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Abstract. We study a parameter of bipartite graphs called readability,
introduced by Chikhi et al. (Discrete Applied Mathematics 2016) and mo-
tivated by applications of overlap graphs in bioinformatics. The behavior
of the parameter is poorly understood. The complexity of computing it
is open and it is not known whether the decision version of the problem
is in NP. The only known upper bound on the readability of a bipartite
graph (Braga and Meidanis, LATIN 2002) is exponential in the maximum
degree of the graph. Graphs that arise in bioinformatic applications have
low readability. In this paper we focus on graph families with readability
o(n), where n is the number of vertices. We show that the readability of
n-vertex bipartite chain graphs is between Ω(logn) and O(

√
n). We give

an efficiently testable characterization of bipartite graphs of readability
at most 2 and completely determine the readability of grids, showing
in particular that their readability never exceeds 3. As a consequence,
we obtain a polynomial-time algorithm to determine the readability of
induced subgraphs of grids. One of the highlights of our techniques is the
appearance of Euler’s totient function in the proof of the upper bound on
the readability of bipartite chain graphs. We also develop a new technique
for proving lower bounds on readability, which is applicable to dense
graphs with a large number of distinct degrees.

1 Introduction

In this work we further the study of readability of bipartite graphs initiated by
Chikhi et al. [6]. Given a bipartite graph G = (Vs, Vp, E), an overlap labeling of
G is a mapping from vertices to strings, called labels, such that for all u ∈ Vs
and v ∈ Vp there is an edge between u and v if and only if the label of u overlaps
with the label of v (i.e., a non-empty suffix of u’s label is equal to a prefix of v’s
label). The length of an overlap labeling of G is the maximum length (i.e., number
of characters) of a label. The readability of G, denoted r(G), is the smallest

? The full version of this paper is available online [5].



nonnegative integer r such that there is an overlap labeling of G of length r. In
this definition, no restriction is placed on the alphabet. One could also consider
variants of readability parameterized by the size of the alphabet. A result of
Braga and Meidanis [4] implies that these variants are within constant factors of
each other, where the constants are logarithmic in the alphabet sizes.

The notion of readability arises in the study of overlap digraphs. Overlap
digraphs constructed from DNA strings have various applications in bioinfor-
matics.7 Most of the graphs that occur as the overlap graphs of genomes have
low readability. Chikhi et al. [6] show that the readability of overlap digraphs is
asymptotically equivalent to that of balanced bipartite graphs: there is a bijection
between overlap digraphs and balanced bipartite graphs that preserves readability
up to (roughly) a factor of 2. This motivates the study of bipartite graphs with
low readability. In this work we derive several results about bipartite graphs with
readability sublinear in the number of vertices.

For general bipartite graphs, the only known upper bound on readability is
implicit in a paper on overlap digraphs by Braga and Meidanis [4]. As observed
by Chikhi et al. [6], it follows from [4] that the readability of a bipartite graph is
well defined and at most 2∆+1− 1, where ∆ is the maximum degree of the graph.
Chikhi et al. [6] showed that almost all bipartite graphs with n vertices in each
part have readability Ω(n/ log n). They also constructed an explicit graph family
(called Hadamard graphs) with readability Ω(n).

For trees, readability can be defined in terms of an extremal question on
certain integer functions on the edges, without any reference to strings or their
overlaps [6]. In this work, we reveal another connection to number theory, through
Euler’s totient function, and use it to prove an upper bound on the readability
of bipartite chain graphs.

So far, our understanding of readability has been hindered by the difficulty
of proving lower bounds. Chikhi et al. [6] developed a lower bound technique
for graphs where the overlap between the neighborhoods of any two vertices is
limited. In this work, we add another technique to the toolbox. Our technique
is applicable to dense graphs with a large number of distinct degrees. We apply
this technique to obtain a lower bound on readability of bipartite chain graphs.

We give a characterization of bipartite graphs of readability at most 2 and
use this characterization to obtain a polynomial-time algorithm for checking
if a graph has readability at most 2. This is the first nontrivial result of this
kind: graphs of readability at most 1 are extremely simple (disjoint unions of
complete bipartite graphs, see [6]), whereas the problem of recognizing graphs of
readability k is open for all k ≥ 3.

We also give a formula for the readability of grids, showing in particular that
it never exceeds 3. As a corollary, we obtain a polynomial-time algorithm to
determine the readability of induced subgraphs of grids.

7 In the context of genome assembly, variants of overlap digraphs appear as either de
Bruijn graphs [11] or string graphs [18, 21] and are the foundation of most modern
assemblers (see [17, 19] for a survey). Several graph-theoretic parameters of overlap
digraphs have been studied [2, 1, 3, 9, 15, 16, 20, 23], with a nice survey in [14].



1.1 Our Results and Structure of the Paper

Preliminaries are summarized in Section 2; here we only state some of the most
important technical facts. All missing proofs can be found in the full version [5].

To study readability, it suffices to consider bipartite graphs that are connected
and twin-free, i.e., no two nodes in the same part have the same sets of neigh-
bors [6]. As connected bipartite graphs have a unique bipartition up to swapping
the two parts, we state some of our results without specifying the bipartition.

Bounds on the readability of bipartite chain graphs (Section 3). Bipar-
tite chain graphs are the bipartite analogue of a family of digraphs that occur
naturally as subgraphs of overlap graphs of genomes. In a bipartite chain graph
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Fig. 1: The graph C4,4

G = (Vs, Vp, E), the vertices in Vs (or Vp) can be lin-
early ordered with respect to inclusion of their neighbor-
hoods. That is, we can write Vs = {v1, . . . , vk} so that
N(v1) ⊆ . . . ⊆ N(vk) (where N(u) denotes the set of u’s
neighbors). A twin-free connected bipartite chain graph
must have the same number of vertices on either side.
For each n ∈ N, there is, up to isomorphism, a unique

connected twin-free bipartite chain graph with n vertices in each part, denoted
Cn,n. The graph Cn,n is (Vs, Vp, E) where Vs = {s1, . . . , sn}, Vp = {p1, . . . , pn},
and E = {(si, pj) | 1 ≤ i ≤ j ≤ n}. The graph C4,4 is shown in Figure 1. We
prove an upper and a lower bound on the readability of Cn,n.

Theorem 1. For all n ∈ N, the graph Cn,n has readability O(
√
n), with labels

over an alphabet of size 3.

We prove Theorem 1 by giving an efficient algorithm that constructs an
overlap labeling of Cn,n of length O(

√
n) using strings over an alphabet of size 3.

Theorem 2. For all n ∈ N, the graph Cn,n has readability Ω(log n).

Characterization of bipartite graphs with readability at most 2 (Sec-
tion 4). Let Ct for t ∈ N denote the simple cycle with t vertices. The domino is
the graph obtained from the cycle C6 by adding an edge between two diametri-
cally opposite vertices. For a graph G and a set U ⊆ V (G), let G[U ] denote the
subgraph of G induced by U .

Every bipartite graph with readability at most 1 is a disjoint union of complete
bipartite graphs (also called bicliques) [6]. The characterization in the following
theorem extends our understanding to graphs of readability at most 2.

Theorem 3. A twin-free bipartite graph G has readability at most 2 iff G has a
matching M such that the graph G′ = G−M satisfies the following properties:

1. G′ is a disjoint union of complete bipartite graphs.
2. For U ⊆ V (G), if G[U ] is a C6, then G′[U ] is the disjoint union of three

edges.



(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

Fig. 2: The 4× 4 grid G4,4 and toroidal grid TG4,4.

3. For U ⊆ V (G), if G[U ] is a domino, then G′[U ] is the disjoint union of a C4

and an edge.

Theorem 3 expresses a condition on vertex labels of a bipartite graph in purely
graph theoretic terms, reducing the problem of deciding if a graph has readability
at most 2 to checking the existence of a matching with a specific property.

An efficient algorithm for readability 2 (in the full version). It is un-
known whether computing the readability of a given bipartite graph is NP-hard.
In fact, it is not even known whether the decision version of the problem is in NP,
as the only upper bound on the readability of a bipartite graph with n vertices
in each part is O(2n) [4]. We make some progress on this front by showing that
for readability 2, the decision version is polynomial-time solvable.

Theorem 4. There exists an algorithm that, given a bipartite graph G, decides
in polynomial time whether G has readability at most 2. Moreover, if the answer
is “yes”, the algorithm can also produce an overlap labeling of length at most 2.

Readability of grids and their induced subgraphs (Section 5). We fully
characterize the readability of grids. A (two-dimensional) grid is a graph Gm,n
with vertex set {0, 1, . . . ,m − 1} × {0, 1, . . . , n − 1} such that there is an edge
between two vertices iff the L1-distance between them is 1. An example is shown
in Figure 2. Our next theorem fully settles the question of readability of grids.

Theorem 5. For any two positive integers m,n with m ≤ n,

r(Gm,n) =


3, if m ≥ 3 and n ≥ 3;
2, if (m = 2 and n ≥ 3) or (m = 1 and n ≥ 4);
1, if (m,n) ∈ {(1, 2), (1, 3), (2, 2)};
0, if m = n = 1.

Theorem 5 has an algorithmic implication for the readability of grid graphs.
A grid graph is an induced subgraph of a grid. Several problems are NP-hard on
the class of grid graphs, including Hamiltonicity problems [12], various layout
problems [8], and others (see, e.g., [7]). We show that, unless P = NP, this is not
the case for the readability problem.



Corollary 1. The readability of a given grid graph can be computed in polynomial
time.

1.2 Technical Overview

We now give a brief description of our techniques. The key to proving the
upper bound on the readability of bipartite chain graphs is understanding the
combinatorics of the following process. We start with the sequence (1, 2). The
process consists of a series of rounds, and as a convention, we start at round 3:
we write 3 (= 1 + 2) between 1 and 2 and obtain the sequence (1, 3, 2). More
generally, in round r, we insert r between all the consecutive pairs of numbers
in the current sequence that sum up to r. Thus, we obtain (1, 4, 3, 2) in round
4, then (1, 5, 4, 3, 5, 2) in round 5, and so on. The question is to determine the
length of the sequence formed in round r as a function of r. We prove that this
length is 1

2

∑r
k=1 ϕ(k) = Θ(r2), where ϕ(k) is the famous Euler’s totient function

denoting the number of integers in {1, . . . , k} that are coprime to k.
To prove our lower bound on the readability of bipartite chain graphs, we

define a special sequence of subgraphs of the bipartite chain graph such that
the number of graphs in the sequence is a lower bound on the readability. The
sequence that we define has the additional property that if two vertices in the
same part have the same set of neighbors in one of the graphs, then they have the
same set of neighbors in all preceding graphs in the sequence. If the readability
is very small, then we cannot simultaneously cover all the edges incident with
two large-degree nodes as well as have their degrees distinct. The only properties
of the connected twin-free bipartite chain graph that our proof uses are that
it is dense and all vertices in the same part have distinct degrees. Hence, this
technique is more broadly applicable to any class of dense graphs with a large
number of distinct degrees.

Our characterization of graphs of readability at most 2, roughly speaking,
states that a twin-free bipartite graph has readability at most 2 iff the graph
can be decomposed into two subgraphs G1 and G2 such that G1 is a disjoint
union of bicliques and G2 is a matching satisfying some additional properties.
For i ∈ {1, 2}, the edges in Gi model overlaps of length exactly i. The heart of
the proof lies in observing that for each pair of bicliques in the first subgraph,
there can be at most one matching edge in the second subgraph that has its left
endpoint in the first biclique and the right endpoint in the second biclique.

To derive a polynomial-time algorithm for recognizing graphs of readability
two, we first reduce the problem to connected twin-free graphs of maximum
degree at least three. For such graphs, we show that the constraints from our
characterization of graphs of readability at most 2 can be expressed with a 2SAT
formula having variables on edges and modeling the selection of edges forming a
matching to form the graph G2 of the decomposition.

In order to determine the readability of grids, we establish upper and lower
bounds and in both cases use the fact that readability is monotone under induced
subgraphs (that is, the readability of a graph is at least the readability of each of
its induced subgraphs). The upper bound is derived by observing that every grid



is an induced subgraph of some 4n×4n toroidal grid (see Figure 2) and exploiting
the symmetric structure of such toroidal grids to show that their readability is at
most 3. This is the most interesting part of our proof and involves partitioning
the edges of the 4n× 4n toroidal grid into three sets and coming up with labels
of length at most 3 for each vertex based on the containment of the four edges
incident with the vertex in each of these three parts. Our characterization of
graphs of readability at most 2 is a helpful ingredient in proving the lower bound
on the readability of grids, where we construct a small subgraph of the grid for
which our characterization easily implies that its readability is at least 3.

2 Preliminaries

For a string x, let prei(x) (respectively, sufi(x)) denote the prefix (respectively,
suffix) of x of length i. A string x overlaps another string y if there exists an i
with 1 ≤ i ≤ min{|x|, |y|} such that sufi(x) = prei(y). If 1 ≤ i < min{|x|, |y|}, we
say that x properly overlaps with y. For a positive integer k, we denote by [k] the
set {1, . . . , k}. Let G = (V,E) be a (finite, simple, undirected) graph. If G is a
connected bipartite graph, then it has a unique bipartition (up to the order of the
parts). In this paper, we consider bipartite graphs G = (V,E). If the bipartition
V = Vs ∪ Vp is specified, we denote such graphs by G = (Vs, Vp, E). Edges of a
bipartite graph G are denoted by {u, v} or by (u, v) (which implicitly implies that
u ∈ Vs and v ∈ Vp). We respect bipartitions when we perform graph operations
such as taking an induced subgraph and disjoint union. For example, we say that
a bipartite graph G1 = (V 1

s , V
1
p , E1) is an induced subgraph of a bipartite graph

G2 = (V 2
s , V

2
p , E2) if V 1

s ⊆ V 2
s , V 1

p ⊆ V 2
p , and E1 = E2∩{(x, y) : x ∈ V 1

s , y ∈ V 1
p }.

The disjoint union of two vertex-disjoint bipartite graphs G1 = (V 1
s , V

1
p , E1) and

G2 = (V 2
s , V

2
p , E2) is the bipartite graph (V 1

s ∪ V 2
s , V

1
p ∪ V 2

p , E1 ∪ E2).
The path on n vertices is denoted by Pn. Given two graphs F and G, graph

G is said to be F -free if no induced subgraph of G is isomorphic to F . Two
vertices u, v in a bipartite graph are called twins if they belong to the same part
of the bipartition and have the same neighbors (that is, if N(u) = N(v)). Given
a bipartite graph G = (Vs, Vp, E), its twin-free reduction TF (G) is the graph
with vertices being the equivalence classes of the twin relation on V (G) (that
is, x ∼ y iff x and y are twins in G), and two classes X and Y are adjacent iff
(x, y) ∈ E for some x ∈ X and y ∈ Y . For graph theoretic terms not defined here,
we refer to [24]. We now state some basic results for later use.

Lemma 1. Let G and H be two bipartite graphs. Then:

(a) If G is an induced subgraph of H, then r(G) ≤ r(H).
(b) If F is the disjoint union of G and H, then r(F ) = max{r(G), r(H)}.
(c) The readability of G is the same for all bipartitions of V (G).
(d) r(G) = r(TF (G)).

Lemma 1(b) shows that the study of readability reduces to the case of
connected bipartite graphs. By Lemma 1(c), the readability of a bipartite graph



is well defined even if a bipartition is not given in advance. Lemma 1(d) further
shows that to understand the readability of connected bipartite graphs, it suffices
to study the readability of connected twin-free bipartite graphs.

3 Readability of Bipartite Chain Graphs

In this section, we prove an upper bound on the readability of twin-free bipartite
chain graphs, Cn,n, and prove Theorem 1. The lower bound on their readability
(Theorem 2) is proved in the full version. Recall that the graph Cn,n is (Vs, Vp, E)
where Vs = {s1, . . . , sn}, Vp = {p1, . . . , pn}, and E = {(si, pj) | 1 ≤ i ≤ j ≤ n}.

3.1 Upper Bound

To prove Theorem 1, we construct a labeling ` of length O(
√
n) for Cn,n that

satisfies (1) `(si) = `(pi) for all i ∈ [n], and (2) `(si) properly overlaps `(sj) iff
i < j. It is easy to see that such an ` will be a valid overlap labeling of Cn,n. As
the labels on either side of the bipartition are equal, we will just come up with
a sequence of n strings to be assigned to one of the sides of Cn,n such that the
strings satisfy condition (2) above.

Definition 1. A sequence of strings (s1, . . . , st) is forward-matching if

– ∀i ∈ [t], string si does not have a proper overlap with itself and
– ∀i, j ∈ [t], string si overlaps string sj iff i ≤ j.

Given an integer r ≥ 2, we will show how to construct a forward-matching
sequence Sr with Θ(r2) strings, each of length at most r, over an alphabet of
size 3. This will imply an overlap labeling of length O(

√
n) for Cn,n, proving

Theorem 1. The following lemma is crucial for this construction.

Lemma 2. For all integers t ≥ 2 and all i ∈ [t − 1], if (s1, . . . , st) is forward-
matching, so is (s1, . . . , si, sisi+1, si+1, . . . , st).

Proof. For the purposes of notation, let A be an arbitrary string from s1, . . . , si−1
(if it exists), let B = si, C = si+1, and let D be an arbitrary string from
si+2, . . . , st (if it exists). The reader can easily verify that A and B overlap with
the new string BC, and BC overlaps with C and D, as desired. What remains to
show is that there are no undesired overlaps. Suppose for the sake of contradiction
that BC overlaps B, and let i be the length of any such overlap. If sufi(BC) only
includes characters from C, then C overlaps B; if it includes characters from B
(and the entire C) then B has a proper overlap with itself (see Figure 3a). In
either case, we reach a contradiction. So, BC does not overlap B. By a symmetric
argument, C does not overlap BC.

Next, suppose for the sake of contradiction that BC overlaps A, and let i
be the length of any such overlap. If sufi(BC) only includes characters from C,
then C overlaps A; if it includes characters from B (and the entire C) then B
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(a) BC does not overlap B.
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(b) BC has no proper overlap with itself.

Fig. 3: Overlaps in the proof of Lemma 2

overlaps A. In either case, we reach a contradiction. So, BC does not overlap A.
By a symmetric argument, D does not overlap BC.

Finally, suppose for the sake of contradiction that BC has a proper overlap
with itself, and let i be the length of any such overlap. Since C does not overlap
BC, it follows that sufi(BC) must include characters from B and the entire C.
But then B has a proper overlap with B, a contradiction (see Figure 3b). So,
BC does not have a proper overlap with itself, completing the proof. ut

Now, we show how to construct a forward-matching sequence Sr. For the base
case, we let S2 = (20, 0, 01). It can be easily verified that S2 is forward-matching.
Inductively, let Sr for r > 2 denote the sequence obtained from Sr−1 by applying
the operation in Lemma 2 to all indices i such that sisi+1 is of length r, that
is, add all obtainable strings of length r. Let Br, for all integers r ≥ 2, be the
sequence of lengths of strings in Sr. We can obtain Br directly from Br−1 by
performing the following operation: for each consecutive pair of numbers x, y in
Br−1, if x + y = r then insert r between x and y. Note that there is a mirror
symmetry to the sequences with respect to the middle element, 1. The right sides
of the first 6 sequences Br, starting from the middle element, are as follows:

r = 2 1 2
r = 3 1 3 2
r = 4 1 4 3 2
r = 5 1 5 4 3 5 2
r = 6 1 6 5 4 3 5 2
r = 7 1 7 6 5 4 7 3 5 7 2

It turns out that |Br|, and, by extension, |Sr|, is closely related to the totient
summatory function [22], also called the partial sums of Euler’s totient function.
This is the function Φ(r) =

∑r
k=1 ϕ(k), where ϕ(k) is the number of integers

in [k] that are coprime to k. The asymptotic behavior of Φ(r) is well known:

Φ(n) = 3n2

π2 + O(n log n) [10, p. 268]. The following lemma therefore implies
|Sr| = |Br| = Θ(r2), completing the proof of Theorem 1.

Lemma 3. For all integers r ≥ 2, the length of the sequence Br is Φ(r) + 1.

Proof. For the base case, observe that |B2| = 3 = Φ(2) + 1. In general, consider
the case of r ≥ 3.



Definition 2. Two elements of Br are called neighbors in Br if they appear in
two consecutive positions in Br.

We will show that any two neighbors are coprime (Claim 7) and any pair (i, j)
of coprime positive integers that sum up to r appears exactly once as a pair of
ordered neighbors in Br (Claim 8). Together, these claims show that the neighbor
pairs in Br−1 that sum up to r are exactly the pairs of coprime positive integers
that sum up to r.

Fact 6. If i and j are coprime then each of them is coprime with i+ j and with
i− j.

By this fact, there is a bijection between pairs (i, j) of coprime positive integers
that sum up to r and integers i ∈ [r] that are coprime to r. Hence, the number
of neighbor pairs in Br−1 that sum up to r is ϕ(r). Therefore, Br contains
ϕ(r) occurrences of r. By induction, it follows that |Br| = |Br−1| + ϕ(r) =
Φ(r − 1) + 1 + ϕ(r) = Φ(r) + 1, proving the Lemma. ut

We now prove the necessary claims.

Claim 7. For all r ≥ 2, if two numbers are neighbors in Br, they are coprime.

Proof. We prove the claim by induction. For the base case of r = 2, the claim
follows from the fact that 1 and 2 are coprime. For the general case of r ≥ 3, recall
that Br was obtained from Br−1 by inserting an element r between all neighbors
i and j in Br−1 that summed to r. By the induction hypothesis, gcd(i, j) = 1,
and, hence, by Fact 6, gcd(i, r) = gcd(i, i+j) = 1 and gcd(r, j) = gcd(i+j, j) = 1.
Therefore, any two neighbors in Br must be coprime. ut

Claim 8. For all r ≥ 3, every ordered pair (i, j) of coprime positive integers
that sum to r occurs exactly once as neighbors in Br−1.

Proof. We prove the claim by strong induction. The reader can verify the base
case (when r = 3). For the inductive step, suppose the claim holds for all k ≤ r−1
for some r ≥ 4. Consider an ordered pair (i, j) of coprime positive integers that
sum to r. Assume that i > j; we know that i 6= j, and the case of i < j
is symmetric. Since r ≥ 4, we have that i ≥ 3. In the recursive construction
of the sequences {Bk}, the elements i are added to the sequence Bi when Bi
is created from Bi−1. Since j < i, all the elements j are already present in
Bi−1. By Fact 6, since gcd(i, j) = 1, we get that gcd(i − j, j) = 1. By the
inductive hypothesis, pair (i− j, j) appears exactly once as an ordered pair of
neighbors in Bi−1. Consequently, (i, j) must appear exactly once as an ordered
pair of neighbors in Bi. No new elements i, j are added to the sequence in later
stages, when k > i. Also, no new elements are inserted between i and j when
i+ 1 ≤ k ≤ i+ j − 1 = r − 1. Therefore, the ordered neighbor pair (i, j) appears
exactly once in Br−1. ut



4 A Characterization: Graphs with Readability at most 2

We characterize bipartite graphs with readability at most 2 by proving Theorem 3.
By Lemma 1, it is enough to obtain such a characterization for connected twin-
free bipartite graphs. We use this characterization (in the full version) to develop
a polynomial-time algorithm for recognizing graphs of readability at most 2 and
also (in Section 5) to prove a lower bound on the readability of general grids.
Recall that a domino is the graph obtained from C6 by adding an edge between
two vertices at distance 3. We first define the notion of a feasible matching, which
is implicitly used in the statement of Theorem 3.

Definition 3 (Feasible Matching). A matching M in a bipartite graph G is
feasible if the following conditions are satisfied:

1. The graph G′ = G−M is a disjoint union of bicliques (equivalently: P4-free).
2. For U ⊆ V (G), if G[U ] is a C6, then G′[U ] is the disjoint union of three

edges.
3. For U ⊆ V (G), if G[U ] is a domino, then G′[U ] is the disjoint union of a C4

and an edge.

In the full version, we prove Theorem 3 by showing that a bipartite graph G
has readability at most 2 iff G has a feasible matching. The following corollary
of Theorem 3 is used in Section 5.

Corollary 2. Every bipartite graph G of maximum degree at most 2 has read-
ability at most 2.

Proof. If G is a connected twin-free bipartite graph of maximum degree at most
2, then G is a path or an (even) cycle. In this case, the edge set of G can be
decomposed into two matchings M1 and M2. Both M1 and M2 are feasible
matchings. Thus, by Theorem 3, G has readability at most 2. ut

5 Readability of Grids and Their Induced Subgraphs

In this section, we determine the readability of grids by proving Theorem 5. We
first look at toroidal grids, which are closely related to grids. For positive integers
m ≥ 3 and n ≥ 3, the toroidal grid TGm,n is obtained from the grid Gm,n by
adding edges ((i, 0), (i, n−1)) and ((0, j), (m−1, j)) for all i ∈ {0, . . . ,m−1} and
j ∈ {0, . . . , n− 1} (See Figure 2 for an example.). The graph TGm,n is bipartite
iff m and n are both even. In this case, a bipartition can be obtained by setting
V (TGm,n) = Vs ∪ Vp where Vs = {(i, j) ∈ V (TGm,n) : i+ j ≡ 0 (mod 2)} and
Vp = {(i, j) ∈ V (TGm,n) : i+ j ≡ 1 (mod 2)}.

Lemma 4. For all integers n > 0, we have r(TG4n,4n) ≤ 3.

We now prove Theorem 5, about the readability of Gm,n. We first recall the
following simple observation (which follows, e.g., from [6, Theorem 4.3]).



Lemma 5. A bipartite graph G has: (i) r(G) = 0 iff G is edgeless, and (ii)
r(G) ≤ 1 iff G is P4-free (equivalently: a disjoint union of bicliques).

Proof (of Theorem 5). First, by Lemma 5, r(Gm,n) is 0 if m = n = 1 and
positive, otherwise. Second, when (m,n) ∈ {(1, 2), (1, 3), (2, 2)}, the graphs Gm,n
are isomorphic to K1,1,K1,2, and K2,2, respectively. Thus, by Lemma 5, their
readability is 1.

Third, when m+ n ≥ 5, the grid Gm,n contains an induced P4, implying that
r(Gm,n) ≥ 2. By Theorem 3, a twin-free bipartite graph G has readability at
most 2 iff G has a feasible matching. (See Definition 3.) When m+n ≥ 5, the grid
Gm,n is twin-free. If m = 2 and n ≥ 3, then M = {((i, j), (i, j + 1)) | i ∈ {0, 1}
and j ∈ {0, . . . , n− 2} is even} is a feasible matching in Gm,n, so r(Gm,n) = 2. If
m = 1 and n ≥ 4, then Gm,n is isomorphic to a path of length at least three. Since
its maximum degree is 2, we get r(Gm,n) ≤ 2, by Corollary 2. Thus, r(Gm,n) = 2.

To show that r(Gm,n) ≤ 3 for m ≥ 3 and n ≥ 3, we observe that Gm,n (for
m ≤ n) is an induced subgraph of TG4n,4n. By Lemmas 1(a) and 4, we have
that r(Gm,n) ≤ r(TG4n,4n) ≤ 3. The proof that r(Gm,n) ≥ 3 can be found in
the full version. ut

6 Conclusion

In this work, we gave several results on families of n-vertex bipartite graphs
with readability o(n). The results were obtained by developing new or applying
a variety of known techniques to the study of readability. These include a graph
theoretic characterization in terms of matchings, a reduction to 2SAT, an explicit
construction of overlap labelings analyzed via number theoretic notions, and
a new lower bound applicable to dense graphs with a large number of distinct
degrees. One of the main specific questions left open by our work is to close
the gap between the Ω(log n) lower bound and the O(

√
n) upper bound on the

readability of n-vertex bipartite chain graphs. In the context of general bipartite
graphs, it would be interesting to determine the computational complexity of
determining whether the readability of a given bipartite graph is at most k, where
k is either part of input or a constant greater than 2, to study the parameter
from an approximation point of view, and to relate it to other graph invariants.
For instance, for a positive integer k, what is the maximum possible readability
of a bipartite graph of maximum degree at most k? Another interesting direction
would be to study the complexity of various computational problems on graphs
of low readability.
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