BIPARTITE GRAPHS OF SMALL READABILITY

Rayan Chikhi, Vladan Jovičićć, Stefan Kratsch,
Paul Medvedev, Martin Milanič, Sofya Raskhodnikova, Nithin Varma

COCOON 2018

Appetizer - A Puzzle!

1,2
1, 3, 2
1, 4, 3, 2
$1,5,4,3,5,2$
$1,6,5,4,3,5,2$
$1,7,6,5,4,7,3,5,7,2$
Hint: Think prime numbers!
Answer?
Towards the end of the talk :)

- Rule to form a new line ?
- Number of elements in the $i^{\text {th }}$ line ?

BIPARTITE GRAPHS OF SMALL READABILITY

Bipartite Graphs and Strings

Assign strings to vertices of the bipartite graph

- edges \Rightarrow overlapping strings
- nonedges \Rightarrow nonoverlapping strings

Readability

- Parameter of bipartite graphs [Chikhi Medvedev Milanič Raskhodnikova '16]
-Captures the assignment of strings to vertices such that string overlaps represent vertex adjacencies
- Arises from the study of overlap graphs in bioinformatics
- Overlap digraphs (de Bruijn graphs, string graphs) of DNA strings have several applications in the context of genome assembly

Readability: Definition

- Overlapping strings: Nonempty suffix of first string equals a prefix of second string
- Overlap labeling: Assignment of strings to vertices:
- An edge corresponds to overlapping strings
- A non-edge (across the bipartition) corresponds to nonoverlapping strings
- Length of an overlap labeling: Max mum over lengths of all strings in the labeling

Readability : Min. over lengths of all overlap labelings

Overlap labeling : Examples

Complexity of Computing Readability

Is the following problem in NP?

Given graph G and integer k, does G have readability at most k?

Trivial for $\mathrm{k}=1$; G has readability 1 iff G is a disjoint union of bicliques (complete bipartite graphs).

Our Results 1: Readability 2 Algorithm

Polynomial-time algorithm to decide whether a graph G has readability at most 2
G has readability at most $2 \Rightarrow$ Algorithm produces an overlap labeling of length at most 2.

Key idea: We characterize bipartite graphs of readability at most 2 as having a matching with particular properties.

Readability Bounds

- Readability of a graph G is at most $2^{\Delta+1}$, where Δ is the maximum degree of G [Braga Meidanis'02, Chikhi Medvedev Milanič Raskhodnikova '16]
-Readability of almost all bipartite graphs (on n vertices in each part) is $\Omega(n / \log n)$ [CMMR'16]
- Explicit graph family (on n vertices in each part) with readability $\Omega(n)$ [CMMR'16]

What graph families have small readability?

Our Results 2: Graph Families with Small Readability

Bipartite Chain Graph

4×4 Grid

A Grid Graph

Today: Readability of Bipartite Chain Graphs

Bipartite Chain Graph $C_{n, n}$

Forward-Matching Sequences

Bipartite Chain Graph $C_{n, n}$ Sequence of strings $s_{1}, s_{2}, \ldots, s_{n}$ such that:

- $\boldsymbol{s}_{\boldsymbol{i}}$ overlaps $\boldsymbol{s}_{\boldsymbol{j}}$ iff $\boldsymbol{i}<\boldsymbol{j}$

Overlap Labeling for $\boldsymbol{C}_{\boldsymbol{n}, \boldsymbol{n}}$

For all r, forward-matching sequence of $\Omega\left(r^{2}\right)$ strings each of length at most r

$$
\Downarrow
$$

Readability of $C_{n, n}$ is $O(\sqrt{n})$

Constructing Forward-Matching Sequences

$20,0,01$ is a forward-matching sequence
Concatenation preserves forward-matching property.

$$
s_{1}, \ldots s_{i} \ldots, s_{t} \Rightarrow s_{1}, \ldots s_{i}, s_{i} \cdot s_{i+1}, s_{i+1} \ldots, s_{t}
$$

Round 2

20, 0, 01
Round 3

$$
\begin{gathered}
20,200,0,001,01 \\
20,200,2000,0,0001,001,01
\end{gathered}
$$

Round 4
Round \boldsymbol{r} All strings of length $\leq r$ using concatenation

Lower bound on \# strings in round r ?

Number of Strings in the ForwardMatching Sequence (Puzzle Solved!)

Right half of sequences
0, 01
0, 001, 01
0, 0001, 001, 01
0, 00001, 0001, 001, 00101, 01

Right half of lengths
1, 2
L_{2}
1, 3, 2
L_{3}
1, 4, 3, $2 \quad L_{4}$
$1,5,4,3,5,2 \quad L_{5}$

Cool Claim: For $r \geq 2,\left|L_{r}\right|=\sum_{k=1}^{r} \varphi(k) / 2$.
$\Omega\left(r^{2}\right)$
Euler's totient function
$\varphi(k)$: number of integers relatively prime (co-prime) with k

Proof of Cool Claim

Cool Claim: For $r \geq 2,\left|L_{r}\right|=\sum_{k=1}^{r} \varphi(k) / 2$.

For $k \leq r$, \# of occurrences of k in L_{k} is $\varphi(k) / 2$.

$$
\begin{aligned}
& L_{k-1} \\
& 1, \ldots, x, y, \ldots, 2
\end{aligned}
$$

$$
\begin{aligned}
& L_{k} \\
& 1, \ldots, x, k, y, \ldots, 2
\end{aligned}
$$

\# of occurrences of k in L_{k}
$=\#$ neighbors x, y in L_{k-1} such that $x+y=k$

Proof of Cool Claim

Cool Claim: For $r \geq 2,\left|L_{r}\right|=\sum_{k=1}^{r} \varphi(k) / 2$.

Sub-Claim 1: Any two neighboring elements of L_{k-1} are co-prime (relatively prime). [Proof by Induction]
L_{k-1}
$1, \ldots, x, y, \ldots, 2$

$$
\begin{aligned}
& L_{k} \\
& 1, \ldots, x, k, y, \ldots, 2
\end{aligned}
$$

\# of occurrences of k in L_{k}
$=\#$ neighbors x, y in L_{k-1} such that $x+y=k$

Proof of Cool Claim

Cool Claim: For $r \geq 2,\left|L_{r}\right|=\sum_{k=1}^{r} \varphi(k) / 2$.

Sub-Claim 1: Any two neighboring elements of L_{k-1} are co-prime (relatively prime). [Proof by Induction]
L_{k-1}
$1, \ldots, x, y, \ldots, 2$

$$
\begin{aligned}
& L_{k} \\
& 1, \ldots, x, k, y, \ldots, 2
\end{aligned}
$$

\# of occurrences of k in L_{k}
$=\#$ neighbors x, y in L_{k-1} such that $x+y=k$
$=\#$ neighbors x, y such that x, y are co-prime and $x+y=k$

Proof of Cool Claim

Cool Claim: For $r \geq 2,\left|L_{r}\right|=\sum_{k=1}^{r} \varphi(k) / 2$.

Sub-Claim 2: Numbers x, y such that $x+y=k$ occur as neighbors exactly once in L_{k-1}. [Proof by strong induction].
L_{k-1}
$1, \ldots, x, y, \ldots, 2$

L_{k}
$1, \ldots, x, k, y, \ldots, 2$
\# of occurrences of k in L_{k}
$=\#$ neighbors x, y in L_{k-1} such that $x+y=k$
$=\#$ neighbors x, y such that x, y are co-prime and $x+y=k$

Proof of Cool Claim

Cool Claim: For $r \geq 2,\left|L_{r}\right|=\sum_{k=1}^{r} \varphi(k) / 2$.

Sub-Claim 2: Numbers x, y such that $x+y=k$ occur as neighbors exactly once in L_{k-1}. [Proof by strong induction].
L_{k-1}
$1, \ldots, x, y, \ldots, 2$

$$
\begin{aligned}
& L_{k} \\
& 1, \ldots, x, k, y, \ldots, 2
\end{aligned}
$$

\# of occurrences of k in L_{k}
$=\#$ neighbors x, y in L_{k-1} such that $x+y=k$
$=\#$ neighbors x, y such that x, y are co-prime and $x+y=k$
$=\#$ co-prime pairs x, y such that $x+y=k$.

Proof of Cool Claim

Cool Claim: For $r \geq 2,\left|L_{r}\right|=\sum_{k=1}^{r} \varphi(k) / 2$.

Fact: If x and y are co-prime, then x and y are co-prime to $x+y$.
L_{k-1}
$1, \ldots, x, y, \ldots, 2$

$$
\begin{aligned}
& L_{k} \\
& 1, \ldots, x, k, y, \ldots, 2
\end{aligned}
$$

\# of occurrences of k in L_{k}
$=\#$ neighbors x, y in L_{k-1} such that $x+y=k$
$=\#$ neighbors x, y such that x, y are co-prime and $x+y=k$
$=\#$ co-prime pairs x, y such that $x+y=k$

Proof of Cool Claim

Cool Claim: For $r \geq 2,\left|L_{r}\right|=\sum_{k=1}^{r} \varphi(k) / 2$.

Fact: If x and y are co-prime, then x and y are co-prime to $x+y$.
L_{k-1}
$1, \ldots, x, y, \ldots, 2$

$$
\begin{aligned}
& L_{k} \\
& 1, \ldots, x, k, y, \ldots, 2
\end{aligned}
$$

\# of occurrences of k in L_{k}
$=\#$ neighbors x, y in L_{k-1} such that $x+y=k$
$=\#$ neighbors x, y such that x, y are co-prime and $x+y=k$
$=\#$ co-prime pairs x, y such that $x+y=k$
$=\#$ pairs x, y such that $x+y=k$ and x, y co-prime to k

Proof of Cool Claim

Cool Claim: For $r \geq 2,\left|L_{r}\right|=\sum_{k=1}^{r} \varphi(k) / 2$.

$$
\begin{aligned}
& L_{k-1} \\
& 1, \ldots, x, y, \ldots, 2
\end{aligned}
$$

L_{k}
$1, \ldots, x, k, y, \ldots, 2$

$$
\begin{aligned}
& \text { \# of occurrences of } k \text { in } L_{k} \\
& =\# \text { neighbors } x, y \text { in } L_{k-1} \text { such that } x+y=k \\
& =\# \text { neighbors } x, y \text { such that } x, y \text { are co-prime and } x+y=k \\
& =\# \text { co-prime pairs } x, y \text { such that } x+y=k \\
& =\# \text { pairs } x, y \text { such that } x+y=k \text { and } x, y \text { co-prime to } k \\
& =\varphi(k) / 2
\end{aligned}
$$

Proof of Cool Claim

Cool Claim: For $r \geq 2,\left|L_{r}\right|=\sum_{k=1}^{r} \varphi(k) / 2$.

\# of occurrences of k in $L_{k}=\varphi(k) / 2$

$$
\Rightarrow\left|L_{r}\right|=\sum_{k=1}^{r} \varphi(k) / 2
$$

Cool Claim proved. \square

Forward-Matching sequence of $\Omega\left(r^{2}\right)$ strings each of length at most r

Proof of Cool Claim

Cool Claim: For $r \geq 2,\left|L_{r}\right|=\sum_{k=1}^{r} \varphi(k) / 2$.

\# of occurrences of r in $L_{r}=\varphi(r) / 2$

$$
\begin{gathered}
\Rightarrow \quad\left|L_{r}\right|=\sum_{k=1}^{r} \varphi(k) / 2 \\
\text { Cool Claim proved. } \square
\end{gathered}
$$

Forward-Matching sequence of $\Omega\left(r^{2}\right)$ strings each of length at most r \Downarrow
Readability of $C_{n, n}$ is $O(\sqrt{n})$.

What we showed

Bipartite Chain Graph $C_{n, n}$

Open Questions

- Other graph families of low readability ?
- Complexity of checking if the readability is at most k, for larger values of $k>2$.
- Can readability be used as a parameter ? Are there hard problems that become easy on low readability graphs ?
- Close the gap between the lower bound and upper bound on the readability of bipartite chain graphs.

Thank you!

