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• Our erasure-resilient testers for monotonicity and Lipschitz property over 

hypergrids are line testers.

• For hypercubes 0,1 𝑑, such testers sample edges of  the hypercube uniformly and 

independently at random and check for violations to the property on them. 

𝜶-erased function: A function over domain 𝐷 is 𝛼-erased if  it 

is erased on at most an 𝛼 fraction of  𝐷. 
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Background and motivation

What if  the oracle cannot answer all the queries?

Property testing [GGR98, RS96]

Erasure-resilient property testing model

Problem : Given an 𝜶-erased function 𝒇, test whether 𝒇
satisfies a property 𝑷 or is 𝝐-far from satisfying 𝑷.

Erased functions and distances

Main Challenges

• Erasures are adversarial and are made before testing begins.

• Tester does not know the erased points in advance.

• The adversary knows the tester.

Assumption: Oracle returns values at all queried points.

Need testers resilient to adversarial erasures.

Some function values may be inaccessible due to:

• Adversaries erasing/corrupting them.

• Privacy requirements to hide them.

• Queries to erased points are wasteful as the tester learns 

nothing about the function. 

• Tester could make several queries to erased points as it does 

not know the locations of  erasures before querying.

Problem : Test whether 𝒇:𝑫 ↦ 𝑹 satisfies a property 𝑷 or is 

ɛ-far from satisfying 𝑷.
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Erasure-resilient tester (against adversarial erasures)

𝜖, 𝛼

Oracle(𝑓)

Accepts if  𝑓 is in 𝑃

Rejects w.p. 
2

3
if  𝑓 is 𝜖-far from 𝑃

Tester

𝑥
• 𝑓(𝑥) if  𝑥 is not erased.

• ⊥ if  𝑥 is erased. 

Erasure-resilient testers

Erasure-resilient monotonicity tester for [𝒏]

Algorithm (modifying the tester of  [EKKRV00])

o Accept if  the number of  queries exceed 𝑐 ⋅
log 𝑛

𝜖(1−𝛼)
.

o Repeat 𝑂
1

𝜖
times:

 Sample points from 𝑛 u.a.r. until we get a non-

erased search point 𝑝.
 Do a binary search for 𝑝 using uniformly random 

(nonerased) pivots in each step.

 Reject if  a violation to monotonicity of  𝑓 was found 

on the search path.

o Accept

Separation from standard model

Nearly optimal erasure-resilient testers

Input : parameters 𝜖, 𝛼 ∈ 0,1 ; oracle access to function 𝑓: 𝑛 ↦ ℝ ∪ {⊥}. 

Proof  of  correctness

• Each search path is a uniformly random rooted path in a uniformly 

random binary search tree over 𝒩.

• Tester detects a violation with probability ≥ 𝜖 in every iteration. 

• If  there are no violations in the paths to 𝑖 and 𝑗, then 

𝑓 𝑖 < 𝑓 𝑎 < 𝑓(𝑗).

• At least 𝜖-fraction of  the paths in every binary search tree contains 

violations to monotonicity.

Bounding the query complexity

• Combinatorial lemma: Expected # queries to traverse a random 

search path in a binary search tree 𝑇 of  depth 𝑑 over an 𝛼-erased array 

is at most 
𝑑

1−𝛼
.

+
• Expected depth of  a random 𝑛-node binary search is 𝑂 log 𝑛 .

Expected # queries to traverse a random search path in a random binary 

search tree over an 𝛼-erased array is 𝑂
log 𝑛

1−𝛼
.

The expected query complexity of  the tester is 𝑶
𝒍𝒐𝒈 𝒏

𝝐(𝟏−𝜶)
. 

Tester accepts if  𝑓 is a monotone function.  Assume that 𝑓 is 𝜖-far from 

monotone. Let 𝒩 ⊆ [𝑛] denote the set of  non-erased points.
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Generic Transformation

Theorem: Testers for extendable properties that query 

points sampled uniformly and independently at random 

can be made 𝜶-erasure-resilient with a query 

complexity overhead of  𝑶(
𝟏

𝟏−𝜶
).

Testers for more challenging properties

An optimal monotonicity tester for functions 𝑓: 𝑛 ↦ ℝ [EKKRV00]

Input : 𝜖 ∈ 0,1

• Repeat 𝑂
1

𝜖
times:

 Sample a search point 𝒑 u.a.r. from 𝑛 .

 Do a binary search for 𝒑 using midpoints of  

intervals as the pivots in each step.

 Reject if  a violation to monotonicity of  𝑓 was found 

on the search path.

• Accept

Erasing just the midpoint is enough to make the tester useless.

• For many important properties, most known testers are more likely to query 

some specific points over others. 

• An adversary can use this weakness to increase the query complexity of  such 

testers. 

• At least three such testers for the monotonicity of  functions over the line [𝑛]
fail if  we erase just one point. 

A function 𝑓: 𝑛 𝑑 ↦ ℝ is

• monotone if  𝑥 ≺ 𝑦 ⇒ 𝑓 𝑥 ≤ 𝑓(𝑦).

• 𝑐-Lipschitz if  𝑓 𝑦 − 𝑓 𝑥 ≤ 𝑐 ⋅ 𝑦 − 𝑥
1
. 

• convex for 𝑑 = 1 if  
𝑓 𝑦 −𝑓 𝑥

𝑦−𝑥
≤

𝑓 𝑧 −𝑓 𝑦

𝑧−𝑦
for all 𝑥 < 𝑦 < 𝑧.

Hypergrid 

1,2, …𝑛 𝑑

• Monotonicity [GGLRS00, DGLRRS99, EKKRV00, F04, CS13a, CS13b, CST14, 

BRY14, BRY14, CDST15, KMS15, BB16], Lipschitz property [JR13, CS13a, BRY14, 

BRY14, CDJS15], other bounded derivative properties [CDJS15] and 

convexity [PRR03, BRY14].
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Applications
• Monotonicity over poset domains [FLNRRS02].  

• Convexity of  black and white images [BMR16]. 

• Boolean functions with ≤ 𝑘 runs of  alternating values.

Distances

𝟏

𝟐
-erased sorted array : Can restore the erased points to make it sorted.

𝟏

𝟐
- erased

𝟏

𝟐
- far from sorted : At least half  of  the nonerased points need 

to be changed to make it sorted.
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Properties over the line domain [𝒏]

Theorem: 𝛼 -erasure-resilient 𝜖 -testing of monotonicity, Lipschitz

property, and convexity over the line with 𝑂(
1

1−𝛼
) factor query

complexity overhead with respect to standard 𝜖-testing for all 𝛼 ∈ [0,1).

Properties over hypergrid domains 𝒏 𝒅

Theorem: 𝛼-erasure-resilient 𝜖-testing of monotonicity and Lipschitz

property over hypergrids with 𝑂(
1

1−𝛼
) factor query complexity overhead

with respect to standard 𝜖-testing for 𝛼 = 𝑂(
𝜖

𝑑
).

Limitations of  line testers for hypergrids

𝑓 𝑥 = ⊥

𝑓 𝑥 = 1

𝑓 𝑥 = 0 • 𝑓 is 
1

2
-far from monotone and 𝛼 ∼

1

√𝑑
.

• No edge in the hypercube is violated.

Take home: Line-testers will not work if  𝛼 = Ω(
𝜖

𝑑
).

Theorem: There exists a property 𝑃 and a constant 𝑐 such that:

• 𝑃 can be 𝜖-tested with 𝑂
1

𝜖
queries.

• 𝛼-erasure-resilient testing of  𝑃 requires Ω(𝑛𝑐) queries for a large range of  𝛼.

Analysis overview

Proof  of  combinatorial lemma

Interval 𝐼

𝑆 = Sum of  query weights of  all search paths in 𝑇. 

E[# of  queries to traverse a random search path in 𝑇] = 
𝑆

|𝒩|
≤

𝑆

𝑛(1−𝛼)

Bounding 𝑆
# search paths through 𝐼 = # nonerased points in 𝐼 =  𝐼 ⋅ 1 − 𝛿𝐼

⇒ Contribution to 𝑆 from 𝐼 = 𝐼 ⋅ 1 − 𝛿𝐼 ⋅
1

1−𝛿𝐼
= 𝐼

⇒ Contribution to 𝑆 from each level of  the tree ≤ 𝑛 ⇒ 𝑆 ≤ 𝑛 ⋅ 𝑑
Final Step

Ε[# queries to traverse a random search path in 𝑇] ≤
𝑆

𝑛(1−𝛼)
≤

𝑑

1−𝛼

𝛿𝐼 : fraction of  erased points in interval 𝐼.

Query weight of  interval 𝐼: 

E[# queries to get a nonerased point] = 
1

1−𝛿𝐼

Query weight of  a search path: 

Sum of  query weights of  intervals on path.

Properties that we focus on

Results

Open questions

• Is tolerant testing [PRR06] harder than erasure-resilient testing ?

• Are there testers for monotonicity and Lipschitz property over 

hypergrid domains that withstand more erasures ?
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