
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

2 1 4 5 6 3 8 2 10 12

2 ⊥ 4 ⊥ 6 ⊥ 8 ⊥ 10 ⊥

Binary search tree 𝑻
Depth 𝒅

1. A. Belovs, E. Blais: A Polynomial Lower Bound for Testing Monotonicity. STOC 2016.
2. P. Berman, M. Murzabulatov, S. Raskhodnikova. Constant-time Testing and Learning of Image Properties. SoCG 2016.
3. P. Berman, S. Raskhodnikova, G. Yaroslavtsev. Lp-testing. STOC 2014: 164-173
4. E. Blais, S. Raskhodnikova, G. Yaroslavtsev. Lower Bounds for Testing Properties of Functions on Hypergrid Domains. CCC 2014: 309-320.
5. D. Chakrabarty, K. Dixit, M. Jha, C. Seshadhri. Property Testing on Product Distributions: Optimal Testers for Bounded Derivative Properties.

SODA 2015: 1809-1828
6. D. Chakrabarty, C. Seshadhri. Optimal bounds for monotonicity and Lipschitz testing over hypercubes and hypergrids. STOC 2013: 419-428
7. D. Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing over hypergrids. APPROX-RANDOM 2013: 425-435
8. X. Chen, A. De, R. A. Servedio, L. Tan: Boolean Function Monotonicity Testing Requires (Almost) 𝑛0.5 Non-adaptive Queries. STOC 2015: 519-528
9. X. Chen, R. A. Servedio, L. Tan: New Algorithms and Lower Bounds for Monotonicity Testing. FOCS 2014: 286-295
10. Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, A. Samorodnitsky: Improved Testing Algorithms for Monotonicity. RANDOM-

APPROX 1999: 97-108
11. F. Ergün, S. Kannan, R. Kumar, R. Rubinfeld, M. Viswanathan. Spot-Checkers. J. Comput. Syst. Sci. 60(3): 717-751. 2000
12. E. Fischer. On the strength of comparisons in property testing. Inform. And Comput., 189(1): 107-116, 2004.
13. E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, A. Samorodnitsky: Monotonicity testing over general poset domains. STOC

2002: 474-483
14. O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, A. Samorodnitsky. Testing Monotonicity. Combinatorica 20(3): 301-337. 2000
15. O. Goldreich, S. Goldwasser, D. Ron. Property Testing and its Connection to Learning and Approximation. J. ACM 45(4): 653-750. 1998
16. M. Jha, S. Raskhodnikova. Testing and reconstruction of Lipschitz functions with applications to differential privacy. SIAM J. Comput., 42(2): 700-

731, 2013.
17. S. Khot, D. Minzer, M. Safra: On Monotonicity Testing and Boolean Isoperimetric Type Theorems. FOCS 2015: 52-58
18. M. Parnas, D. Ron, R. Rubinfeld. On Testing Convexity and Submodularity. SIAM J. Comput. 32(5): 1158-1184 (2003)
19. M. Parnas, D. Ron, R. Rubinfeld: Tolerant property testing and distance approximation. J. Comput. Syst. Sci. 72(6): 1012-1042 (2006)
20. R. Rubinfeld, M. Sudan. Robust characterizations of polynomials with applications to program testing. SIAM J. Comput., 25(2):252-271. 1996.

• Our erasure-resilient testers for monotonicity and Lipschitz property over

hypergrids are line testers.

• For hypercubes 0,1 𝑑, such testers sample edges of the hypercube uniformly and

independently at random and check for violations to the property on them.

𝜶-erased function: A function over domain 𝐷 is 𝛼-erased if it

is erased on at most an 𝛼 fraction of 𝐷.

Erasure-Resilient Property Testing

Collaborators: Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta

Nithin Varma1

The Pennsylvania State University

Background and motivation

What if the oracle cannot answer all the queries?

Property testing [GGR98, RS96]

Erasure-resilient property testing model

Problem : Given an 𝜶-erased function 𝒇, test whether 𝒇
satisfies a property 𝑷 or is 𝝐-far from satisfying 𝑷.

Erased functions and distances

Main Challenges

• Erasures are adversarial and are made before testing begins.

• Tester does not know the erased points in advance.

• The adversary knows the tester.

Assumption: Oracle returns values at all queried points.

Need testers resilient to adversarial erasures.

Some function values may be inaccessible due to:

• Adversaries erasing/corrupting them.

• Privacy requirements to hide them.

• Queries to erased points are wasteful as the tester learns

nothing about the function.

• Tester could make several queries to erased points as it does

not know the locations of erasures before querying.

Problem : Test whether 𝒇:𝑫 ↦ 𝑹 satisfies a property 𝑷 or is

ɛ-far from satisfying 𝑷.

Oracle(𝑓)

Accepts if 𝑓 is in 𝑃

Rejects w.p.
2

3
if 𝑓 is 𝜖-far from 𝑃

Tester

𝑥 𝑓(𝑥)

𝜖

Reasons

Consequences

Erasure-resilient tester (against adversarial erasures)

𝜖, 𝛼

Oracle(𝑓)

Accepts if 𝑓 is in 𝑃

Rejects w.p.
2

3
if 𝑓 is 𝜖-far from 𝑃

Tester

𝑥
• 𝑓(𝑥) if 𝑥 is not erased.

• ⊥ if 𝑥 is erased.

Erasure-resilient testers

Erasure-resilient monotonicity tester for [𝒏]

Algorithm (modifying the tester of [EKKRV00])

o Accept if the number of queries exceed 𝑐 ⋅
log 𝑛

𝜖(1−𝛼)
.

o Repeat 𝑂
1

𝜖
times:

 Sample points from 𝑛 u.a.r. until we get a non-

erased search point 𝑝.
 Do a binary search for 𝑝 using uniformly random

(nonerased) pivots in each step.

 Reject if a violation to monotonicity of 𝑓 was found

on the search path.

o Accept

Separation from standard model

Nearly optimal erasure-resilient testers

Input : parameters 𝜖, 𝛼 ∈ 0,1 ; oracle access to function 𝑓: 𝑛 ↦ ℝ ∪ {⊥}.

Proof of correctness

• Each search path is a uniformly random rooted path in a uniformly

random binary search tree over 𝒩.

• Tester detects a violation with probability ≥ 𝜖 in every iteration.

• If there are no violations in the paths to 𝑖 and 𝑗, then

𝑓 𝑖 < 𝑓 𝑎 < 𝑓(𝑗).

• At least 𝜖-fraction of the paths in every binary search tree contains

violations to monotonicity.

Bounding the query complexity

• Combinatorial lemma: Expected # queries to traverse a random

search path in a binary search tree 𝑇 of depth 𝑑 over an 𝛼-erased array

is at most
𝑑

1−𝛼
.

+
• Expected depth of a random 𝑛-node binary search is 𝑂 log 𝑛 .

Expected # queries to traverse a random search path in a random binary

search tree over an 𝛼-erased array is 𝑂
log 𝑛

1−𝛼
.

The expected query complexity of the tester is 𝑶
𝒍𝒐𝒈 𝒏

𝝐(𝟏−𝜶)
.

Tester accepts if 𝑓 is a monotone function. Assume that 𝑓 is 𝜖-far from

monotone. Let 𝒩 ⊆ [𝑛] denote the set of non-erased points.

1Work supported in part by Pennsylvania State University Graduate Fellowship Pennsylvania State University College of

Engineering Fellowship, NSF/CCF award 1422975, NSF/CCF CAREER award 0845701.

Generic Transformation

Theorem: Testers for extendable properties that query

points sampled uniformly and independently at random

can be made 𝜶-erasure-resilient with a query

complexity overhead of 𝑶(
𝟏

𝟏−𝜶
).

Testers for more challenging properties

An optimal monotonicity tester for functions 𝑓: 𝑛 ↦ ℝ [EKKRV00]

Input : 𝜖 ∈ 0,1

• Repeat 𝑂
1

𝜖
times:

 Sample a search point 𝒑 u.a.r. from 𝑛 .

 Do a binary search for 𝒑 using midpoints of

intervals as the pivots in each step.

 Reject if a violation to monotonicity of 𝑓 was found

on the search path.

• Accept

Erasing just the midpoint is enough to make the tester useless.

• For many important properties, most known testers are more likely to query

some specific points over others.

• An adversary can use this weakness to increase the query complexity of such

testers.

• At least three such testers for the monotonicity of functions over the line [𝑛]
fail if we erase just one point.

A function 𝑓: 𝑛 𝑑 ↦ ℝ is

• monotone if 𝑥 ≺ 𝑦 ⇒ 𝑓 𝑥 ≤ 𝑓(𝑦).

• 𝑐-Lipschitz if 𝑓 𝑦 − 𝑓 𝑥 ≤ 𝑐 ⋅ 𝑦 − 𝑥
1
.

• convex for 𝑑 = 1 if
𝑓 𝑦 −𝑓 𝑥

𝑦−𝑥
≤

𝑓 𝑧 −𝑓 𝑦

𝑧−𝑦
for all 𝑥 < 𝑦 < 𝑧.

Hypergrid

1,2, …𝑛 𝑑

• Monotonicity [GGLRS00, DGLRRS99, EKKRV00, F04, CS13a, CS13b, CST14,

BRY14, BRY14, CDST15, KMS15, BB16], Lipschitz property [JR13, CS13a, BRY14,

BRY14, CDJS15], other bounded derivative properties [CDJS15] and

convexity [PRR03, BRY14].

References

𝑥

𝑦

i

r

a

j

Applications
• Monotonicity over poset domains [FLNRRS02].

• Convexity of black and white images [BMR16].

• Boolean functions with ≤ 𝑘 runs of alternating values.

Distances

𝟏

𝟐
-erased sorted array : Can restore the erased points to make it sorted.

𝟏

𝟐
- erased

𝟏

𝟐
- far from sorted : At least half of the nonerased points need

to be changed to make it sorted.

2 𝟏 ⊥ ⊥ 6 5 ⊥ ⊥ 10 9

Properties over the line domain [𝒏]

Theorem: 𝛼 -erasure-resilient 𝜖 -testing of monotonicity, Lipschitz

property, and convexity over the line with 𝑂(
1

1−𝛼
) factor query

complexity overhead with respect to standard 𝜖-testing for all 𝛼 ∈ [0,1).

Properties over hypergrid domains 𝒏 𝒅

Theorem: 𝛼-erasure-resilient 𝜖-testing of monotonicity and Lipschitz

property over hypergrids with 𝑂(
1

1−𝛼
) factor query complexity overhead

with respect to standard 𝜖-testing for 𝛼 = 𝑂(
𝜖

𝑑
).

Limitations of line testers for hypergrids

𝑓 𝑥 = ⊥

𝑓 𝑥 = 1

𝑓 𝑥 = 0 • 𝑓 is
1

2
-far from monotone and 𝛼 ∼

1

√𝑑
.

• No edge in the hypercube is violated.

Take home: Line-testers will not work if 𝛼 = Ω(
𝜖

𝑑
).

Theorem: There exists a property 𝑃 and a constant 𝑐 such that:

• 𝑃 can be 𝜖-tested with 𝑂
1

𝜖
queries.

• 𝛼-erasure-resilient testing of 𝑃 requires Ω(𝑛𝑐) queries for a large range of 𝛼.

Analysis overview

Proof of combinatorial lemma

Interval 𝐼

𝑆 = Sum of query weights of all search paths in 𝑇.

E[# of queries to traverse a random search path in 𝑇] =
𝑆

|𝒩|
≤

𝑆

𝑛(1−𝛼)

Bounding 𝑆
search paths through 𝐼 = # nonerased points in 𝐼 = 𝐼 ⋅ 1 − 𝛿𝐼

⇒ Contribution to 𝑆 from 𝐼 = 𝐼 ⋅ 1 − 𝛿𝐼 ⋅
1

1−𝛿𝐼
= 𝐼

⇒ Contribution to 𝑆 from each level of the tree ≤ 𝑛 ⇒ 𝑆 ≤ 𝑛 ⋅ 𝑑
Final Step

Ε[# queries to traverse a random search path in 𝑇] ≤
𝑆

𝑛(1−𝛼)
≤

𝑑

1−𝛼

𝛿𝐼 : fraction of erased points in interval 𝐼.

Query weight of interval 𝐼:

E[# queries to get a nonerased point] =
1

1−𝛿𝐼

Query weight of a search path:

Sum of query weights of intervals on path.

Properties that we focus on

Results

Open questions

• Is tolerant testing [PRR06] harder than erasure-resilient testing ?

• Are there testers for monotonicity and Lipschitz property over

hypergrid domains that withstand more erasures ?

2 ⊥ 4 ⊥ 6 ⊥ 8 ⊥ 10 ⊥

https://twitter.com/intent/tweet?url=http://doi.acm.org/10.1145/2746539.2746570&text="Boolean+Function+Monotonicity+Testing+Requires+(Almost)+n+1/2+Non-adaptive+Queries."&hashtags=dblp&related=dblp_org
https://twitter.com/intent/tweet?url=http://doi.acm.org/10.1145/2746539.2746570&text="Boolean+Function+Monotonicity+Testing+Requires+(Almost)+n+1/2+Non-adaptive+Queries."&hashtags=dblp&related=dblp_org
https://twitter.com/intent/tweet?url=http://doi.acm.org/10.1145/2746539.2746570&text="Boolean+Function+Monotonicity+Testing+Requires+(Almost)+n+1/2+Non-adaptive+Queries."&hashtags=dblp&related=dblp_org
https://twitter.com/intent/tweet?url=http://doi.acm.org/10.1145/2746539.2746570&text="Boolean+Function+Monotonicity+Testing+Requires+(Almost)+n+1/2+Non-adaptive+Queries."&hashtags=dblp&related=dblp_org

