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Abstract

An (α, β)-spanner of an undirected unweighted connected graph G = (V,E) is a subgraph H
such that:

dH(u, v) ≤ α · dG(u, v) + β,

for all pairs (u, v) ∈ V × V , where dH(u, v) and dG(u, v) are the distances between u and
v in H and G respectively. The quantities α and β are non negative real numbers and are
called the multiplicative stretch and additive stretch of the spanner respectively. If α = 1,
the spanner is called additive. In this report, we focus our attention to additive spanners.
Additive spanners are well studied.

We study a natural generalization of the additive spanner problem where we look to
approximate the distances of only a specified set of pairs of nodes. Given a graph G = (V,E)
and a set P ⊆ V ×V , an (α, β) P-spanner, or a pairwise spanner, of G is a subgraph H such
that dH(u, v) ≤ α · dG(u, v) + β for all (u, v) ∈ P. We obtain polynomial time constructions
for the following pairwise spanners:

- a (1, 2) P-spanner with Õ(n|P|1/3) edges when P ⊆ V × V is arbitrary,

- a (1, 2) P-spanner with Õ(n|P|1/4) edges when P = S × V for some S ⊆ V.

In the special case when P contains exactly those pairs of nodes which are at a distance
at least D in G, an (α, β) P-spanner of G is also called as an (α, β) D-spanner. For any
integer k ≥ 1, we present polynomial time algorithms to construct:

- a (1, 4k) D-spanner with Õ(n3/2/Dk/(2k+2)) edges.

A part of this work has appeared in the proceedings of ICALP 2013 as a paper titled
Small Stretch Pairwise Spanners [KV13].
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Chapter 1

Introduction

A spanner of an undirected unweighted graph G = (V,E) with stretch function f : N→ N is
a subgraph H of G such that for any two nodes s, t ∈ V :

dH(s, t) ≤ f(dG(s, t))

where dG(s, t) and dH(s, t) are the distances between the nodes s and t in G and H respec-
tively. The number of edges in H is often referred to as the size of the spanner. Span-
ners were introduced by Peleg and Schaffer [PS89]. The use of spanners arise naturally
in situations where we need to store approximate distances in a space efficient manner.
Their applications include space-efficient routing schemes [Cow01, CW04, AP92], synchro-
nizers [PU89], approximate distance oracles [TZ05, BS04, RTZ05, PR10], near-shortest path
algorithms [ACIM99, BK10, RZ04, Elk05], etc.

Sparse spanners with low stretch functions are desired in many of these. This motivates
us to look for the sparsest possible spanner of a graph for a given stretch function. The
principal direction of research in the area of graph spanners is to answer questions about the
inherent tradeoffs between their size and stretch.

A widely studied class of spanners are those with stretch functions of the form f(d) =
αd + β where α and β are non-negative real numbers. Such spanners are called as (α, β)-
spanners. Formally, an (α, β)-spanner of an undirected unweighted graph G on n nodes is a
subgraph H of G such that for any two nodes s, t:

dH(s, t) ≤ α · dG(s, t) + β.

The quantities α and β are called the multiplicative stretch and additive stretch of the spanner
H, respectively. The pair (α, β) is called the stretch of the spanner. If β = 0, the spanner is
called multiplicative and if α = 1, the spanner is called additive. If in addition to α being 1,
β = O(1), the spanner is said to be purely additive

Multiplicative Spanners. Multiplicative spanners are very well studied. It is known
that one can compute a (2k − 1, 0)-spanner with O

(
n1+1/k

)
edges for every graph on n

nodes [HZ96, BS06, RZ04, RTZ05]. This bound is believed to be tight on the basis of the
still unproven Girth1 Conjecture of Erdős [Erd64]. The girth conjecture says that there exist
graphs with Ω(n1+1/k) edges and girth 2k + 1 for any integer k. Removing any edge from
such a graph would increase the distance between its endpoints to at least 2k. This means
that the only (2k − 1, 0)-spanner of such a graph is the graph itself.

1Girth is the length of the smallest cycle in the graph
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Additive Spanners. In this report, we restrict our attention to additive spanners. The
stretch function of an additive spanner is of the form f(d) = d+ β. Since additive spanners
approximate distances better than multiplicative spanners, they are more desirable.

The stretch of multiplicative spanners can be bounded by bounding the distance between
the endpoints of edges in the original graph missing from the spanner. This straightforward
technique does not seem to apply for additive spanners. The first purely additive spanner
for unweighted undirected graphs is due to Aingworth et al. [ACIM99]. They gave the
construction of a (1, 2)-spanner with Õ(n1.5) edges. This was improved to O(n1.5) in [DHZ00,
EP04]. Later Baswana et al. [BKMP05] came up with a (1, 6)-spanner having O(n4/3) edges.
On the lower bound side, Woodruff [Woo06] has shown that there exists a graph on n nodes
for which any (1, 2k − 1)-spanner has Ω

(
1
kn

1+1/k
)

edges. This lower bound implies that
the (1, 2)-spanner of [EP04] is optimal. For a long time, the (1, 2)-spanner and the (1, 6)-
spanner were the only purely additive spanners known. Recently Chechik [Che13] came up
with a randomized algorithm which constructs a (1, 4)-spanner having Õ(n1.4) expected size

with very high probability. Chechik [Che13] also came up with a (1, Õ(n
1−3δ

2 ))-spanner with
Õ(n1+δ) edges for any δ ∈ [ 3

17 ,
1
3 ]. It is important to mention in this context that we do not

know even the existence of any spanner which is sparser than the (1, 6)-spanner of [BKMP05]
and whose stretch is subpolynomial in the number of nodes. We summarise the details of the
constant stretch additive spanners in the following table.

Additive Stretch Size Reference

2 O(n1.5) [EP04]

6 O(n1.33) [BKMP05]

4 Õ(n1.4) [Che13]

Table 1.1: Purely Additive Spanners

Pairwise Spanners. The apparent difficulty involved in even arguing the existence of
additive spanners of size o(n4/3) and additive stretch that is subpolynomial in the number
of nodes, is motivating enough to consider the problem of whether or not it is possible
to get sparser subgraphs if the requirement is to not approximate all the distances. In
several situations where spanners come useful, one may not be interested in approximating
the distances between all pairs of vertices. To facilitate the discussion of such cases, we
generalize the definition of spanners to pairwise spanners.

Given an undirected unweighted graph G = (V,E) and a set P ⊆ V × V , an (α, β) P-
spanner, or a pairwise spanner, of G is a subgraph H such that for any two nodes s, t where
(s, t) ∈ P :

dH(s, t) ≤ α · dG(s, t) + β.

In the above definition, there are many possible settings to P. For instance, P may be
(i) an arbitrary subset of V × V , (ii) S × V for some S ⊆ V , or (iii) S × S for some S ⊆ V .
When P = S × V , the spanner is referred to as a sourcewise spanner.

Pairwise spanners with α = 1 are called additive pairwise spanners and the ones having
β = O(1), in addition, are called as purely additive pairwise spanners. Additive pairwise
spanners have been studied in the past. In [CE05], the authors looked at the special case
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when the distances corresponding to pairs in a set P ⊆ V × V have to be exactly preserved.
They called such subgraphs P-preservers. One of their main results was a construction of
P-preservers with O(min(n

√
|P|, |P|

√
n)) edges. They left it open to study the approximate

variants of their preservers, i.e. the problem of P-spanners. Cygan et al. [CGK13] answered
this problem for different settings of P. They showed tradeoffs between the stretch and size
of the spanner for some of these settings. Those results are as follows:

- a (1, 4k) P-spanner with O(n1+
1

2k+1 · ((4k+ 5) · |P|)
k

4k+2 ) edges for arbitrary P ⊆ V ×V

- a (1, 2k) S × V -spanner with O(n1+
1

2k+1 · (k · |S|)
k

2k+1 ) edges where S ⊆ V

By setting k = blog nc in the above, we can see that any graph G on n nodes has an
Õ(n · |P|1/4)-sized (1, 4 log n) P-spanner as well as an Õ(n ·

√
|S|)-sized (1, 2 log n) S × V -

spanner and that these can be constructed efficiently.

Our Results on purely additive P-spanners. We give constructions for an additive pairwise
spanner and an additive sourcewise spanner when the stretch is small. We state these results
in the following theorems.

Theorem 1.0.1. There is a polynomial time algorithm which takes a graph G = (V,E) on
n nodes and a set P ⊆ V × V as its inputs and computes an O(n · (|P| log n)1/3)-sized (1, 2)
P-spanner of G.

Note that the above pairwise spanner, in spite of having a smaller stretch, is sparser than
the (1, 4) P-spanner of Cygan et al. [CGK13] for all values of |P|. It is sparser than the
P-preserver of [CE05] when |P| is ω(n3/4). It is also sparser than the (1, 2) all-pairs spanner
when |P| is o(n3/2). We have to ignore some logarithmic factors for all these relations to
hold.

Theorem 1.0.2. There is a polynomial time algorithm which takes a graph G = (V,E) on
n nodes and a set S ⊆ V as its inputs and computes an O(n · (|P| log n)1/4)-sized (1, 2)
P-spanner of G where P = S × V .

We remark that our sourcewise spanner is always sparser than the P-preserver of [CE05]
when P = S × V and the (1, 2) S × V -spanner of [CGK13] for any S ⊆ V . These relations
hold only when we ignore some logarithmic factors.

Additive all-pairs spanners can be considered as special cases of additive pairwise spanners
when the set of pairs P is V × V . In this report, we also show an algorithm to construct
a (1, 4) spanner which is very similar to our algorithms for the above small stretch pairwise
spanners. The existing (1, 4)-spanner algorithm due to Chechik [Che13] is randomized, and
computes a (1, 4)-spanner of expected size O(n1.4 log0.2 n) with high probability. On the
contrary, ours is a deterministic (1, 4)-spanner algorithm with the same worst case bound on
the size of the subgraph output.

D-spanners. We next consider a variant of the P-spanner problem when the pairs are
implicitly specified via an integral distance threshold D ∈ [1, n]. The requirement here is to
approximate distances between all pairs separated by a distance at least D in the original
graph. Such pairwise spanners are referred to as D-spanners. An (α, β) D-spanner of a graph
G = (V,E) is an (α, β) P-spanner where P = {(u, v) ∈ V × V : dG(u, v) ≥ D}.

The problem of D-spanners was motivated by Elkin and Peleg [EP04] who made the
important observation that it is relatively easy to approximate large distances in graphs. In
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their paper they show a (1 + ε, 0) D-spanner with O(n1+λ) edges for any ε > 0, λ > 0 where
D is a function of ε and λ.

Later, Bollobás et al. [BCE05] came up with the construction of a subgraph that exactly
preserves the distances between those pairs of nodes which are at a distance at least D in
the original graph. They called such subgraphs D-preservers. They showed that any graph
on n nodes has a D-preserver with O(n2/D) edges. They also show graphs for which any
D-preserver has Ω(n2/D) edges for all n.

Our Results on D-spanners. In this report we address the problem of computing D-spanners
whose stretch is additive (called as additive D-spanners). We show the following result.

Theorem 1.0.3. There is a polynomial time algorithm that takes a graph G = (V,E) on
n nodes and a number D ∈ [1, n] as its inputs and computes an Õ(n ·

√
n/Dk/(k+1))-sized

(1, 4k) D-spanner of G for any integer k ≥ 1.

This result shows a tradeoff between the stretch and sparseness of a D-spanner. In
particular, when k = blog nc, we obtain a D-spanner of size Õ(n ·

√
n/D) and additive stretch

at most 4 log n. This is always sparser than the O(n2/D)-sized D-preserver of [BCE05], for
any value of D (ignoring logarithmic factors).

Organization. The report is organized as follows. In Chapter 2, we present the overview of
our algorithms along with a description of two important techniques that we use throughout.
We also describe some of the important existing spanner constructions which have crucially
used all or some of these techniques. Chapter 3 contains our algorithms for the pairwise
spanner and the sourcewise spanner of additive stretch 2. We also describe our determinstic
(1, 4)-spanner algorithm in that chapter. In Chapter 4, we present our result on the size-
stretch tradeoffs of additive D-spanners. We present our concluding remarks and further
directions for investigation in Chapter 5.
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Chapter 2

Main Algorithmic Techniques

The problems which we study can all be abstracted in the following way.

Generic (1, t) P-Spanner Problem: Given a graph G = (V,E) and a subset P ⊆
V × V , compute a sparse subgraph H of G such that:

dH(u, v) ≤ dG(u, v) + t for all (u, v) ∈ P .

Our algorithms to solve all its variants have a lot of features in common. In this chapter,
we present some of the key ideas used in all our algorithms. We first present an overview of
our algorithms to solve the various pairwise spanner problems that we consider.

These algorithms have three main phases. We start with an empty graph H on the same
vertex set as G.

In the first phase, we partition V into disjoint subsets C1, C2, . . . , Cλ and U such that
nodes in each Ci have a common neighbor. Since the input graph may be assumed to be
sufficiently dense (otherwise the graph itself is output as the spanner), there are quite a few
high degree nodes. Such nodes together with their neighbours form natural candidates for
forming these groups (or clusters as we call them). We add some of the edges within a cluster
to H to ensure that they form diameter 2 subgraphs in H. We will also add to H, all the
edges incident on nodes which are not part of any such cluster, since roughly speaking, they
are nodes with low degrees. These steps constitute the Clustering phase of our algorithms.

Once the clustering phase is over, pairs in P are classified based on the number of edges
that are missing from H, in the shortest path between them.

For pairs in P whose shortest paths have many missing edges, we make use of the following
observation. It is that the number of clusters incident a shortest path is proportional to the
number of missing edges in that path. Based on this, we apply a greedy strategy to select a
few clusters that intersect all the shortest paths with many missing edges. We then add all
the edges in shortest paths trees rooted at a few appropriate nodes, one from each cluster in
this set, to H. This phase is called the Shortest Paths Tree Addition Phase.

If the number of missing edges in the shortest path ρ between nodes u and v, where
(u, v) ∈ P, is small, we consider adding either that path or a slightly longer path between
the same nodes to H. We do this for each such cheap path. These steps (with variations
depending on the problem considered) constitute the Path Buying phase of our algorithms.

We return the subgraph H formed after all these phases as the output.
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2.1 Clusters and Shortest Path Trees

The steps in the Clustering and Shortest Paths Tree Addition phases are the same in all our
algorithms. We present their formal descriptions in this section.

We first describe the steps in the Clustering Phase. A clustering of a graph G = (V,E) is
a partition of its vertex set V into subsets C1, . . . , Cλ called clusters and the set U = V \∪iCi
of unclustered vertices. Associated with each cluster Ci is a node called its cluster center,
denoted by center(Ci), with the following property:

– In the graph G, center(Ci) is a common neighbor of all x ∈ Ci.
Several clusters can share the same cluster center and center(Ci) /∈ Ci, for any i. The cluster
to which a clustered node v belongs is denoted by C(v).

Given a graph G and an integer h, where 1 ≤ h ≤ n, the following procedure constructs
a clustering 〈Ch, U〉 and a cluster subgraph Gh where Ch = {C1, . . . , Cλ} is the set of clusters
and U is the set of unclustered vertices.

• Initially all the vertices are unclustered and Ch = ∅.

• While there exists a v ∈ V with at least h unclustered neighbours:

– Let C be the set of unclustered neighbors of v; Set center(C) = v.

– All vertices in C are marked clustered; Ch = Ch ∪ {C}.

• Set U to the set of unclustered nodes.

• Initialise Gh to the empty graph.

• Add all the edges with at least one endpoint in U to Gh.

• For each clustered node v, add the edge between v and center(C(v)) to Gh.

Thus, each cluster in Ch is a collection of at least h vertices; so there can be at most n/h
clusters in Ch.

Associated with 〈Ch, U〉 is the subgraph Gh (also referred to as the cluster subgraph),
which has (i) all the edges incident on unclustered nodes, and (ii) all the edges between a
clustered node and the center of its cluster. The spanner H being constructed is set to the
subgraph Gh after the clustering phase.

We now prove some properties of the clustering 〈Ch, U〉 and the cluster subgraph Gh.

Lemma 2.1.1. The number of edges in Gh is O(nh).

Proof. The termination condition of the while loop in the clustering procedure is the absence
of any node with h or more unclustered neighbors. Thus when this procedure terminates,
each node has less than h unclustered neighbors. Hence the total number of edges with at
least one unclustered endpoint is at most nh.

The set of edges of the form (x, c) where x is a clustered node and c its cluster center,
form a forest. Thus the total number of such edges can be at most n− 1. This completes the
proof that Gh has O(nh) edges.

Lemma 2.1.2. The diameter of any cluster with respect to Gh (as well as G) is at most 2.
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Proof. All nodes belonging to the same cluster have a common neighbour in Gh (as well as
G). Thus, the diameter of any cluster with respect to Gh (as well as G) is at most 2.

Before we go on to describe the steps in the Shortest Paths Tree Addition Phase, we make
some conventions and definitions regarding paths in the input graph G. We associate with
each pair of vertices (u, v) ∈ V × V , an arbitrary shortest u-v path in G. This path will
be called as the shortest u-v path. Let R = {ρ1, ρ2, . . . , ρ(n2)

} be the set of all
(
n
2

)
pairwise

shortest paths in G.

Definition 2.1.3. For any path ρ in G, cost(ρ) denotes the number of edges of ρ that are
absent in Gh.

Definition 2.1.4. A path ρ is called expensive if cost(ρ) ≥ (n log n)/h2. A path is cheap if
it is not expensive.

A cluster C is said to intersect a shortest path ρ if C and ρ have at least one node in
common. In the Shortest Paths Tree Addition phase, we select O(h) clusters, so that each
expensive path in R has some selected cluster intersecting it. We then add the edges in the
shortest paths trees rooted at the centers of these selected clusters to the spanner H being
constructed.

We first prove that the number of clusters intersecting a shortest path is proportional to
its cost.

Lemma 2.1.5. Let ρ be a shortest path in G with cost(ρ) ≥ t. Then there are at least t/3
clusters of Ch intersecting ρ.

Proof. Since all the edges incident on unclustered nodes are present in Gh, the number of
clustered nodes in any path is at least as large as its cost. A cluster can have at most three
nodes in common with a shortest path, since the diameter of a cluster is at most 2 as proved
in Lemma 2.1.2. Therefore, the total number of clusters intersecting with a shortest path of
cost t or more is at least t/3.

We are now ready to describe the procedure to form a set of clusters such that each
expensive shortest path is intersected by some cluster from this set.

• Initially all expensive paths are uncovered and let Sh = ∅.

• While there exists an uncovered expensive path:

– Let C be the cluster that intersects the largest number
of uncovered expensive paths (ties broken arbitrarily).

– Mark all expensive paths intersecting C as covered.

– Sh = Sh ∪ {C}

The above procedure terminates, since in each iteration, at least one uncovered path gets
covered. Lemma 2.1.6 gives an upper bound on the number of clusters in Sh.

Lemma 2.1.6. The number of clusters added to Sh by the above procedure is O(h).
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Proof. We prove the statement by bounding the number of iterations of the while loop in the
procedure.

Let ki denote the number of uncovered expensive paths at the beginning of the ith iteration
of the while loop. Each such expensive path has cost at least t, where t = (n · log n)/(h2).
Therefore, each such path has at least t/3 clusters intersecting it, by Lemma 2.1.5. The total
number of clusters in Ch is at most n/h. Hence at the beginning of ith iteration, there is a
cluster C ′ which intersects at least (ki · t/3)/(n/h) uncovered expensive paths. Clearly, the
cluster which our procedure chooses in the ith iteration also covers at least as many uncovered
expensive paths as C ′. Substituting the value of t, the number of uncovered expensive paths
that get covered in the ith iteration of the procedure is at least (ki · log n)/3h. This means
that in each iteration, the number of uncovered expensive paths decreases by a factor of
(1− (log n/3h)).

Hence the number of uncovered expensive paths at the end of rth iteration is at most
k1(1− (log n/3h))r. Since k1 ≤

(
n
2

)
, we can see that after 6h iterations, the number of

uncovered expensive paths drops to less than 1. As the termination condition of the while
loop is the non-existence of any uncovered expensive path, the number of iterations of the
while loop is at most 6h.

Thus, the number of clusters selected by the procedure for the addition of shortest paths
trees is O(h).

For a cluster C, let TC denote the shortest paths tree in G rooted at center(C). In the
following Lemma, we prove that the union of edges in the shortest path trees rooted at the
centers of clusters in Sh is a subgraph that approximates all the expensive shortest paths
within an additive term of 2.

Lemma 2.1.7. Let (u, v) ∈ V × V be such that the u-v shortest path ρ in G is expensive.
Then the subgraph

⋃
C∈Sh TC has a path of length at most dG(u, v) + 2 between u and v.

Proof. Since ρ is expensive, the procedure ensures that some cluster C ′ intersecting ρ is added
to Sh by the end of it. Let r denote center(C ′). Since the subgraph

⋃
C∈Sh TC contains all

the edges in T ′C , the shortest paths from r to both u and v are present in H. In other words
dH(r, u) = dG(r, u) and dH(r, v) = dG(r, v).

u v

r

a

C

Figure 2.1: Shortest paths in H (thick) from center(C) to u and v

Let a be a node common to C ′ and ρ. As a and r are neighbours in G, by triangle
inequality, dG(r, w) ≤ dG(a,w) + 1 for w ∈ {u, v}. From these, we can infer that dH(u, v) ≤
dG(u, v) + 2.

Thus, we have shown that adding the edges in
⋃
C∈Sh TC to the spanner being constructed,

approximates the u-v distance of all pairs (u, v) with expensive shortest paths, within an
additive stretch of 2. The number of edges in

⋃
C∈Sh TC is O(nh), since each shortest paths

tree contains n− 1 edges and the number of trees in the union is O(h).
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2.2 Techniques Used in Past Works

Most of the ideas and techniques used in proving our results have already been used in other
purely additive all-pairs and pairwise spanner constructions found in the literature. In this
section, we give an outline of some of the key results which have crucially used the techniques
of Clustering, Path Buying and Shortest Paths Tree Addition.

The clustering phase is common to all the following spanner algorithms. The (1, 2) spanner
algorithm [DHZ00, EP04] uses only clustering and shortest paths tree addition. The (1, 6)
spanner algorithm of Baswana et al. [BKMP05] uses the techniques of clustering and path
buying. The path buying technique was first used in that algorithm. The (1, 4) spanner
algorithm of Chechik [Che13] combines all the three techniques. Her algorithm is randomized.
Our algorithms for small stretch pairwise spanners in Chapter 3 are very similar to Chechik’s
algorithm except that our algorithms are deterministic.

The algorithm for (1, 4k) D-spanner that we describe in Chapter 4 also uses all the above
three techniques. But the path buying step in that algorithm is not as simple as those in
any of the algorithms mentioned above. The path buying step in the D-spanner algorithm
resembles the iterated path buying technique used by Cygan et al. [CGK13] to obtain their
construction of (1, 4k) P-spanners. We outline that construction as well in this section.

Note that in all of these constructions, the input graph G = (V,E) is assumed to be on
n nodes.

An O(n3/2)-sized (1, 2) all-pairs spanner. A (1, 2) spanner can be constructed in the
following way. First perform Clustering with h = dn1/2e. Then add the union of shortest
paths trees rooted at all cluster centers to the cluster subgraph. The resulting graph is output
as the spanner. Consider a pair of vertices (u, v). If the u-v shortest path consists only of
unclustered nodes, then that path is entirely present in the cluster subgraph. If not, there is
some cluster intersecting that path. This guarantees the existence of a u-v path of additive
stretch 2 in H using the edges in the shortest paths tree rooted at the center of that cluster.
Thus H is a (1, 2) spanner. The total number of clusters is at most dn1/2e and therefore the
number of edges in the union of shortest paths trees added is O(n3/2). Hence the number of
edges in the spanner is O(n3/2).

An O(n4/3)-sized (1, 6) all-pairs spanner. The (1, 6) spanner construction that we de-
scribe here is due to Baswana et al. [BKMP05]. The first step is clustering with h = dn1/3e.
The spanner H is initialised to the cluster subgraph. Then they go over shortest paths in R
and consider each of them for addition to H. With each ρ ∈ R, they associate two quan-
tities - a cost and a value. The cost of ρ, denoted by cost(ρ) has the same meaning as in
Definition 2.1.3. The value of ρ with respect to a subgraph H, denoted by valueH(ρ), is the
number of pairs of clusters (C1, C2) such that the distance between C1 and C2 in H decreases
by adding ρ to H. A path ρ ∈ R is added to H only if it satisfies:

cost(ρ) ≤ 3 · valueH(ρ).

This phase is called as the Path Buying phase. The subgraph at the end of the two phases
is output as the spanner.

It is not hard to see that the output is a (1, 6) spanner. Let ρ be a u-v shortest path of
cost t. There are at least t/3 clusters incident on ρ by Lemma 2.1.5. Assume that ρ failed
the path buying criterion and was not added to H during the path buying phase. In other
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words, t/3 > valueH(ρ) at the time ρ was considered for addition to H. Let Cu and Cv
be the clusters intersecting ρ closest to u and v along ρ, respectively. They then show the
existence of a cluster C incident on ρ whose distance in H from Cu and Cv does not decrease
by the addition of ρ to H (otherwise valueH(ρ) will be at least t/3). In other words, the C-Cu
and C-Cv distances in H are at most the respective distances along ρ. This is illustrated in
Figure 2.2.

≤ l2≤ l1

l1 l2

u v

CCu Cv

Figure 2.2: Path in H (thick) from u to v of additive stretch at most 6

It is clear then, that there is a path in H between u and v of additive stretch 6. The
number of edges in the cluster subgraph is bounded by O(n4/3) by Lemma 2.1.1. The number
of edges added during the Path Buying phase can be bounded by summing up the values at
the time of buying, of all the paths that were added. They argue that the distance between
two clusters can decrease only a constant number of times during Path Buying and use this
to show that the above sum of values of paths bought is proportional to the total number of
cluster pairs. As the number of clusters is at most dn2/3e, this turns out to be O(n4/3). Thus
the total number of edges added in the output is also O(n4/3).

An O(n1.4 log0.2 n)-sized (1, 4) all-pairs spanner. The first (1, 4) spanner construction
is due to Chechik [Che13]. The algorithm is randomized and it outputs a (1, 4) spanner
of expected size O(n1.4 log0.2 n) with high probability. We sketch their method here. Let
h = dn0.4 log0.2 ne. Call a vertex heavy if its degree is at least h and light otherwise.

They initialise H to the empty graph. They select a set of nodes by independently
sampling at random every node with probability 1/h, and designate the chosen nodes as the
cluster centers. A heavy node joins the cluster of an arbitrary cluster center neighboring it.
The edges connecting such heavy nodes and their cluster center are added to H. All edges
incident on light nodes, and all edges incident on heavy nodes with no cluster center in their
neighborhoods, are also added to H. It can be seen that these steps are in spirit, equivalent
to the clustering phase performed in our algorithms.

In the next phase, they select a set of nodes by independently sampling at random every
node with probability h/n and they add the edges in the union of shortest paths trees rooted
at these nodes to H.

In the last phase, for each pair of clusters (C1, C2), they look at the shortest paths in R
associated with vertex pairs in C1 × C2, which in addition, have at most h3/n heavy nodes
on them. They add to H, one such path ρ which is as short as any other among them. The
subgraph H at the end of these three phases is output as the spanner.

We show the stretch guarantee in what follows. Consider two clustered heavy nodes u
and v. Assume that the u-v shortest path ρ has at most h3/n heavy nodes on it. Let C(u)
and C(v) denote the clusters to which u and v belong. It is not hard to see that the last
phase of the above algorithm guarantees a path in H from C(u) to C(v) which is at least as
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short as ρ. This implies a path from u to v in H of length at most |ρ|+ 4. In case the path
has light or unclustered heavy endpoints, we can carry out a similar argument by focussing
on the clustered heavy nodes on the path closest to the end points. This is because of the
fact that the edges incident on light nodes as well as unclustered heavy nodes are present in
H.

With high probability, all shortest paths with at least h3/n heavy nodes are approximated
within an additive stretch of 2 after the shortest paths tree addition. This is because, such
paths have at least h4/n nodes in their neighborhood and hence with high probability, there
is at least one node among them at which a shortest paths tree is rooted. Thus the subgraph
H output is a (1, 4) spanner with high probability.

They show that the expected number of edges added to H in the first phase is O(nh).
The expected number of shortest paths trees added during the second phase is h and hence
the expected number of edges added to H in that phase is O(nh). The expected number of
clusters is n/h. A path having at most t heavy nodes has cost at most t. Thus in the third
phase, we add at most one shortest path of cost at most h3/n for each pair of clusters. From
this, it can be seen that the expected number of edges added during this phase is also O(nh).
Thus the expected size of the spanner is O(nh), i.e. O(n1.4 log0.2 n).

An O(n1+
1

2k+1 ((4k + 2) · |P|)
k

4k+2 )-sized (1, 4k) P-spanner. Instead of outlining the con-
struction of the (1, 4k) P-spanner, we will sketch the construction of a O(n · (|P| · log n)1/4))-
sized (1, 4 log n) P-spanner, which is obtained by setting k = blog nc in the general result,
since it has all the main ideas we want to present.

There are only two phases to the algorithm. The first phase is the usual clustering phase
with h = d(|P| · log n)1/4e. The spanner H is initialised to the cluster subgraph Gh.

In the path buying phase, we go over pairs in P. For a specific pair (u, v) ∈ P, let ρuv
always denote the path from u to v that we desire to add to H.

The path ρuv is initialised to the u-v shortest path. We add ρuv to H if it satisfies:

cost(ρuv) ≤ 12 ·
√

valueH(ρuv),

where the functions cost(.) and valueH(.) have the same meanings as the ones used in the
description of (1, 6) spanner. If the criterion is violated, we compute an alternate u-v path
ρ′ such that (i) ρ′ is at most 4 longer than ρuv, and (ii) cost(ρ′) ≤ cost(ρuv)/2. We then set
ρuv to ρ′ and try to add it to H using the same path buying criterion again. We repeat these
steps for a particular (u, v) ∈ P until we can add some u-v path ρuv to H.

We will need to recompute ρuv at most log n times for each (u, v) ∈ P since the cost of
ρuv, which can initially be at most n, reduces by a constant factor each time it is recomputed.
The length of ρuv increases by at most 4 each time it is recomputed. Thus, by the end of the
path buying phase, it is guaranteed that there is a u-v path in H of additive stretch at most
4 log n for every (u, v) ∈ P. This proves that H is a (1, 4 log n) P-spanner of G.

We will now give a rough reasoning as to why such an alternate u-v path exists when ρuv
fails the path buying criterion. Consider a path ρuv which violates the path buying criterion.
Let its cost be t. Let L denote the longest prefix of ρuv with exactly bt/4c missing edges and
let R denote its longest suffix with the same number of missing edges. Since there are at
least t/4 clustered nodes on L and R each, there are at least t/12 clusters intersecting each
of them. It can be seen that there is a cluster C1 intersecting L and a cluster C2 intersecting
R such that the distance between C1 and C2 does not decrease by adding ρuv. If it were not
true, the value of ρuv would have been at least t2/144 which is against our premise that ρuv
is a path which violated the path buying criterion.
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≤ l

vu yx l

C1 C2

L R

Figure 2.3: Path in H from C1 to C2 of length at most l

As is illustrated by Figure 2.3, this means that there is a path in H from C1 to C2 whose
length is at most the distance between the same along ρuv.

Let x be the node in the intersection of C1 and ρuv that is closest to u along ρuv and
y be the node in the intersection of C2 and ρuv that is closest to v along ρuv (as indicated
in the figure). The new u-v path ρ′ which we compute is hence a concatenation of (i) the
subpath of L from u to x, (ii) the shortest path in H from x to y of length at most l + 4,
and (iii) the subpath of R from y to v. Clearly, ρ′ is at most 4 longer than ρuv. The cost of
ρ′ is at most half the cost of ρuv since the only missing edges in ρ′ come from the subpaths
corresponding to L and R. One more thing that needs to be taken care of is the fact that
any cluster shares at most three nodes with ρ′. It is easy to see that this can also be achieved
without disturbing the other properties of ρ′.

Thus we get a (1, 4 log n) P-spanner of G. The number of edges added during clustering
is O(nh) as usual. Using arguments similar to the ones used to bound the number of edges
added in the path buying phase of the (1, 6) spanner, we can show that the number of edges
added to H during the Path Buying phase here too is O(nh). We omit the details of that.
Thus the final subgraph H returned is a (1, 4 log n) P-spanner of G having O(n·(|P|·log n)1/4)
edges.

13



Chapter 3

Small Stretch Pairwise Spanners

In this Chapter, we present our algorithms for constructing pairwise spanners when the
pairs to be approximated are specified explicitly. The inputs to our algorithms are a graph
G = (V,E) and a set P ⊆ V × V . We consider the cases when the set of pairs P is (i) an
arbitrary subset of V ×V , (ii) S×V for some S ⊆ V , and (iii) V ×V . For the first two cases,
we obtain a (1, 2) P-spanner and for the last case, we obtain a (1, 4) P-spanner.

In all these algorithms, we first perform the steps in Clustering and Shortest Paths Tree
Addition phases with suitable parameters. The path buying step here amounts to simply
adding the shortest paths corresponding to some specific pairs in P.

3.1 A (1,2) P-spanner
In this section, we consider the problem of computing a (1,2) P-spanner of G = (V,E),
where P ⊆ V × V specified as part of the input is arbitrary. The following is the algorithm
to achieve that. Its input is an undirected unweighted graph G = (V,E) on n vertices, and
a set P ⊆ V × V of pairs whose distances are to be approximated. Note that in the Path
Buying step, when we say that a path ρ is added to H, we mean H becoming H ∪ {ρ}.

1. Initialize H to the empty graph and set h to d(|P| log n)1/3e.

2. Clustering and SPT Addition. Perform the steps in the Clustering and Shortest Paths
Tree Addition phases (as described in Section 2.1) with h as the parameter. This
computes Gh, Ch and Sh.

• Add all the edges in Gh to H.

• Add all the edges in shortest paths trees rooted at the centers of the clusters in
Sh to H.

3. Path Buying. For each (u, v) ∈ P associated with a cheap path, do:

• Add ρ to H, where ρ is the u-v shortest path.

4. Return H

The fact that H returned by the algorithm is a (1,2) P-spanner is proved in the following
lemma. This lemma also bounds the number of edges in H.
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Lemma 3.1.1. The subgraph H returned by the above algorithm is a (1, 2) P-spanner of G
and it has O(n · (|P| log n)1/3) edges.

Proof. First we will prove that H is a (1,2) P-spanner of G. Consider (u, v) ∈ P and let ρ
be the shortest u-v path. If ρ is expensive, dH(u, v) ≤ dG(u, v) + 2 by Lemma 2.1.7, since
H contains the union of all shortest paths trees rooted at centers of clusters in Sh. If not,
ρ is added to H in the Path Buying step and hence dH(u, v) = dG(u, v). Thus for all pairs
(u, v) ∈ P, we have dH(u, v) ≤ dG(u, v) + 2. So H is a (1,2) P-spanner of G.

The number of edges in Gh is O(nh) by Lemma 2.1.1. By Lemma 2.1.6, the number
of clusters in Sh is O(h). Hence, the total number of edges in the union of shortest paths
trees rooted at the centers of clusters in Sh is O(nh). Thus the total number of edges added
to H in Step 2 of the algorithm is O(nh). We bound the number of edges added in the
Path Buying step in the following way. At most |P| paths, whose costs are each bounded by
(n log n)/h2, are added to H in that step. Therefore the number of edges added is bounded
by |P| · ((n log n)/h2), which is O(nh). Hence the total number of edges in H is O(nh), which
is the same as O(n · (|P| log n)1/3).

This proves Theorem 1.0.1 from Chapter 1.

3.2 A (1,2) S × V -spanner

In this section, we consider the problem of computing a (1,2) S × V -spanner of G = (V,E),
where S ⊆ V specified as part of the input is arbitrary. The following is the algorithm to
achieve that. Here in the Path Buying step, for each pair (s, C) where s ∈ S and C is a
cluster, we add at most one cheap path among those from s to C.

1. Initialize H to the empty graph and set h to d(|S| log n)1/4e.

2. Clustering and SPT Addition. Perform the steps in the Clustering and Shortest Paths
Tree Addition phases (as described in Section 2.1) with h as the parameter. This
computes Gh, Ch and Sh.

• Add all the edges in Gh to H.

• Add all the edges in shortest paths trees rooted at the centers of the clusters in
Sh to H.

3. Path Buying. For each (s, C) ∈ S × Ch, do:

• For some v ∈ C, add the s-v shortest path ρ to H, such that:

(a) ρ is a cheap path, and

(b) ρ is as short as any other cheap path associated with pairs in {s} × C,

if such a v ∈ C exists.

4. Return H
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The fact that H returned by the algorithm in this case is a (1,2) S × V -spanner is proved in
the following lemma. This lemma also bounds the size of H returned.

Lemma 3.2.1. The subgraph H returned by the above algorithm is a (1, 2) S × V -spanner
of G and it has O(n · (n|S| log n)1/4) edges.

Proof. First we will prove that H is a (1,2) S×V -spanner of G. Let (s, v) ∈ S×V be such that
v is clustered. Let ρ be its associated shortest path. If ρ is expensive, dH(u, v) ≤ dG(u, v) + 2
by Lemma 2.1.7, since H contains the union of all shortest paths trees rooted at centers of
clusters in Sh. Otherwise, two cases arise depending on whether ρ was added to H in the
Path Buying Step or not. If ρ got added, dH(s, v) = dG(s, v). If not, it means that there is a
v′ ∈ C(v) such that the s-v′ shortest path ρ′ is cheap, dG(s, v′) ≤ dG(s, v) and ρ′ got added
to H in the Path Buying Step. This would imply that dH(s, v) ≤ dG(s, v′) + 2 ≤ dG(s, v) + 2
as illustrated in Figure 3.1.

≤ l

s

v′

v l

C(v)

Figure 3.1: Path in H (thick) from s to v via v′ of length at most l + 2

Thus whenever s ∈ S and v is clustered, dH(s, v) ≤ dG(s, v) + 2. If v is unclustered, consider
the first clustered node on the path from v to s. Call it u. The section of the s-v shortest path
between u and v is present in H, since all its edges have at least one endpoint unclustered.
From what we have already proved, dH(s, u) ≤ dG(s, u) + 2. Therefore it follows that,

dH(s, v) ≤ dH(s, u) + dH(u, v) ≤ dG(s, u) + 2 + dG(u, v) ≤ dG(s, v) + 2.

So, dH(s, v) ≤ dG(s, v) + 2 for all (s, v) ∈ S × V and hence H is a (1,2) S × V -spanner of G.

Using arguments similar to the ones used in the proof of Lemma 3.1.1, we can see that
the number of edges added to H in Step 2 is O(nh). We bound the number of edges added
in the Path Buying step in the following way. For each pair (s, C) ∈ S × Ch, at most one
cheap path is added to H. As the number of clusters is at most n/h, the number of such
distinct cheap paths is bound by |S| ·n/h. Therefore the number of edges added in that step
is bounded by (|S| ·n/h) · ((n log n)/h2), which is O(nh). Hence the total number of edges in
H is O(nh), which is the same as O(n · (n|S| log n)1/4).

We can thus conclude Theorem 1.0.2 from the proof of above lemma.

3.3 A (1,4)-spanner

Now we consider the problem of computing a (1,4) all pairs spanner of a graph G = (V,E).
The following is the algorithm to achieve that.
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1. Initialize H to the empty graph and set h to dn0.4 log0.2 ne.

2. Clustering and SPT Addition. Perform the steps in the Clustering and Shortest Paths
Tree Addition phases (as described in Section 2.1) with h as the parameter. This
computes Gh, Ch and Sh.

• Add all the edges in Gh to H.

• Add all the edges in shortest paths trees rooted at the centers of the clusters in
Sh to H.

3. Path Buying. For each (C1, C2) ∈ Ch × Ch, do:

• For some (u, v) ∈ C1 × C2, add the u-v shortest path ρ to H, such that:

(a) ρ is a cheap path, and

(b) ρ is as short as any other cheap path associated with pairs in C1 × C2,

if such a (u, v) ∈ C1 × C2 exists.

4. Return H

The fact that H returned by the algorithm in this case is a (1,4)-spanner is proved in the
following lemma. This lemma also bounds the size of H returned.

Lemma 3.3.1. The subgraph H returned by the above algorithm is a (1, 4)-spanner of G and
its size is O(n1.4 log0.2 n).

Proof. First we will prove that H is a (1,4)-spanner of G. Let (u, v) be a pair of nodes in which
both u and v are clustered and let ρ be the u-v shortest path. If ρ is expensive, addition of
shortest paths trees in Step 2 ensures that dH(u, v) ≤ dG(u, v)+2. Otherwise, two cases arise
depending on whether ρ was added to H or not. If ρ got added dH(u, v) = dG(u, v). If not,
it means that there is a u′ ∈ C(u) and v′ ∈ C(v) such that the u′-v′ shortest path ρ′ is cheap,
dG(u′, v′) ≤ dG(u, v) and ρ′ was added to H. This would imply that dH(u, v) ≤ dG(u, v) + 4
as illustrated by Figure 3.2.

≤ l

vu

u′ v′

l

C(u) C(v)

Figure 3.2: Path in H (thick) from u to v (via u′ and v′) of length at most l + 4

Thus whenever u and v are clustered, dH(u, v) ≤ dG(u, v) + 4. If either v or u is unclustered,
consider the clustered nodes on the u-v shortest path closest to u and v. Call them y and w.
The sections of the u-v shortest path between u and y as well as w and v are contained in
H, since all their edges have at least one endpoint unclustered. From what we have already
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proved, dH(y, w) ≤ dG(y, w) + 4. Therefore it follows that,

dH(u, v) ≤ dH(u, y) + dH(y, w) + dH(w, v)

≤ dG(u, y) + dG(y, w) + 4 + dG(w, v)

≤ dG(u, v) + 4.

So, dH(u, v) ≤ dG(u, v) + 4 for all (u, v) ∈ V × V and hence H is a (1,4)-spanner of G.

Using arguments similar to the ones used in the proof of Lemma 3.1.1, we can see that
the number of edges added to H in Step 2 is O(nh). We bound the number of edges added
during the Path Buying step as follows. For each pair (C1, C2) where C1 and C2 are clusters,
at most one cheap path was added to H. As the number of clusters is at most n/h, the
number of such distinct pairs is bound by n2/h2. Therefore, the number of edges added to
H in that step is bounded by (n2/h2) · ((n log n)/h2), which is O(nh). Therefore the total
number of edges in H is O(nh), which is the same as O(n1.4 log0.2 n).

We can thus conclude the following theorem.

Theorem 3.3.2. There is a polynomial time algorithm which takes a graph G = (V,E) on
n nodes as input and computes an O(n1.4 log0.2 n)-sized (1, 4) spanner of G.

With this, we conclude our discussion on pairwise spanners when the pairs to be approx-
imated are specified explicitly.
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Chapter 4

Additive D-spanners

In this chapter, we consider the problem of computing a (1,t) P-spanner of a given undirected
unweighted graph G = (V,E) on n vertices where P = {(u, v) ∈ V × V : dG(u, v) ≥ D} and
D ∈ [1, n] is an integral distance threshold specified as part of the input. We call such a
pairwise spanner as a (1,t) D-spanner.

In Section 4.1, we describe the construction of a (1, 4) D-spanner and in Section 4.2, we
generalize this to (1, 4k) D-spanners for all integers k ≥ 1.

4.1 A (1,4) D-spanner

In this section we describe our algorithm to compute a (1,4) D-spanner of a given graph. The
inputs to the algorithm are a graph G = (V,E) and an integer distance threshold D ∈ [1, n].

The path buying phase in this algorithm is similar to that used in the (1, 6) spanner
algorithm of [BKMP05] which was described in Section 2.2. In addition to the function
cost(.) (Definition 2.1.3), we also use a new function valueH(.). We define it below.

Let ρ be a path (not necessarily shortest) in G. For a vertex v on ρ and a cluster C
intersecting ρ, let dρ(v, C) denote the distance along ρ between v and C, i.e., the length of
the smallest subpath of ρ between v and a node in C.

Definition 4.1.1. For any path ρ in G and subgraph H of G, valueH(ρ) denotes the number
of pairs (v, C) such that dρ(v, C) < dH(v, C), where vertex v and cluster C are incident on
ρ.

That is, for a path ρ, valueH(ρ) counts the (vertex, cluster) pairs incident on ρ whose
distance along ρ is strictly smaller than their distance in the subgraph H. Our algorithm to
compute a (1,4) D-spanner of G is presented below.
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1. Initialise H to the empty graph and set h to d
√
n · (log n/D)1/4e.

2. Clustering and SPT Addition. Perform the steps in the Clustering and Shortest Paths
Tree Addition phases (as described in Section 2.1) with h as the parameter. This
computes Gh, Ch and Sh.

• Add all the edges in Gh to H.

• Add all the edges in shortest paths trees rooted at the centers of the clusters in
Sh to H.

3. Path Buying. For each (u, v) ∈ V × V such that dG(u, v) ≥ D, do:

• Let ρ be the shortest u-v path.

• Add ρ to H, if it satisfies:

cost(ρ) ≤ valueH(ρ) ·
√

log n

D
.

4. Return H

The fact that H returned by the algorithm in this case is a (1,4) D-spanner is proved in the
following lemma. The proof of this lemma has most of the major ideas involved in our general
result on D-spanners. The proof sketch is as follows. As in the case of our P-spanners of the
previous section, we argue that the expensive paths are all taken care of by the SPT Addition
Phase. All cheap paths of length at least D are considered for addition to H in Path Buying
Phase. If a cheap path does not get added during this phase, we argue that there is a path
between its endpoints whose length is at most 4 more and which is entirely present in H.

Lemma 4.1.2. The subgraph H returned by the above algorithm is a (1,4) D-spanner of G.

Proof. Consider a pair (u, v) ∈ V × V such that dG(u, v) ≥ D. Let ρ be the u-v shortest
path. Note that h = d

√
n · (log n/D)1/4e here.

If cost(ρ) ≥
√
D log n, ρ has cost at least (n log n)/h2 and therefore by Lemma 2.1.7,

dH(u, v) ≤ dG(u, v) + 2.

If cost(ρ) <
√
D log n, there are two cases to consider. One of them is that ρ got added

to H in the path buying phase. Then dH(u, v) = dG(u, v).
If ρ did not get added to H in the path buying phase, we can infer that ρ had violated

the path buying criterion when it was considered for addition to H. Combining this with the
fact that cost(ρ) <

√
D log n, we get:

√
D log n > cost(ρ) > valueH(ρ) ·

√
log n

D
. (4.1)

From this, we get that valueH(ρ) < D.

Let x and y be the first and last clustered nodes on ρ respectively. Let C1 and C2 be
the respective clusters to which x and y belong. Without loss of generality, we may assume
that C1 and C2 are distinct. Otherwise, a u-v path of length at most dG(u, v) + 1 is present
in H and we would be done. Let L, M and R denote the u-x, x-y and y-v subpaths of ρ,
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respectively. The subpaths L and R are entirely present in Gh (and therefore in H, at the
time ρ was considered) because all their edges have at least one endpoint unclustered.

We claim that there exists a node w on ρ such that:

dH(w,C1) ≤ dρ(w,C1) and dH(w,C2) ≤ dρ(w,C2).

If not, for each node z on ρ, we have either dH(z, C1) > dρ(z, C1) or dH(z, C2) > dρ(z, C2).
Since there are at least D nodes on ρ, this would imply that valueH(ρ) ≥ D. This contradicts
the premise that valueH(ρ) < D.

Now we will show that the existence of such a node w guarantees a path in H between u
and v of length at most dG(u, v) + 4.

Assume that w is a node on L. Let dρ(w, y) be l. Therefore, from the definition of w,
dH(w,C2) ≤ dρ(w,C2) ≤ l. Then, as illustrated by Figure 4.1, we can see that there exists a
path from u to v in H which is a concatenation of (i) the subpath of L from u to w, (ii) a
shortest path in H from w to y, and (iii) the subpath of R from y to v. It is easy to see that
this path has length at most dG(u, v) + 2.

≤ l

l

vu yxw

x′ y′

C1 C2

Figure 4.1: Path in H (thick) from w to y (via y′) of length at most l + 2

The case when w is on R is symmetric and there also we get dH(u, v) ≤ dG(u, v) + 2.
Finally, assume that w is on the subpath M . Let dρ(w, x) be l1 and dρ(w, y) be l2. Using

arguments similar to above, we can infer that dH(w,C1) ≤ l1 and dH(w,C2) ≤ l2. Then, as
illustrated by Figure 4.2, we can see that there exists a path from u to v in H which is a
concatenation of (i) L, (ii) a shortest path in H from x to w, (iii) a shortest path in H from
w to y, and (iii) R. It is easy to see that this path has length at most dG(u, v) + 4.

≤ l2≤ l1

l1 l2

vu yx w

x′ y′

C1 C2

Figure 4.2: Path in H (thick) from x to y via x′,w and y′ of length at most l1 + l2 + 4

Thus we have proved that for all (u, v) ∈ V × V such that dG(u, v) ≥ D, dH(u, v) ≤
dG(u, v) + 4.

The following lemma bounds the number of edges in the subgraph H returned. We say
that a pair (v, C) ∈ V × Ch supports a path ρ in a graph H, if that vertex-cluster pair
contributes 1 to valueH(ρ), or in other words, if dρ(v, C) < dH(v, C).
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Lemma 4.1.3. The subgraph H returned by our algorithm has O(n3/2 · (log n/D)1/4) edges.

Proof. The number of edges added to H in Step 2 is O(nh), using arguments similar to those
in Lemma 3.1.1. The number of edges added to H in the Path Buying phase is at most the
sum of costs of paths added during that phase. Since any path that gets added to H satisfies
the Path Buying condition, we have the following hold true:∑

ρ

cost(ρ) ≤
√

log n

D
·
∑
ρ

valueHρ(ρ),

where the summations are both over the set of paths ρ ∈ R that got added to H during
the Path Buying step and Hρ denotes the subgraph H at the time ρ was considered. From
the definition of the function valueH(.), we can see that valueHρ(ρ) is the number of pairs in
V × Ch that support ρ in Hρ. Therefore, we get:∑
ρ

valueHρ(ρ) =
∑
ρ

number of pairs (v, C) ∈ V × Ch that support ρ for addition to Hρ

=
∑

(v,C)

number of paths ρ ∈ R that (v, C) supported for addition to H,

where the first and second summations are over all the paths in R that got added to H and
the third one is over all pairs (v, C) ∈ V × Ch.

We now claim that a pair (v, C) could have supported at most three path in R for
addition to H. After the first path ρ ∈ R which (v, C) supported gets added to H, the
distance between them in the new graph is dρ(v, C) which is at most dG(v, C) + 2 since, ρ
is a shortest path in G. This distance can decrease at most 2 more times. Hence, the total
number of shortest paths that a cluster-node pair supports is at most 3. The total number
of cluster-node pairs is at most n2/h. Thus the sum of values of shortest paths added to H
is at most 3 · n2/h. Therefore, the sum of costs of the paths added to H during the Path
Buying step is at most √

log n

D
·
∑
ρ

valueHρ(ρ) =

√
log n

D
· 3n2

h
.

Substituting the value of h, we can see that this is O(nh).
Thus the size of the subgraph output by the algorithm is O(n3/2 · (log n/D)1/4).

4.2 A (1,4k) D-spanner

We are now ready to describe our algorithm to construct a (1,4k) D-spanner of any graph
G for any integer k ≥ 1. The inputs to this algorithm are a graph G = (V,E), an integral
distance threshold D ∈ [1, n] and an integer k ≥ 1. Let P = {(u, v) ∈ V ×V : dG(u, v) ≥ D}.

The clustering phase and shortest paths tree addition phase of this algorithm are similar to
those of the other algorithms we have seen so far. In the path buying phase of this algorithm,
for each pair of nodes (u, v) ∈ P such that the u-v shortest path ρ is cheap, we try adding ρ
to the current subgraph based on a path buying criterion. If it is not affordable in our current
subgraph, we use a sub-routine NextPath to get another u-v path that is slightly longer and
less costlier. We then see if this new path satisfies our path-buying criterion. This continues
until we find an affordable u-v path.

The path buying criterion here makes use of the function valueH(.) (see Definition 4.1.1)
as well as a function costH(.) which is defined as follows.

22



Definition 4.2.1. The cost of a path ρ with respect to a subgraph H of G, denoted as
costH(ρ), is defined as the number of edges of ρ which are absent from H.

The algorithm description follows.

1. Initialise H to the empty graph and set h to

⌈√
(4k + 3) · n ·

(
logn
D

)k/(2k+2)
⌉

.

2. Clustering and SPT Addition. Perform the steps in the Clustering and Shortest Paths
Tree Addition phases (as described in Section 2.1) with h as the parameter. This
computes Gh, Ch and Sh.

• Add all the edges in Gh to H.

• Add all the edges in shortest paths trees rooted at the centers of the clusters in
Sh to H.

3. Path Buying. For each (u, v) such that dG(u, v) ≥ D, do:

• Let ρ be the shortest u-v path.

• If cost(ρ) <
(
Dk/(k+1) log1/(k+1) n

4k+3

)
, do:

(a) While costH(ρ) > 6 · valueH(ρ) ·
(

log n

D

)k/(k+1)

, do:

– ρ = NextPath(ρ,H)

(b) Add ρ to H.

4. Return the subgraph H

This completes our algorithm. We first prove that there is a polynomial time subroutine
NextPath, which when invoked on a u-v path ρ that has violated the path buying criterion,
returns another u-v path whose length is at most 4 more than ρ and whose cost is smaller
than that of ρ by a factor of Õ(D1/(k+1)). We do this in Lemma 4.2.2. The proof sketch is
as follows. NextPath is invoked on a u-v path ρ and a subgraph H only if it fails the path
buying criterion with respect to H. We first prove that there exists two clusters incident on ρ,
close to its endpoints, and a node on ρ such that the distance of this node from either cluster
in H is at most the respective distance between the same along ρ. Using this observation,
we then prove that it is possible to efficiently construct an alternate u-v path which satisfies
our requirements.

Lemma 4.2.2. There is a sub-routine NextPath which when invoked on a u-v path ρ and
a graph H in the Path Buying phase, computes in polynomial time, another u-v path ρ′ such
that:

1. costH(ρ′) ≤ costH(ρ)

D1/(k+1) · logk/(k+1) n

2. |ρ′| ≤ |ρ|+ 4

3. Any cluster C shares at most 3 nodes with ρ′
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Proof. Let u and v be the endpoints of ρ. We assume that ρ satisfies the property that any
cluster shares at most 3 nodes with ρ. This is true the first time NextPath is called on a
path ρ between u and v, since ρ at that time is the u-v shortest path. We will prove that
this property holds for the new path ρ′ as well.

Let c denote costH(ρ) and t denote D1/(k+1) logk/(k+1) n. View the path as going from u
to v. Let L denote the longest prefix of ρ containing bc/2tc missing edges in H and let R
denote its longest suffix with the same number of missing edges. Let Fu and Fv be the sets
of clusters intersecting L and R respectively. We may assume without loss of generality that
|Fu| ≤ |Fv|.

The sub-routine NextPath was invoked on ρ and H because ρ violated the Path Buying
criterion with respect H in the Path Buying phase of the algorithm.

We claim that there exists a node w on ρ, clusters C1 ∈ Fu and C2 ∈ Fv such that:

dH(w,C1) ≤ dρ(w,C1) and dH(w,C2) ≤ dρ(w,C2).

If this were not true, then for every node z on ρ there are at least |Fu| clusters C such that
dH(z, C) > dρ(z, C). This means that each node on ρ contributes at least |Fu| to valueH(ρ).
Thus,

valueH(ρ) ≥ D · |Fu|, (4.2)

as there are at least D nodes on ρ. Since L and R each contain bc/2tc missing edges, they
have at least bc/2tc + 1 clustered nodes each. Thus |Fu| and |Fv| are both at least c/(6t)
since, we have assumed that any cluster shares at most 3 nodes with ρ. Substituting this in
equation 4.2, we get that:

valueH(ρ) ≥ c ·D
6 ·D1/(k+1) logk/(k+1) n

=⇒ costH(ρ) ≤ 6 · valueH(ρ) ·
(

log n

D

)k/(k+1)

.

This is a contradiction, as we know that ρ did not satisfy the Path Buying criterion with
respect to the graph H.

Now we will show that the existence of such a triplet C1, C2 and w is enough to ensure
the existence of a path ρ′ as in the statement of the lemma. Let x be the node in C1 closest
to u along ρ and y be the node in C2 closest to v along ρ. We have three cases depending on
the position of w on ρ.

- If w lies in between u and x, ρ′ is the concatenation of the (i) subpath of ρ from u to
w, (ii) shortest path in H from w to y, and (iii) subpath of ρ from y to v.

- If w lies in between y and v, ρ′ is the concatenation of the (i) subpath of ρ from u to
x, (ii) shortest path in H from x to w, and (iii) subpath of ρ from w to v.

- If w is in between x and y, ρ′ is the concatenation of the (i) subpath of ρ from u to x,
(ii) shortest path in H from x to y via w, and (iii) subpath of ρ from y to v.

Using the same arguments as those used in the proof of Lemma 4.1.2, we can show that
|ρ′| ≤ |ρ|+ 2 (refer Figure 4.1) in the first two cases and that |ρ′| ≤ |ρ|+ 4 (refer Figure 4.2)
in the third case. In all the three cases, the portions of ρ′ with missing edges are in subpaths
of L or R. Thus, the total number of edges missing in ρ′ is at most c/t. Therefore, we have
proved the existence of a ρ′ which satisfies:

costH(ρ′) ≤ costH(ρ)

D1/(k+1) · logk/(k+1) n
and |ρ′| ≤ |ρ|+ 4.
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Now, assume that there exists some cluster C that shares more than 3 nodes with ρ′.
We let a and b denote the nodes in the intersection of C and ρ′, closest to u and v along ρ′,
respectively. If we replace the subpath of ρ′ between a and b (which is of length at least 3)
with the path between them in H (of length at most 2 by Lemma 2.1.2), we get an alternate
u-v path whose cost and length are at most those of ρ′. It also has the additional property
that C shares at most 3 nodes with it. We can replace ρ′ by this path. We can do this for
any cluster which shares more than 3 nodes with ρ′. So, we can conclude that ρ′ is a path
satisfying all the three properties in the statement of the lemma.

The subroutine NextPath can first find C1, C2 and w as above by iterating over relevant
triplets, each consisting of a pair of clusters from Fu×Fv and a node on ρ, and then compute
ρ′ using it as described.

We are now ready to prove that the algorithm returns a (1, 4k) D-spanner of the input graph.

Lemma 4.2.3. The subgraph H returned by the above algorithm is a (1, 4k) D-spanner of
G.

Proof. Consider a pair (u, v) ∈ V × V such that dG(u, v) ≥ D. Let ρ be the shortest path
associated with it.

Note that h =
⌈√

(4k + 3) · n · (log n/D)k/(2k+2)
⌉
.

Therefore if cost(ρ) ≥ Dk/(k+1) log1/(k+1) n
4k+3 , ρ is an expensive path and therefore by Lemma 2.1.7,

dH(u, v) ≤ dG(u, v) + 2.

If cost(ρ) < Dk/(k+1) log1/(k+1) n
4k+3 , ρ is considered in the Path Buying phase. The number

of times that the procedure NextPath is called in the iteration corresponding to ρ is at
most k. This can be shown as follows. From the previous lemma, we know that with each
invocation of NextPath, the cost of the u-v path under consideration reduces by a factor of
D1/(k+1) · logk/(k+1) n. Thus, after k invocations, the cost of the u-v path becomes:

Dk/(k+1) log1/(k+1) n

(4k + 3) · (D1/(k+1) · logk/(k+1) n)k
< 1.

This means that the path is entirely present in H after k invocations of NextPath. Since
in each invocation, the length of the path increases by at most 4, we can conclude that
dH(u, v) ≤ dG(u, v) + 4k at the end of the iteration of the main loop corresponding to the
pair (u, v).

We now bound the number of edges in the subgraph returned by the algorithm. Recall
that a pair (v, C) ∈ V ×Ch supports a path ρ in H if this pair of vertex and cluster contributes
1 to valueH(ρ).

Lemma 4.2.4. The subgraph H returned by the above algorithm has Õ(n3/2/Dk/(2k+2)) edges.

Proof. The number of edges added to H in Step 2 is O(nh). The number of edges added to
H in the Path Buying phase is bounded by

∑
ρ
costHρ(ρ), where the sum is over all ρ that

got added to H and Hρ denotes the state of H when ρ got added. All the paths ρ that got
added to H satisfied the path-buying condition

costHρ(ρ) ≤ 6 · valueHρ(ρ) · (log n/D)k/(k+1) .
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Thus we have that,

∑
ρ

costHρ(ρ) ≤ 6 ·
(

log n

D

)k/(k+1)

·
∑
ρ

valueHρ(ρ), (4.3)

where the sum is over the paths ρ added to H.
Since valueHρ(ρ) is the number of pairs (v, C) ∈ V × Ch that supported the addition of ρ

to Hρ, we have:

∑
ρ

valueHρ(ρ) =
∑

(v,C)∈V×Ch

(number of paths added to H that (v, C) supports) (4.4)

where the first summation is over all the paths ρ that got added to H.
Since the paths added to H have an additive stretch of at most 4k, the distance between

a node v and a cluster C, the first time (v, C) supports a path is at most dG(v, C) + 4k + 2.
So the distance between a cluster and a node can be decreased at most 4k + 3 times during
the path buying phase. Thus a cluster-node pair supports at most 4k+ 3 paths added to H.
The total number of clusters is at most n/h and hence the total number of cluster-node pairs
is at most n2/h. So the sum of values of paths added to H can be at most (4k + 3) · n2/h.
Hence the total number of edges added to H can be bounded as follows:∑

ρ

costHρ(ρ) ≤ 6 ·
(
logn
D

)k/(k+1)
·
∑
ρ
valueHρ(ρ) (4.5)

= 6 ·
(
logn
D

)k/(k+1)
· (4k + 3) · n2

h (4.6)

We can easily see by substitution that this is O(nh). Therefore the number of edges in
H is O(nh), which is also Õ(n3/2/Dk/(2k+2)).

Thus, we have proved Theorem 1.0.3. An interesting Corollary of the theorem follows by
substituting k = blog nc.

Corollary 4.2.5. There is a polynomial time algorithm that takes a graph G = (V,E) on n
nodes and an integer D ∈ [1, n] as its inputs and computes an Õ(n ·

√
n/D)-sized (1, 4 log n)

D-spanner of G.
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Chapter 5

Conclusion

The main theme of the thesis is an investigation on algorithms for computing sparse pairwise
spanners of undirected unweighted graphs.

As part of our study, we obtain constructions for sparse small stretch pairwise spanners
of a graph G = (V,E). We consider the cases when the set of pairs P is an arbitrary subset
of V × V and when the set P is of the form S × V for an arbitrary subset S ⊆ V . In both
these cases, we obtain a (1, 2) P-spanner. Taking cue from these results, we also show the
first deterministic algorithm to construct a (1, 4) all pairs spanner with O(n1.4 log0.2 n) edges.

Another direction we have explored is that of computing sparse D-spanners. The main
result is a tradeoff between the size and stretch for D-spanners.

We now list a few open problems as well as directions for further study.

Problem 1: Sparser Pairwise Spanners. A natural and important open problem in the
context of Chapter 3 would be to see if we can get sparser pairwise spanners with the same
stretch as ours in the case when the pairs are arbitrary. More specifically, we can raise the
following question.

• Is it possible to compute (1, 2) P-spanners with O(n|P|1/4) edges when P ⊆ V × V is
arbitrary ?

If this can be answered in the affirmative, many of the pairwise and all pairs spanners we
know will follow as corollaries of this. For arbitrary P ⊆ V × V , the only known Õ(n|P|1/4)-
sized P-spanner has an additive stretch of 4 log n. We have described this result due to Cygan
et al. [CGK13] in Section 2.2.

Note that we already show an Õ(n|P|1/4)-sized (1, 2) P-spanner when P = S × V for
S ⊆ V in Section 3.2. But the bound we have obtained on the number of edges of a (1, 2)
P-spanner is Õ(n|P|1/3) for arbitrary P.

Problem 2: Sparse S1×S2-spanners. A problem that we propose is whether it is possible
to compute sparse P-spanners of a graph G = (V,E) when P is of the form S1 × S2, where
S1 and S2 are two disjoint subsets of V .

The problem can be motivated in the following way. S1 denotes a set of sources and S2, a
set of destinations. The objective is to find if there are nearly shortest paths from all sources
to all destinations such that the union of all such paths is sparse.

It might be possible to obtain an Õ(n|P|1/4)-sized (1, 2) P-spanner when P = S1 × S2
for S1, S2 ⊆ V , since the pairs in this case have more structure than in the case when P is
arbitrary.

27



Problem 3: Better Algorithms for Pairwise Spanners. We remark that our results
are more combinatorial rather than algorithmic, in the sense that we have not made efforts to
optimize the running time of our algorithms. It would be an interesting pursuit to figure out
ways to improve the performance of the algorithms for pairwise spanners. Woodruff [Woo10]
has made significant progress in this direction in the context of purely additive all-pairs
spanners. They show a nearly quadratic time algorithm for constructing a (1, 6) all pairs
spanner of size Õ(n4/3). Our current goal is to adapt the ideas used therein to the case of
pairwise spanners.

Problem 4: o(n4/3)-sized purely additive spanners. We conclude the thesis with the
most important open problem in the area of additive spanners which is whether it is possible
to construct an all pairs additive spanner with stretch that is sub-polynomial in the number
of nodes and size o(n4/3). The currently known lower bounds [Woo06] do not rule out the
possibility of existence of such spanners. We do not believe that it is possible to get o(n4/3)-
sized purely additive spanners using the present techniques.

The study of additive spanners constitute a fundamental problem in the area of Graph
Algorithms, mainly because of their wide applicability in both theory as well as practice.
There is a lot of work that needs to be done in this area. We believe that making significant
progress in any of the problems mentioned above, will be an important contribution to the
area.
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