r| = \sum_{k=1}^r \varphi(k)/2$$

Cool Claim proved.

Forward-Matching sequence of $\Omega(r^2)$ strings each of length at most r

 $\Omega(r^2)$

Cool Claim: For
$$r \geq 2$$
, $|L_r| = \sum_{k=1}^r \varphi(k)/2$.

of occurrences of r in $L_r = \varphi(r)/2$

$$\Rightarrow$$
 $|L_r| = \sum_{k=1}^r \varphi(k)/2$

Cool Claim proved.

Forward-Matching sequence of $\Omega(r^2)$ strings each of length at most r

Readability of $C_{n,n}$ is $O(\sqrt{n})$.

 $\Omega(r^2)$

What we showed

Bipartite Chain Graph $C_{n,n}$

$$\forall i \in [n] \quad N(a_i) = \{b_i, b_{i+1}, \dots, b_n\}$$

Readability of $C_{n,n}$ is $O(\sqrt{n})$ using labels of 3 characters.

Open Questions

- Other graph families of low readability?
- Complexity of checking if the readability is at most k, for larger values of k > 2.
- Can readability be used as a parameter? Are there hard problems that become easy on low readability graphs?
- Close the gap between the lower bound and upper bound on the readability of bipartite chain graphs.

Thank you!